首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
A key focus of ecologists is explaining the origin and maintenance of morphological diversity and its association with ecological success. We investigate potential benefits and costs of a common and varied morphological trait, cuticular spines, for foraging behavior, interspecific competition, and predator–prey interactions in naturally co‐occurring spiny ants (Hymenoptera: Formicidae: Polyrhachis) in an experimental setting. We expect that a defensive trait like spines might be associated with more conspicuous foraging, a greater number of workers sent out to forage, and potentially increased competitive ability. Alternatively, consistent with the ecological trade‐off hypothesis, we expect that investment in spines for antipredator defense might be negatively correlated with these other ecological traits. We find little evidence for any costs to ecological traits, instead finding that species with longer spines either outperform or do not differ from species with shorter spines for all tested metrics, including resource discovery rate and foraging effort as well as competitive ability and antipredator defense. Spines appear to confer broad antipredator benefits and serve as a form of defense with undetectable costs to key ecological abilities like resource foraging and competitive ability, providing an explanation for both the ecological success of the study genus and the large number of evolutionary origins of this trait across all ants. This study also provides a rare quantitative empirical test of ecological effects related to a morphological trait in ants.  相似文献   

2.
    
Velvet ants are a group of parasitic wasps that are well known for a suite of defensive adaptations including bright coloration and a formidable sting. While these adaptations are presumed to function in antipredator defense, observations between potential predators and this group are lacking. We conducted a series of experiments to determine the risk of velvet ants to a host of potential predators including amphibians, reptiles, birds, and small mammals. Velvet ants from across the United States were tested with predator's representative of the velvet ants native range. All interactions between lizards, free‐ranging birds, and a mole resulted in the velvet ants survival, and ultimate avoidance by the predator. Two shrews did injure a velvet ant, but this occurred only after multiple failed attacks. The only predator to successfully consume a velvet ant was a single American toad (Anaxyrus americanus). These results indicate that the suite of defenses possessed by velvet ants, including aposematic coloration, stridulations, a chemical alarm signal, a hard exoskeleton, and powerful sting are effective defenses against potential predators. Female velvet ants appear to be nearly impervious to predation by many species whose diet is heavily derived of invertebrate prey.  相似文献   

3.
    
Predator–prey arms races are widely speculated to underlie fast speed in terrestrial mammals. However, due to lack of empirical testing, both the specificity of any evolutionary coupling between particular predator and prey species, and the relevance of alternative food‐based hypotheses of speed evolution, remain obscure. Here I examine the ecological links between the sprint speed of African savannah herbivores, their vulnerability to predators, and their diet. I show that sprint speed is strongly predicted by the vulnerability of prey to their main predators; however, the direction of the link depends on the hunting style of the predator. Speed increases with vulnerability to pursuit predators, whereas vulnerability to ambush predators is associated with particularly slow speed. These findings suggest that differential vulnerability to specific predators can indeed drive interspecific variation in speed within prey communities, but that predator hunting style influences the intensity and consistency with which selection on speed is coupled between particular species.  相似文献   

4.
    
Kadri Moks  Vallo Tilgar 《Ibis》2014,156(2):452-456
In birds, little is known about how the presence of predators alters parental food distribution decisions among nestlings. We found that experimentally increasing perceived predation risk changed parental care in female but not in male Great Tits Parus major. Females fed the lightest and average nestlings at similar rates under control conditions when predation risk was not manipulated but ignored the lightest nestling under increased perceived predation risk. Moreover, females reduced the duration of nest visits greatly after encountering a model predator, suggesting that the perception of predators may facilitate brood reduction mechanisms.  相似文献   

5.
    
Predator and prey relationships are dynamic and interrelated. Thus, any offensive behaviour will vary according to differing defensive behaviours, or vice versa, within each species in any predator–prey system. However, most studies are one‐sided as they focus on just one behaviour, that of either the predator or prey. Here, we examine both predatory behaviour of an oophagus katydid and antipredator behaviour by a frog with egg‐stage parental care. Katydid offensive behaviour and predation success was greater in females and increased with predator maturity and size. Frog defensive behaviour was sex specific, probably because only mothers provide parental care. Defensive behaviour could be active, such as charging predators, or passive, such as sheltering eggs, with greater active defence against larger predators; neither was influenced by offspring age. These results are contrary to existing theory, which argues parental investment ought to be negatively correlated with parental predation risks and affected by offspring age. This study highlights the use of antipredator behaviour to test predictions of parental investment theories in amphibians. In addition, it illustrates the need to consider factors that influence both species concurrently when examining the complex interaction between predators and parents.  相似文献   

6.
    
