首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology of the mouse vas deferens still undergoes major changes from birth to 40 days of age, such as differentiation of the mesenchymal cells into fibroblasts and muscle cells, differentiation of the epithelium into basal and columnar epithelial cells, development of stereocilia, and the appearance of smooth endoplasmic reticulum organised in fingerprint-like structures or parallel, flattened saccules. In mutant homozygous DeltaF508 (DeltaF/DeltaF) and knock-out (cf/cf) CFTR mice, strain 129/FvB and 129/C57BL-6, respectively, a similar development occurred until the age of 20 days. At 40 days, however, the lumen was filled with eosinophilic secretions, and sperm cells were absent in the majority of the animals examined, although sperm production in testis and epididymis appeared to be normal. CFTR was localised in the apical membrane and cytoplasm of the vas deferens epithelium from 40 days on but could not be detected in the vas deferens before 20 days or in mutant adult CFTR mice as expected. Western blots of membrane preparations showed that the mature form of CFTR was present in vas deferens and testis but absent in seminal vesicles. Our results suggest that the function of CFTR is probably essential after 20 days in the vas deferens and that its absence or dysfunction may result in a vas deferens with a differentiated epithelium but a collapsed lumen, which could at least temporarily delay the transport of spermatozoa. These observations contrast with those made in the overall majority of CF patients. Mol. Reprod. Dev. 55:125-135, 2000.  相似文献   

2.
Aquaporin 9 expression along the male reproductive tract   总被引:10,自引:0,他引:10  
Fluid movement across epithelia lining portions of the male reproductive tract is important for modulating the luminal environment in which sperm mature and reside, and for increasing sperm concentration. Some regions of the male reproductive tract express aquaporin (AQP) 1 and/or AQP2, but these transmembrane water channels are not detectable in the epididymis. Therefore, we used a specific antibody to map the cellular distribution of another AQP, AQP9 (which is permeable to water and to some solutes), in the male reproductive tract. AQP9 is enriched on the apical (but not basolateral) membrane of nonciliated cells in the efferent duct and principal cells of the epididymis (rat and human) and vas deferens, where it could play a role in fluid reabsorption. Western blotting revealed a strong 30-kDa band in brush-border membrane vesicles isolated from the epididymis. AQP9 is also expressed in epithelial cells of the prostate and coagulating gland where fluid transport across the epithelium is important for secretory activity. However, it was undetectable in the seminal vesicle, suggesting that an alternative fluid transport pathway may be present in this tissue. Intracellular vesicles in epithelial cells along the reproductive tract were generally poorly stained for AQP9. Furthermore, the apical membrane distribution of AQP9 was unaffected by microtubule disruption. These data suggest that AQP9 is a constitutively inserted apical membrane protein and that its cell-surface expression is not acutely regulated by vesicular trafficking. AQP9 was detectable in the epididymis and vas deferens of 1-wk postnatal rats, but its expression was comparable with adult rats only after 3--4 wk. AQP9 could provide a route via which apical fluid and solute transport occurs in several regions of the male reproductive tract. The heterogeneous and segment-specific expression of AQP9 and other aquaporins along the male reproductive tract shown in this and in our previous studies suggests that fluid reabsorption and secretion in these tissues could be locally modulated by physiological regulation of AQP expression and/or function.  相似文献   

3.
4.
5.
Epithelial sodium channels (ENaCs) are located on the apical surface of cells and funnel Na+ ions from the lumen into the cell. ENaC function also regulates extracellular fluid volume as water flows across membranes accompanying Na+ ions to maintain osmolarity. To examine the sites of expression and intracellular localization of ENaC, we generated polyclonal antibodies against the extracellular domain of human α-ENaC subunit that we expressed in E. coli. Three-dimensional (3D) confocal microscopy of immunofluorescence using these antibodies for the first time revealed that ENaCs are uniformly distributed on the ciliary surface in all epithelial cells with motile cilia lining the bronchus in human lung and female reproductive tract, all along the fimbrial end of the fallopian tube, the ampulla and rare cells in the uterine glands. Quantitative analysis indicated that cilia increase cell surface area >70-fold and the amount of ENaC on cilia is >1,000-fold higher than on non-ciliated cell surface. These findings indicate that ENaC functions as a regulator of the osmolarity of the periciliary fluid bathing the cilia. In contrast to ENaC, cystic fibrosis transmembrane conductance regulator (CFTR) that channels chloride ions from the cytoplasm to the lumen is located mainly on the apical side, but not on cilia. The cilial localization of ENaC requires reevaluation of the mechanisms of action of CFTR and other modulators of ENaC function. ENaC on motile cilia should be essential for diverse functions of motile cilia, such as germ cell transport, fertilization, implantation, clearance of respiratory airways and cell migration.  相似文献   

