首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple, rapid, sensitive and inexpensive approach is described in this work based on a combination of solid-phase extraction of 8-hydroxyquinoline (8HQ), for speciation and preconcentration of Cr(III) and Cr(VI) in river water, and the direct determination of these species using a flow injection system with chemiluminescence detection (FI–CL) and a 4-diethylamino phenyl hydrazine (DEAPH)–hydrogen peroxide system. At different pH, the two forms of chromium [Cr(III) and Cr(VI)] have different exchange capacities for 8HQ, therefore two columns were constructed; the pH of column 1 was adjusted to pH 3 for retaining Cr(III) and column 2 was adjusted to pH 1 for retaining of Cr(VI). The sorbed Cr(III) and Cr(VI) species were eluted from columns using 3.0 ml of 0.1 N of HCl and 3.0 ml of 0.1 N of NaOH, respectively. The flow injection–chemiluminescence (FI–CL) method is based on light emitted due to the oxidation of DEAPH by the H2O2 in the presence of Cr(III), which catalyzes the reaction. The flow cell is a transparent coiled tube made from glass (2.0 × 4.0, inner and outer diameter) and located close to the photodetector. The flow parameters: flow rate, sample volume, flow cell length, and distance to the CL detector were studied and optimized. Under optimum flow conditions, the Cr(III) concentration can be determined over the range 5–350 μg L−1 with a limit of detection of 1.2 μg L−1, as the Cr(III) concentration is proportional to the intensity of the CL signal. The relative standard deviations (%) for 10 and 50 μg L−1 Cr(III) were 1.2% and 3.2%, respectively. The effects of Al(III), Cd(II), Zn(II), Hg(II), Pb(II), Co(II), Cu(II), Ni(II), Mn(II), Ca(II), and Fe(III) were investigated. The proposed method is highly selective and sensitive, enabling a rapid determination of the Cr(III) amount in the presence of other interfering metals. Finally, the FI–CL method was examined in five river water samples with excellent recoveries.  相似文献   

2.
Hu Y  Li G  Zhang Z 《Luminescence》2011,26(5):313-318
In this paper, the novel trivalent copper–periodate complex {K5[Cu(HIO6)2], DPC} has been applied in a luminol‐based chemiluminescence (CL) reaction. Coupled with flow injection (FI) technology, the FI‐CL method was proposed for the determination of lincomycin hydrochloride. The CL reaction between luminol and DPC occurred in an alkaline medium. The CL intensity could be greatly enhanced by lincomycin hydrochloride. The relative CL intensity was proportional to the concentration of lincomycin hydrochloride in the range of 1 × 10?8 to 5 × 10?6 g mL?1 and the detection limit was at the 3.5 × 10?9 g mL?1 level. The relative standard deviation at 5 × 10?8 g mL?1 was 1.7% (n = 9). The sensitive method was successfully applied to the direct determination of lincomycin hydrochloride (ng mL?1) in serum. A possible mechanism of the lumonol–DPC CL reaction was discussed by the study of the CL kinetic characteristics and the spectra of CL reaction. The oxidability of DPC was studied by means of its electrochemical response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Siyu Chen  Fang Zhao 《Luminescence》2012,27(4):279-284
A simple, rapid and precise flow‐injection–chemiluminescence (FI–CL) method is presented for the determination of tenoxicam in pharmaceutical preparations and biological samples. The method is based on the weak chemiluminescence signal arising from the reaction of cerium(IV) in a nitric acid medium with sodium hyposulphite being significantly increased by tenoxicam in the presence of sodium dodecyl benzene sulphonate. Several experimental parameters affecting the CL reaction were examined and optimized systematically. Under the optimum conditions, the CL intensity was proportional to the concentration of tenoxicam in the range 7.0 × 10–11–5.0 × 10–8 g/mL. The detection limit was 2.3 × 10–11 g/mL tenoxicam and the relative standard deviation (RSD) was 2.1% for 1.0 × 10–9 g/mL tenoxicam solution (n = 11). The proposed method was applied to the determination of tenoxicam in pharmaceutical preparations, serum and human urine, with satisfactory results. The possible mechanism of the chemiluminescence reaction is also briefly discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
《Luminescence》2003,18(3):125-130