Analysis of predator–prey interactions is a core concept of animal ecology, explaining structure and dynamics of animal food webs. Measuring the functional response, i.e. the intake rate of a consumer as a function of prey density, is a powerful method to predict the strength of trophic links and assess motives of prey choice, particularly in arthropod communities. However, due to their reductionist set‐up, functional responses, which are based on laboratory feeding experiments, may not display field conditions, possibly leading to skewed results. Here, we tested the validity of functional responses of centipede predators and their prey by comparing them with empirical gut content data from field‐collected predators. Our predator–prey system included lithobiid and geophilomorph centipedes, abundant and widespread predators of forest soils and their soil‐dwelling prey. First, we calculated the body size‐dependent functional responses of centipedes using a published functional response model in which we included natural prey abundances and animal body masses. This allowed us to calculate relative proportions of specific prey taxa in the centipede diet. In a second step, we screened field‐collected centipedes for DNA of eight abundant soil‐living prey taxa and estimated their body size‐dependent proportion of feeding events. We subsequently compared empirical data for each of the eight prey taxa, on proportional feeding events with functional response‐derived data on prey proportions expected in the gut, showing that both approaches significantly correlate in five out of eight predator–prey links for lithobiid centipedes but only in one case for geophilomorph centipedes. Our findings suggest that purely allometric functional response models, which are based on predator–prey body size ratios are too simple to explain predator–prey interactions in a complex system such as soil. We therefore stress that specific prey traits, such as defence mechanisms, must be considered for accurate predictions.  相似文献   

7.
    
In two laboratory experiments we tested juvenile yellow perch, Perca flavescens, for behavioural responses to alarm cues of injured conspecifics and several prey guild members: adult perch, Iowa darters, Etheostoma exile and spottail shiners, Notropis hudsonius. Spottail shiners are phylogenetically distant to yellow perch whereas Iowa darters and perch are both members of the Family Percidae. Groups of juvenile yellow perch increased shoal cohesion and movement towards the substrate after detecting conspecific alarm cues when compared to cues of injured swordtails, Xiphophorus helleri, a species phylogenetically distant from perch. Individual juvenile perch increased shelter use and froze more when exposed to chemical alarm cues from both juvenile and adult perch, shiners and darters compared to exposure to injured swordtail cues or distilled water. The response to cues of darters may indicate that alarm cues are evolutionarily conserved within percid fishes or that perch had learned to recognize darter cues. The response to spot tail shiners likely represents learned recognition of the cues of a prey guild member.  相似文献   

8.
    
Dropping is a common antipredator defence that enables rapid escape from a perceived threat. However, despite its immediate effectiveness in predator–prey encounters (and against other dangers such as a parasitoid or an aggressive conspecific), it remains an under‐appreciated defence strategy in the scientific literature. Dropping has been recorded in a wide range of taxa, from primates to lizards, but has been studied most commonly in insects. Insects have been found to utilise dropping in response to both biotic and abiotic stimuli, sometimes dependent on mechanical or chemical cues. Whatever the trigger for dropping, the decision to drop by prey will present a range of inter‐related costs and benefits to the individual and so there will be subtle complexities in the trade‐offs surrounding this defensive behaviour. In predatory encounters, dropping by prey will also impose varying costs and benefits on the predator – or predators – involved in the system. There may be important trade‐offs involved in the decision made by predators regarding whether to pursue prey or not, but the predator perspective on dropping has been less explored at present. Beyond its function as an escape tactic, dropping has also been suggested to be an important precursor to flight in insects and further study could greatly improve understanding of its evolutionary importance. Dropping in insects could also prove of significant practical importance if an improved understanding can be applied to integrated pest‐management strategies. Currently the non‐consumptive effects of predators on their prey are under‐appreciated in biological control and it may be that the dropping behaviour of many pest species could be exploited via management practices to improve crop protection. Overall, this review aims to provide a comprehensive synthesis of the current literature on dropping and to raise awareness of this fascinating and widespread behaviour. It also seeks to offer some novel hypotheses and highlight key avenues for future research.  相似文献   

9.
    