6.
We have examined the anatomy of the vas deferens of the lobster Homarus americanus and have described the structure of the proximal vas deferens (segments one and two). The two tubes of segment one descend from the testes and gradually merge into segment two. The epithelium of segment one has synthetic activity and appears to contribute to the sperm-supporting matrix by exocytotic release of granules through its apical surface. The epithelium of segment two is also highly synthetic and secretes the primary spermatophore layer and part of the intermediate layer that surround the sperm mass. The trifoil shape of the extruded spermatophore is established through a change in height of some of the cells lining the lumen in segment two. Connective tissue and circular bands of striated muscle surround the epithelium of both segments.  相似文献   

7.
An attempt was made here to study the structure of the male reproductive system of Portunus pelagicus, which would improve the knowledge base on the reproductive biology of the species and also help in the maintenance of broodstock under controlled conditions. Male P. pelagicus of different sizes were collected from the Palk Bay off Mandapam (9°17′ N, 79°9′ E) and maintained under controlled conditions for the study. Tissues from testis, anterior vas deferens (AVD), median vas deferens (MVD), posterior vas deferens (PVD), ejaculatory duct and penis were fixed in Bouin's fluid and 2.5% buffered glutaraldehyde separately and processed for light and electron microscopic studies, respectively. The reproductive system consisted of testis, commissure, vas deferens, ejaculatory duct and penis. The vas deferens was divided based on the morphology and/or histology into AVD, MVD and PVD. The AVD was further divided based on histology into proximal and distal regions, and the MVD, based on diameter into major and minor coils. The testicular lobe had several lobules with a central seminiferous tubule, which continued till the penis. The seminiferous tubule was lined by a layer of cuboidal or columnar epithelium. The lining of the central tubule of the vas deferens formed several ‘folds’, which at times formed ‘pouches’. High incidence of cell organelles in the columnar epithelial cells, aggregations of vesicles and occurrence of blebs at the luminal periphery and the projection of numerous microvilli containing electron‐dense materials into the lumen from the cell lining denoted high secretory activity of the epithelial cells.  相似文献   

8.
The interplay between actin and 10 membrane channel proteins that have been shown to directly bind to actin are reviewed. The 10 membrane channel proteins covered in this review are aquaporin 2 (AQP2), cystic fibrosis transmembrane conductance regulator (CFTR), ClC2, short form of ClC3 (sClC3), chloride intracellular channel 1 (CLIC1), chloride intracellular channel 5 (CLIC5), epithelial sodium channel (ENaC), large-conductance calcium-activated potassium channel (Maxi-K), transient receptor potential vanilloid 4 (TRPV4), and voltage-dependent anion channel (VDAC), with particular attention to AQP2. In regard to AQP2, most reciprocal interactions between actin and AQP2 occur during intracellular trafficking, which are largely mediated through indirect binding. Actin and the actin cytoskeleton work as cables, barriers, stabilizers, and force generators for motility. However, as with ENaC, the effects of actin cytoskeleton on channel gating should be investigated further. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

9.
Water and solute transport across the plasma membrane of cells is a crucial biological function that is mediated mainly by aquaporins and aquaglyceroporins. The regulation of these membrane proteins is still incompletely understood. Using the male reproductive tract as a model system in which water and glycerol transport are critical for the establishment of fertility, we now report a novel pathway for the regulation of aquaporin 9 (AQP9) permeability. AQP9 is the major aquaglyceroporin of the epididymis, liver, and peripheral leukocytes, and its COOH-terminal portion contains a putative PDZ binding motif (SVIM). Here we show that NHERF1, cystic fibrosis transmembrane conductance regulator (CFTR), and AQP9 co-localize in the apical membrane of principal cells of the epididymis and the vas deferens, and that both NHERF1 and CFTR co-immunoprecipitate with AQP9. Overlay assays revealed that AQP9 binds to both the PDZ1 and PDZ2 domains of NHERF1, with an apparently higher affinity for PDZ1 versus PDZ2. Pull-down assays showed that the AQP9 COOH-terminal SVIM motif is essential for interaction with NHERF1. Functional assays on isolated tubules perfused in vitro showed a high permeability of the apical membrane to glycerol, which is inhibited by the AQP9 inhibitor, phloretin, and is markedly activated by cAMP. The CFTR inhibitors DPC, GlyH-101 and CFTRinh-172 all significantly reduced the cAMP-activated glycerol-induced cell swelling. We propose that CFTR is an important regulator of AQP9 and that the interaction between AQP9, NHERF1, and CFTR may facilitate the activation of AQP9 by cAMP.  相似文献   