A new flow injection chemiluminescent method has been developed for the determination of procaine hydrochloride, based on the inhibition of the chemiluminescence reaction of luminol–hydrogen peroxide by procaine hydrochloride. The influence of several surfactants and β‐cyclodextrin on the chemiluminescence intensity were studied. It was found that β‐cyclodextrin enhanced the decrease in chemiluminescence intensity. The method is simple, convenient and sensitive, with a detection limit (3 σ) of 0.08 µg/mL. The decreased chemiluminescence intensity is linear, with the concentration of procaine hydrochloride in the range 0.2–100.0 µg/mL and 100.0–400.0 µg/mL. The relative standard deviation for 10 repeated measurements were 4.5% and 3.4% for 1.0 and 20.0 µg/mL procaine hydrochloride, respectively. The method has been successfully applied to the determination of procaine hydrochloride in injection solutions of this drug. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A novel flow injection chemiluminescence (CL) method for the determination of rutin was reported. The proposed method was based on the enhanced effect of rutin on the chemiluminescence intensity of luminol and potassium hexacyanoferrate(III) reaction in NaOH medium. The variables of reaction system, such as luminol concentration, potassium hexacyanoferrate(III) concentration and NaOH concentration, were optimized with the aid of response surface methodology. For the responses prediction, a second‐order polynomial model (SOPM) was applied. The optimal conditions for determination of rutin estimated by the model equation were as follows: NaOH concentration of 0.13 mol/L luminol concentration of 0.94 × 10?6 mol/L, and K3Fe(CN)6 concentration of 1.09 × 10?4 mol/L. The theoretical increased ratio of CL intensity (IRI) predicted and actual IRI for 0.05 mg/L rutin under the above conditions were 99.40 and 99.74%, respectively. The SOPM model proved to be powerful for navigating the design space. Under the above optimum conditions, the increased IRI was linearly related to the concentration of rutin in the range from 0.008 to 0.100 mg/L with the regression equation IRI = 1948.20c + 5.24 (r = 0.9994) and in the range from 0.100 to 1.000 mg/L with the regression equation IRI = 1362.50 c + 61.94 (r = 0.9996). The detection limit (3σ) was of 1.95 × 10?3 mg/L. The sampling frequency of this method was 72/h. The method was used directly to determine rutin in tablets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A novel flow injection analysis‐direct chemiluminescence (FI‐CL) method has been developed for determination of trace amounts of dopamine (DA) based on the enhancing effect of DA on the CL reaction of luminol with an Ag(III) complex in alkaline solution. Under optimum conditions, CL intensities are proportional to the concentration of DA in the range of 1.0 × 10?10 to 4.0 × 10?8 mol L?1. The detection limit is 3.0 × 10?11 mol L?1 for DA (3s), with a relative standard deviation (n = 13) of 2.3% for 1.0 × 10?8 mol L?1 DA. This method has also been applied for the determination of DA in commercial pharmaceutical injection samples. On the basis of the CL spectra and the results of the free‐radical trapping experiment of this work, a reaction mechanism for this CL reaction is proposed and discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Fang Zhao  Qi Fan  Huan Cai 《Luminescence》2014,29(3):219-224
A novel, rapid and sensitive chemiluminescence (CL) method combined with flow‐injection (FI) has been established for the estimation of olanzapine. This method is based on the CL signal generated between N‐chlorosuccinimide and olanzapine in an alkaline medium in the presence of calcein and Zn(II). Under optimum conditions, the CL signal was proportional to the olanzapine concentration ranging from 1.0 × 10‐10 to 3.0 × 10‐7 g/mL. The detection limit is 8.9 × 10‐11 g/mL olanzapine (3σ) and the relative standard deviation for 3.0 × 10‐9 g/mL of olanzapine is 1.9% (n = 11). The current CL method was applied to determine olanzapine in pharmaceutical formulations and biological fluids with satisfactory results. The possible CL reaction mechanism is discussed briefly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A simple flow injection method is reported for the determination of thyroxine, based on its inhibition effect on luminol-iron(II) chemiluminescence in alkaline medium in the presence of molecular oxygen. The detection limits (2s) for d- and l-thyroxine are 0.08 and 0.1 mg/L, respectively, with a sample throughput of 100/h. The calibration data for d- and l-thyroxine over the range 0.2-1.0 mg/L gives correlation coefficients (r(2)) of 0.9915 and 0.984 with relative standard deviations (RSD; n = 4) in the range 1.2-2.8%. The effects of some organic compounds was studied on luminol-iron(II) CL system for thyroxine determination. The method was applied to pharmaceutical thyroxine tablets and the results obtained (in the range 50.5 +/- 2.0-51.6 +/- 1.2 microg l-thyroxine/tablet) were in reasonable agreement with the value quoted.  相似文献   

9.