Predation pressure may affect many aspects of prey behavior, including forming groups and changes in social interactions. We studied the aggregation behavior of competing gammarids Dikerogammarus villosus and Pontogammarus robustoides (Amphipoda, Crustacea) to check whether they modify their preferences for conspecifics or heterospecifics in response to predator (the racer goby Babka gymnotrachelus) kairomones in the presence or absence of stone shelters (alternative protection source). Both species exhibited preferences toward shelters occupied by conspecifics over empty shelters and conspecifics apart from shelters, suggesting that their aggregation depends not only on habitat heterogeneity, but also on their social interactions. Moreover, gammarids in the presence of shelters (safer conditions) preferred conspecifics over heterospecifics, but predator kairomones made them form aggregations irrespective of species. In the predator presence, P. robustoides increased its aggregation level only in the sheltered conditions, whereas D. villosus exhibited this response only in the absence of shelters, suggesting that this behavior can protect it against predators. Therefore, we tested the antipredator effectiveness of D. villosus aggregations by exposing them to fish predation. Gobies foraged most effectively on immobile single gammarids compared to moving and aggregated individuals. Fish also avoided aggregated prey, confirming the protective character of aggregations. We have demonstrated that the predator presence increases aggregation level of prey gammarids and affects their social behavior by reducing antagonistic interactions and avoidance between competing species. This is likely to affect their distribution and functioning in the wild, where predator pressure is a standard situation.  相似文献   

10.
    
We report the emission of underwater sounds in the tadpoles of a second member of the family Ceratophryidae, Ceratophrys cranwelli. These tadpoles produce a short metallic‐like sound, which consists of short trains of pulses at Gosner stages 25, 28, and 37. Experiment I was designed to record underwater sounds and their characteristics. Experiment II was designed to test: (i) if at higher densities (total number of tadpoles/L) but fixed predator–prey proportions C. cranwelli larvae are cannibalistic, (ii) if cannibalism increases at higher proportions of predators at a fixed density, and (iii) if tadpoles display a mechanism of intraspecific recognition that may diminish the frequency of cannibalism. Each treatment combines larvae of C. cranwelli (predator) with those of Rhinella arenarum (prey). The number of live and dead individuals was recorded during 72 h, and the following variables were calculated: time to eat the first and second prey, time without eating, time to eat a congener, and number of events of cannibalism. The results indicate that relative predator–prey availability affects the frequency of predation between conspecifics. We consider that an antipredator mechanism exists in C. cranwelli tadpoles and that the underwater sound is part of it.  相似文献   

11.
    
Migration is expected to benefit individuals through exposure to higher quality forage and reducing predation rates more than non‐migratory conspecifics. Previous studies of partially migratory ungulates (with migrant and resident individuals) have focused on bottom–up factors regulating resident and migrant segments, yet differential predation between strategies could also be a density‐dependent regulatory mechanism. Our study tested for density‐dependence in mortality, as well as mechanisms of ­bottom–up or top–down regulation in the resident and migrant portions of the partially migratory Ya Ha Tinda elk population. We tested for density dependence in adult female and juvenile survival rates, and then discriminated between predator‐ and food‐regulation hypotheses by testing for density‐dependence amongst mortality causes for adult female elk. Notably, the population declined almost 70% from near previously published estimates of carrying capacity over 10 years, providing ideal conditions to test for density dependence. In contrast to predictions, we found only weak support for density dependence in adult survival and juvenile survival. We also found few differences between migrant and resident elk in adult or juvenile survival, though juvenile survival differences were biologically significant. Predation by humans and grizzly bears was density dependent, but similar between migratory strategies. Predation by wolves was the leading known cause of mortality, yet remained constant with declining elk density equally for both migrant and resident elk, indicating wolf predation was density‐independent. Instead of being strongly regulated by food or predation, we found adult female survival was driven by density‐independent predation and climatic factors. The few differences between migratory strategies suggest equivalent fitness payoffs for migrants and residents. This population is being limited by density‐independent predation leading to declines of both migratory strategies. Our results challenge classical predator–prey theory, and call for better integration between predator–prey and migration theory.  相似文献   

12.
Juvenile Cyprichromis leptosoma, an endemic cichlid fish in Lake Tanganyika, form large schools near the nesting sites of the piscivorous cichlid Lepidiolamprologus profundicola. The female L. profundicola guarding the nesting site drove away piscivorous fish that approached the nest. After the disappearance of the guarding L. profundicola, the frequency of predatory dashes toward the school of juvenile C. leptosoma near the nesting site increased markedly. This suggests that juvenile C. leptosoma use the breeding territory of L. profundicola as a safety zone from their potential predators. The relationship between C. leptosoma and L. profundicola should be regarded as a type of commensalism.  相似文献   

13.
    