10.
This study investigated the morphology and immunoexpression of aquaporins (AQPs) 1 and 9 in the rete testis, efferent ducts, epididymis, and vas deferens in the Azara’s agouti (Dasyprocta azarae). For this purpose, ten adult sexually mature animals were used in histologic and immunohistochemical analyses. The Azara’s agouti rete testis was labyrinthine and lined with simple cubic epithelium. Ciliated and non-ciliated cells were observed in the epithelium of the efferent ducts. The epididymal cellular population was composed of principal, basal, apical, clear, narrow, and halo cells. The epithelium lining of vas deferens was composed of the principal and basal cells. AQPs 1 and 9 were not expressed in the rete testis. Positive reaction to AQP1 was observed at the luminal border of non-ciliated cells of the efferent ducts, and in the peritubular stroma and blood vessels in the epididymis, and vas deferens. AQP9 was immunolocalized in the epithelial cells in the efferent ducts, epididymis and vas deferens. The morphology of Azara’s agouti testis excurrent ducts is similar to that reported for other rodents such as Cuniculus paca. The immunolocalization results of the AQPs suggest that the expression of AQPs is species-specific due to differences in localization and expression when compared to studies in other mammals species. The knowledge about the expression of AQPs in Azara’s agouti testis excurrent ducts is essential to support future reproductive studies on this animal, since previous studies show that AQPs may be biomarkers of male fertility and infertility.  相似文献   

11.
12.
13.
Prostaglandins (PGE2, PGF2 alpha) in the excurrent ducts of the male reproductive tract appear to be both modulators of ductal contractility for transport of spermatozoa and factors involved in the regulation of sperm maturation. To identify the tissue sites for the production of prostaglandins (PGs) in the excurrent ductal system, we have employed an immunohistochemical technique to localize prostaglandin H (PGH) synthase in the epididymis and vas deferens of the mouse. A mouse monoclonal antibody to PGH synthase was used and was shown to be specific for the mouse enzyme by Western blot analysis. In sexually mature mice, PGH synthase was primarily localized to the epithelium of the epididymis and vas deferens. Within the epididymal epithelium, immunoactivity appeared in all cell types of the initial segment, in a subpopulation of cells with predominantly apically oriented nuclei in the caput and corpus, and in low levels in the cauda. PGH synthase reactivity was the most intense in the epithelial cells of the vas deferens. PGH synthase was not detected in smooth muscle cells, spermatozoa, or luminal fluid. This study suggests that the epithelium of the excurrent ductal system of the mouse is the major site for PG production. The regionalization of PGH synthase to cells in the epididymis thought to be involved in the absorption of luminal fluid suggests that PGs may play a role in fluid and ion transport.  相似文献   

14.
15.
The activities of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel and the amiloride-sensitive epithelial Na(+) channel (ENaC) are acutely coordinated in the sweat duct. However, the mechanisms responsible for cross-talk between these ion channels are unknown. Previous studies indicated that luminal pH of sweat ducts varies over 3 pH units and that the cytoplasmic pH affects both CFTR and ENaC. Therefore, using basolaterally alpha-toxin-permeabilized apical membrane preparations of sweat ducts as an experimental system, we tested the hypothesis that the cytosolic pH may mediate the cross-talk between CFTR and ENaC. We showed that while luminal pH had no effect, cytosolic pH acutely affected ENaC activity. That is, acidic pH inhibited, while basic pH activated, ENaC. pH regulation of ENaC appears to be independent of CFTR or endogenous kinase activities because basic pH independently stimulated ENaC (1) in normal ducts even when CFTR was deactivated, (2) in CF ducts that lack CFTR in the plasma membranes and (3) after blocking endogenous kinase activity with staurosporine. Considering the evidence of Na(+)/H(+) exchange (NHE) activity as shown by the expression of mRNA and function of NHE in the basolateral membrane of the sweat duct, we postulate that changes in cytosolic Na(+) ([Na(+)]( i )) may alter cytosolic pH (pH( i )) as salt loads into the cell during electrolyte absorption. These changes may play a role in coordinating the activities of ENaC and CFTR during transepithelial salt transport.  相似文献   

16.
The transepithelial movement of water into the male reproductive tract is an essential process for normal male fertility. Protein water channels, referred to as aquaporins (AQPs), are involved in increasing the osmotic permeability of membranes. This study has examined the expression of AQP1, AQP2, and AQP7 in epithelial cells in adult dog efferent ducts, epididymis, and vas deferens. Samples of dog male reproductive tract comprising fragments of the testis, initial segment, caput, corpus and cauda epididymidis, and vas deferens were investigated by immunohistochemistry and Western blotting procedures to show the localization and distribution of the AQPs. AQP1 was noted in rete testis, in efferent ducts, and in vessels in the intertubular space, suggesting that AQP1 participated in the absorption of the large amount of testicular fluid occurring characteristically in the efferent ducts. AQP2 expression was found in the rete testis, efferent ducts and epididymis, whereas AQP7 was expressed in the epithelium of the proximal regions of the epididymis and in the vas deferens. This is the first time that AQP2 and AQP7 have been observed in these regions of mammalian excurrent ducts, but their functional role in the dog male reproductive tract remains unknown. Investigations of AQP biology could be relevant for clinical studies of the male reproductive tract and to technologies for assisted procreation. R.F.D. gratefully acknowledges a Fellowship from the Department of Anatomy, Institute of Biosciences, UNESP, Botucatu, SP, Brazil. This work was also funded by FAPESP (Sao Paulo State Research Foundation; grant 04/05578–1 to A.M.O. and grant 04/05579–8 to R.F.D.). This paper is part of the PhD Thesis presented by R.F.D. to the State University of Campinas – UNICAMP, Brazil.  相似文献   