Rapid, simple and highly sensitive flow‐injection (FI) chemiluminescence (CL) and flow‐injection electrogenerated chemiluminescence (ECL) methods were developed for the determination of escitalopram oxalate (ESC), a selective serotonin reuptake inhibitor used as an antidepressant drug. The CL method was based on the CL reaction of ESC with acidic cerium(IV) and tris(2,2'‐bipyridyl)ruthenium(II) (Ru). Various experimental parameters affecting CL intensity were carefully studied and optimised. The method enabled the determination of 0.001‐50 µg/mL of ESC in bulk form with a correlation coefficient r = 0.9999. The limit of detection (LOD) was 0.01 ng/mL (S/N = 3). The ECL method was based on the ECL reaction of Ru with the drug in an acidic medium, permitting the determination of ESC in the range of 0.00001‐70 µg/mL with r = 0.9999 and LOD of 1 x 10‐4 ng/mL. The proposed methods were applied to the determination of ESC in commercial tablets. The results were compared statistically with those obtained from a published method using t‐ and F‐tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A weak chemiluminescence (CL) signal was observed during the mixing of isoniazid with lucigenin in alkaline aqueous solution. The CL signal was enhanced more than 100 times in the presence of potassium periodate. This CL system was developed for the determination of isoniazid using a flow injection mode. The CL intensity is proportional to the concentration of isoniazid in the range 0.005-1.0 mg/L. The limit of detection is 0.0034 mg/L and the relative standard deviation is 2.0% for 0.2 mg/L isoniazid solution in 11 repeated measurements. The method was applied to the determination of isoniazid in pharmaceutical preparations and satisfactory results were obtained.  相似文献   

11.
Chemiluminescence (CL) of the rhodamine 6‐G‐diperiodatonickelate (IV) (Rh6‐G‐Ni(IV) complex) in the presence of Brij‐35 was examined in an alkaline medium and implemented using flow‐injection analysis to analyze Mn(II) in natural waters. Brij‐35 was identified as the surfactant of choice that enhanced CL intensity by about 62% of the reaction. The calibration curves were linear in the range 1.7 × 10?3 – 0.2 (0.9990, n = 7) and 8.0 × 10?4 – 0.1 μg ml?1 (0.9990, n = 7) with limits of detection (LODs) (S:N = 3) of 5.0 × 10?4 and 2.4 × 10?4 μg ml?1 without and with using an in‐line 8‐hydroxyquinoline (8‐HQ) resin mini‐column, respectively. The sample throughput and relative standard deviation were 200 h?1 and 1.7–2.2% in the range studied respectively. Mn(II) concentrations in certified reference materials and natural water samples was successfully determined. A brief discussion about the possible CL reaction mechanism is also given. In addition, analysis of V(III), Cr(III) and Fe(II) was also performed without and with using an in‐line 8–HQ column and selective elution of each metal ion was achieved by adjusting the pH of the sample carrier stream with aqueous HCl solution.  相似文献   

12.