Sensitivity to chemical cues associated with predation threat has been well observed in many freshwater zooplankters, yet few studies have highlighted such sensitivity in eury‐ and stenohaline metazoans. We aimed to assess sensitivity to conspecific chemical alarm cues in the estuarine copepod, Paracartia longipatella. Alarm cues associated with predation have been shown to have population level effects on certain zooplanktonic species. As such, we assessed the occurrence of such effects on population dynamics of P. longipatella over a 12 day period. Using experimental in situ mesocosms, we compared P. longipatella adult, copepodite and nauplii numbers between three treatments; one inoculated with conspecific alarm cues, one containing direct predation pressure (zooplanktivorous fish), and a control treatment containing no predation threat. Trends in population abundances were similar between the direct predation and alarm cue treatments for the six days of the experiment, decreasing in abundance. During the latter half of the study, however, P. longipatella abundances in the alarm cue treatment increased, while those in the presence of direct predation continued to decrease. In the treatment absent of any predation threat, P. longipatella abundances increased consistently over time for the duration of the study. We suggest that P. longipatella are indeed sensitive to conspecific alarm cues associated with predation threat. Furthermore, we propose that prolonged exposure to conspecific alarm cues in the absence of any real threat results in a reduction in sensitive to these cues.  相似文献   

14.
    
It is well‐known that prey species often face trade‐offs between defense against predation and competitiveness, enabling predator‐mediated coexistence. However, we lack an understanding of how the large variety of different defense traits with different competition costs affects coexistence and population dynamics. Our study focusses on two general defense mechanisms, that is, pre‐attack (e.g., camouflage) and post‐attack defenses (e.g., weaponry) that act at different phases of the predator—prey interaction. We consider a food web model with one predator, two prey types and one resource. One prey type is undefended, while the other one is pre‐ or post‐attack defended paying costs either by a higher half‐saturation constant for resource uptake or a lower maximum growth rate. We show that post‐attack defenses promote prey coexistence and stabilize the population dynamics more strongly than pre‐attack defenses by interfering with the predator's functional response: Because the predator spends time handling “noncrackable” prey, the undefended prey is indirectly facilitated. A high half‐saturation constant as defense costs promotes coexistence more and stabilizes the dynamics less than a low maximum growth rate. The former imposes high costs at low resource concentrations but allows for temporally high growth rates at predator‐induced resource peaks preventing the extinction of the defended prey. We evaluate the effects of the different defense mechanisms and costs on coexistence under different enrichment levels in order to vary the importance of bottom‐up and top‐down control of the prey community.  相似文献   

15.
    
1. Antlions are opportunistic trap building predators that cannot control prey encounter. Their trap should ideally retain a great diversity of prey. However, building a single trap that captures many prey with varying characteristics can be challenging. 2. A series of five different ant species ranging from thin to large, of sizes ranging from 2.75 to 6.5 mm, and a mean weight ranging from 0.54 to 6.00 mg were offered in a random succession to antlions. The state of satiation of the antlions was controlled, and their mass and the depth of their pit were recorded. The reaction of antlion to the prey, the probability of capture as well as the time to escape were recorded. 3. The probability of an antlion reaction is an increasing function of the pit depth and a decreasing function of antlion mass. The probability of capture is highest for intermediate prey mass and is an increasing function of pit depth. The time to escape is a declining function of prey mass and an increasing function of pit depth. 4. There is an upper limit to prey mass given that large prey escape out of the pit. There is a lower limit to prey mass given the difficulty to apprehend the smallest, thin species. Consequently, there is a range of prey mass, corresponding to a medium‐sized ant of 2 mg, for which the pit functions best. The physics of insect locomotion on sandy slopes was identified as the key to understanding the functioning of antlion pits.  相似文献   

16.
    