17.
18.
Clusterin, a glycoprotein that elicits cell aggregation, has previously been isolated from ram rete testis fluid, and has been partially characterized. In experiments reported, we have used monoclonal antibodies against clusterin in combination with indirect immunofluorescence microscopy to investigate the distribution of clusterin in the adult ram testis, rete testis, and excurrent ducts. Tissue blocks (5 mm3) were fixed in periodate/lysine/paraformaldehyde containing 0.1% glutaraldehyde and, after embedding, 5-microM sections were prepared for immunolocalization. In the testis, 2 basic patterns were observed: 1) strong to moderate staining for clusterin in the adluminal region with little staining in the basal region of the seminiferous epithelium and germinal cells; and 2) moderate staining throughout the seminiferous epithelium between germinal cells. In the rete testis, strong clusterin staining was localized intracellularly in the rete epithelial cells, most often associated with the luminal surface. In the epididymis, intracellular clusterin was localized in some principal cells of the caput epididymidis. The luminal surfaces and spermatozoa within the lumen were strongly positive. In the vas deferens, clusterin staining was associated with the luminal surface only. The presence of clusterin was clearly detected in unwashed isolated epididymal spermatozoa, but not in spermatozoa washed with phosphate-buffered saline containing 0.05% Tween 20.  相似文献   

19.
日本沼虾输精管的结构及其在精荚形成中作用的研究   总被引:2,自引:0,他引:2  
应用光镜和透射电镜技术研究了日本沼虾输精管的结构及其在精荚形成中的作用。结果表明,日本沼虾输精管从形态结构上可分为近端输精管、卷曲输精管、远端输精管和膨大的远端输精管四部分。各部分的管壁皆由分泌上皮、基膜、肌肉层和结缔组织构成,其中分泌上皮包括高度明显不同的低柱状上皮和高拄状上皮两部分。输精管各部分管腔内含有处于不同形成阶段的精荚。进入近端输精管内的精子被支撑在一种嗜酸性基质中。近端输精管的分泌物主要帮助形成精子团,同时形成精荚壁的极小部分。卷曲和远端输精管分泌形成精荚壁的绝大部分,其分泌物由细胞顶端通过外排作用和顶泌机制分泌产生。膨大的远端输精管具有贮存精荚的作用,其分泌上皮也通过外排作用和顶泌机制产生分泌物包裹在已基本形成的精荚外侧,管壁肌肉层在雌雄交配时将管腔内的精荚切割成适宜长度并排出体外。    相似文献   

20.
Jun ES  Kim YS  Yoo  Roh HJ  Jung JS 《Life sciences》2001,68(7):827-840
Integrity of the airway epithelium is important for pulmonary defense mechanisms to infection. The lining of the airway contains a diverse population of cell types. Understanding about progenitor-progeny relationships during renewal of airway epithelium is important for elucidating mechanisms of injury repair or oncogenesis. Primary culture of airway epithelia is a good model for studying differentiation process of epithelial cells. Ion channels and aquaporins(AQPs) play a critical role on ion and fluid transport across airway epithelia. However, changes in their expression during differentiation of airway epithelial cells have not been reported yet. This study was undertaken to identify isoforms of aquaporins in cultured normal human nasal epithelial cells (NHNE) and effects of various culture conditions on expression of differentiation markers and channels. 1. Degenerative RT-PCR revealed that AQP3 and AQP4 are expressed in cultured NHNE cells. 2. Culture of NHNE cells on permeable filters induced expression of mucin, aquaporins and CFTR. 3. Retinoic acid induced morphological changes in NHNE cells and inhibited their proliferation. The treatment of retinoic acid induced expression of mucin and CFTR, whereas it inhibited expression of cornifin. The effect of retinoic acid was enhanced by culture of cells on permeable filters. 4. Dexamethasone induced ENaC expression in NHNE cells grown on permeable supports only, but did not affect expression of mucin, aquaporins and CFTR. These results indicate that cultured NHNE cells express aquaporins (AQP3 and 4), CFTR and ENaC, and culture of NHNE cells on permeable filters induces differentiation in to mucosecretory and surface epithelial cells, and that effects of retinoic acid and dexamethasone on gene expression are affected by culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号