A simple and sensitive chemiluminescence (CL) method combined with flow injection technique was developed for the determination of naproxen. It was based upon the weak CL signal arising from the reaction of KIO4 with H2O2 being significantly increased by naproxen in the presence of europium(III) ion. The experimental conditions that affected the CL signal were carefully optimized and the CL reaction mechanism was briefly discussed. Under the optimum conditions, the increment of CL intensity was proportional to the concentration of naproxen ranging from 5.0 × 10?8 to 5.0 × 10?6 g/mL. The detection limit was 1 × 10?8 g/mL naproxen and the relative standard deviation for 5.0 × 10?7 g/mL naproxen solution was 2.1% (n = 11). The proposed method was applied to the determination of naproxen in tablets and in spiked human urine samples with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A novel, rapid and sensitive method was described for the determination of epinephrine (EP) using flow injection analysis coupled with chemiluminescence (CL) detection, which based on EP enhanced the weak CL emission of luminol–KIO4 system in NaOH solution. Parameters affecting the CL intensity and reproducibility were optimized systematically. Under the optimized experiment conditions, the net CL intensity was proportional to the concentration of EP in the range of 5.0 × 10?8 to 1.5 × 10?6 mol/L with a detection limit of 1.9 × 10?9 mol/L. The relative standard deviation (RSD) was found to be 0.7% for 13 replicate determinations of 3.0 × 10?7 mol/L EP. The applicability of the proposed method was illustrated in the determination of EP in pharmaceutical preparation. The recoveries of EP at different levels in EP hydrochloride injection were between 95.4 and 104.7%. One assay procedure takes only 27 s, and the sampling rate was calculated about to be 130 samples/h. The possible mechanism of the enhanced CL intensity was studied by examining CL spectra and UV–vis spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A two‐channel flow‐injection (FI) method is reported for the determination of iodide and iodine by its enhancement effect on the Ru(bpy)33+–NADH chemiluminescence (CL) system. The limit of detection (3 s of blank) was 1.0 × 10–9 mol/L iodide/iodine, with a sample throughput of 60/h. The calibration graphs over the range 1.0–50 × 10–8 mol/L gave correlation coefficients of 0.9994 and 0.999 (n = 5) with relative standard deviations (RSD; n = 4) of 1.0–2.5%, respectively. The effects of interfering cations, anions and some organic compounds were also studied. The method was applied to iodized salts and pharmaceutical samples and the results obtained were in good agreement with the value quoted. The CL method developed was compared with spectrophotometric method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A flow injection method with chemiluminescence detection is reported for the determination of vitamin A. The method is based on the enhancement effect of vitamin A on chemiluminescence of tris(2,2′‐bipyridyl)Ru(II)–Ce(IV) in acidic medium. The proposed procedure is used to quantitate vitamin A in the range 1.0–100 × 10?6 mol/L with a correlation coefficient of 0.9991 (n = 9) and relative standard deviation in the range 1.2–2.3% (n = 4). The limit of detection (3 × blank) was 8.0 × 10?8 mol/L with a sample throughput of 100/h. The effect of common excipients used in pharmaceutical formulations and some clinically important compounds was also studied. The method was applied to determine vitamin A in pharmaceutical formulations and the results obtained were in reasonable agreement with the amount quoted. The results were compared using spectrophotometric method and no significant difference was found between the results of the two methods at 95% confidence limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A new flow injection chemiluminescence (CL) method has been developed for the determination of bisphenol A (BPA), based on the inhibitory effect of BPA on the chemiluminescence reaction between luminol and potassium hexacyanoferrate. Under optimum conditions, the decrease in CL emission intensity was linear with BPA concentration in the range 8.0 x 10(-7)-1.2 x 10(-5) mol/L, and the detection limit was 3.1 x 10(-7) mol/L. The relative standard deviation (RSD) of 11 replicate measurements was 2.6% for 2.0 x 10(-6) mol/L BPA (n = 11). The sampling frequency was calculated to be ca. 120/h. This method has been successfully used to determine the content of BPA in aqueous solution of polycarbonate materials. A brief discussion on the possible chemiluminescence reaction mechanism is presented.  相似文献   

17.