Analysing the structure and dynamics of biotic interaction networks and the processes shaping them is currently one of the key fields in ecology. In this paper, we develop a novel approach to gut content analysis, thereby deriving a new perspective on community interactions and their responses to environment. For this, we use an elevational gradient in the High Arctic, asking how the environment and species traits interact in shaping predator–prey interactions involving the wolf spider Pardosa glacialis. To characterize the community of potential prey available to this predator, we used pitfall trapping and vacuum sampling. To characterize the prey actually consumed, we applied molecular gut content analysis. Using joint species distribution models, we found elevation and vegetation mass to explain the most variance in the composition of the prey community locally available. However, such environmental variables had only a small effect on the prey community found in the spider's gut. These observations indicate that Pardosa exerts selective feeding on particular taxa irrespective of environmental constraints. By directly modelling the probability of predation based on gut content data, we found that neither trait matching in terms of predator and prey body size nor phylogenetic or environmental constraints modified interaction probability. Our results indicate that taxonomic identity may be more important for predator–prey interactions than environmental constraints or prey traits. The impact of environmental change on predator–prey interactions thus appears to be indirect and mediated by its imprint on the community of available prey.  相似文献   

17.
18.
    
  1. Environmental changes such as global warming can affect ecological communities by altering individual life histories and species interactions. Recent studies focusing on the consequences of environmental change on species interactions highlighted the need for a wider, multi‐species context including both trophic and non‐trophic interactions (e.g. predator interference). However, the effects of biotic and abiotic factors on trophic and non‐trophic interactions remain largely unexplored.
  2. To fill this gap, we combined laboratory experiments and functional response modelling to investigate how temperature and prey density influence trophic and non‐trophic interactions in multiple predator communities.
  3. The system under study consisted of predatory dragonfly larvae (Aeshna cyanea) and omnivorous marbled crayfish (Procambarus virginalis) preying on common carp fry (Cyprinus carpio). We estimated the functional response of each predator in single‐predator experiments and used this information to disentangle the trophic and non‐trophic interactions and their dependence on environmental conditions in multiple predator trials.
  4. We found that consumer identity, prey density, and temperature all affect the magnitude of trophic and non‐trophic interactions. Non‐trophic interactions mostly decreased predator feeding rates, corroborating previous observations that interference prevails in aquatic communities. Moreover, trophic interactions depended primarily on the environmental variables whereas non‐trophic interactions depended mainly on consumer identity.
  5. Our results indicate that non‐trophic interactions among true predators and omnivores can be substantial and that biotic and abiotic conditions further modify the magnitude and direction of these interactions, which can affect food web dynamics and stability.
  相似文献   

19.
Immigrant inviability, where individuals from foreign, ecologically divergent habitats are less likely to survive, can restrict gene flow among diverging populations and result in speciation. I investigated whether a predatory aquatic insect (Belostoma sp.) selects against migrants between cave and surface populations of a fish (Poecilia mexicana). Cavefish were more susceptible to attacks in the light, whereas surface fish were more susceptible in darkness. Environmentally dependent susceptibility to attacks may thus contribute to genetic and phenotypic differentiation between the populations. This study highlights how predation—in this case in conjunction with differences in other environmental factors—can be an important driver in speciation.  相似文献   

20.
    
Light is a central driver of biological processes and systems. Receding sea ice changes the lightscape of high‐latitude oceans and more light will penetrate into the sea. This affects bottom‐up control through primary productivity and top‐down control through vision‐based foraging. We model effects of sea‐ice shading on visual search to develop a mechanistic understanding of how climate‐driven sea‐ice retreat affects predator–prey interactions. We adapt a prey encounter model for ice‐covered waters, where prey‐detection performance of planktivorous fish depends on the light cycle. We use hindcast sea‐ice concentrations (past 35 years) and compare with a future no‐ice scenario to project visual range along two south–north transects with different sea‐ice distributions and seasonality, one through the Bering Sea and one through the Barents Sea. The transect approach captures the transition from sub‐Arctic to Arctic ecosystems and allows for comparison of latitudinal differences between longitudes. We find that past sea‐ice retreat has increased visual search at a rate of 2.7% to 4.2% per decade from the long‐term mean; and for high latitudes, we predict a 16‐fold increase in clearance rate. Top‐down control is therefore predicted to intensify. Ecological and evolutionary consequences for polar marine communities and energy flows would follow, possibly also as tipping points and regime shifts. We expect species distributions to track the receding ice‐edge, and in particular expect species with large migratory capacity to make foraging forays into high‐latitude oceans. However, the extreme seasonality in photoperiod of high‐latitude oceans may counteract such shifts and rather act as a zoogeographical filter limiting poleward range expansion. The provided mechanistic insights are relevant for pelagic ecosystems globally, including lakes where shifted distributions are seldom possible but where predator–prey consequences would be much related. As part of the discussion on photoperiodic implications for high‐latitude range shifts, we provide a short review of studies linking physical drivers to latitudinal extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号