The phenolphthalein‐imprinted polymer was prepared with methacrylic acid as functional monomer and ethylene glycol dimethacrylate as cross‐linker. Taking advantage of the quenching effect of phenolphthalein on the potassium permanganate–HCl–anhydrous alcohol chemiluminescence system, a new model was established to determine phenolphthalein by a highly selective flow injection chemiluminescence method. The traditional flow‐though cell was replaced with a novel flow path using a Y‐shaped polymethyl methacrylate column, through which the three reactants were injected simultaneously. The linear range of this assay was from 1.0 × 10?8 to 1.0 × 10?6 g/mL (= 0.9978). The limit of detection was 8.9 × 10?9 g/mL. The relative standard deviation for the determination of 1.0 × 10?8 g/mL phenolphthalein solution was below 2.9% (= 11). The proposed method was applied to the determination of phenolphthalein in real samples with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A simple and rapid flow-injection method is described for the determination of iodide, based on potassium permanganate chemiluminescence detection via oxidation of formaldehyde in aqueous hydrochloric acid. The calibration graph was linear over the range 1.0-12 x 10(-6) mol/L (r2 = 0.9955) with relative standard deviations (n = 4) in the range 1.0-3.5%. The detection limit (3sigma) was 1.0 x 10(-7) mol/L, with sample throughput of 120/h. The effect of interfering cations [Ca(II), Mg(II), Ni(II), Fe(II), Fe(III) and Pb(II)] and anions (Cl-, SO4(2-), PO4(3-), NO3-, NO2-, F- and SO3(2-)) were studied. The method was applied to iodized salt samples and the results obtained in the range 0.03 +/- 0.005 - 0.10 +/- 0.006 mg I/g were in reasonable agreement with the amount labelled. The method was statistically compared with the results obtained by titration; no significant disagreement at 95% confidence was observed.  相似文献   

19.
Yinhuan Li  Jiuru Lu 《Luminescence》2007,22(4):326-330
A simple, rapid, flow-injection chemiluminescence (CL) method is described for the determination of ibuprofen. A strong CL signal was detected when a mixture of the analyte and sulphite was injected into acidic KMnO(4). The CL signal is proportional to the concentration of ibuprofen in the range 0.1-10.0 mg/L. The detection limit is 0.02 mg/L ibuprofen, the relative standard deviation is 1.8% (0.5 mg/L ibuprofen; n = 11) and the sample measurement frequency is 120/h. The proposed method was successfully applied to the determination of ibuprofen in pharmaceutical preparations and in spiked urine samples. The mechanism of the CL reaction is also discussed.  相似文献   

20.
The binding behavior of lysozyme with Al(III) is described using luminol as a luminescence probe by flow injection–chemiluminescence (FI–CL) analysis. It was found that the CL intensity of the luminol–lysozyme reaction could be markedly enhanced by Al(III), and the increase in CL intensity was linear with the Al(III) concentration over the range 0.3–30.0 pg mL?1, with a detection limit of 0.1 pg mL?1 (3σ). Based on the interaction model of lysozyme with Al(III), lg[(I ? I0)/(2I0 ? I)] = lgK + nlg[M], the binding constant K = 6.84 × 106 L mol–1 and the number of binding sites (n) = 0.76. The relative standard deviations were 3.2, 2.4 and 2.0% for 10.0, 20.0 and 30.0 pg mL?1 Al(III) (n = 7), respectively. This new method was successfully applied to continuous, quantitative monitoring of picogram level Al(III) in human saliva following oral intake of compound aluminum hydroxide tablets. It was found that Al(III) in saliva reached a maximum of 101.2 ng mL?1 at 3.0 h. The absorption rate constant ka, elimination rate constant k and half‐life time t1/2 of Al(III) were 1.378 h?1, 0.264 h?1 and 2.624 h, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号