首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel environmental conditions experienced by introduced species can drive rapid evolution of diverse traits. In turn, rapid evolution, both adaptive and non‐adaptive, can influence population size, growth rate, and other important ecological characteristics of populations. In addition, spatial evolutionary processes that arise from a combination of assortative mating between highly dispersive individuals at the expanding edge of populations and altered reproductive rates of those individuals can accelerate expansion speed. Growing experimental evidence shows that the effects of rapid evolution on ecological dynamics can be quite large, and thus it can affect establishment, persistence, and the distribution of populations. We review the experimental and theoretical literature on such eco‐evolutionary feedbacks and evaluate the implications of these processes for biological control. Experiments show that evolving populations can establish at higher rates and grow larger than non‐evolving populations. However, non‐adaptive processes, such as genetic drift and inbreeding depression can also lead to reduced fitness and declines in population size. Spatial evolutionary processes can increase spread rates and change the fitness of individuals at the expansion front. These examples demonstrate the power of eco‐evolutionary dynamics and indicate that evolution is likely more important in biocontrol programs than previously realized. We discuss how this knowledge can be used to enhance efficacy of biological control.  相似文献   

2.
Polymorphic species have been the focus of important work in evolutionary biology. It has been suggested that colour polymorphic species have specific evolutionary and population dynamics that enable them to persist through environmental changes better than less variable species. We suggest that recent empirical and theoretical work indicates that polymorphic species may be more vulnerable to extinction than previously thought. This vulnerability arises because these species often have a number of correlated sexual, behavioural, life history and ecological traits, which can have a simple genetic underpinning. When exacerbated by environmental change, these alternate strategies can lead to conflict between morphs at the genomic and population levels, which can directly or indirectly affect population and evolutionary dynamics. In this perspective, we identify a number of ways in which the nature of the correlated traits, their underpinning genetic architecture, and the inevitable interactions between colour morphs can result in a reduction in population fitness. The principles illustrated here apply to all kinds of discrete polymorphism (e.g. behavioural syndromes), but we focus primarily on colour polymorphism because they are well studied. We urge further empirical investigation of the genetic architecture and interactions in polymorphic species to elucidate the impact on population fitness.  相似文献   

3.
Pleiotropic fitness trade-offs will be key determinants of the evolutionary dynamics of selection for pesticide resistance. However, for herbicide resistance, empirical support for a fitness cost of resistance is mixed, and it is therefore also questionable what further ecological trade-offs can be assumed to apply to herbicide resistance. Here, we test the existence of trade-offs by experimentally evolving herbicide resistance in Chlamydomonas reinhardtii. Although fitness costs are detected for all herbicides, we find that, counterintuitively, the most resistant populations also have the lowest fitness costs as measured by growth rate in the ancestral environment. Furthermore, after controlling for differences in the evolutionary dynamics of resistance to different herbicides, we also detect significant positive correlations between resistance, fitness in the ancestral environment and cross-resistance to other herbicides. We attribute this to the highest levels of nontarget-site resistance being achieved by fixing mutations that more broadly affect cellular physiology, which results in both more cross-resistance and less overall antagonistic pleiotropy on maximum growth rate. Consequently, the lack of classical ecological trade-offs could present a major challenge for herbicide resistance management.  相似文献   

4.
5.
The diversity of ways in which parasites reduce the fitness of their hosts has been documented during the past decades, and clearly indicates that parasites can often be considered as direct agents of selection. In natural systems, however, the outcome of a host-parasite interaction might be strongly determined by other ecological factors. Parasites can be detrimental to host fitness in one environment, whereas they can be beneficial to it in another. From an evolutionary perspective, this phenomenon is of considerable importance for understanding the dynamics of coevolution among geographically structured populations evolving under different ecological pressures. Here, Frédéric Thomas and colleagues review several ecological situations in which parasitized individuals enjoy a selective advantage over unparasitized conspecifics.  相似文献   

6.
Within‐host competition is predicted to drive the evolution of virulence in parasites, but the precise outcomes of such interactions are often unpredictable due to many factors including the biology of the host and the parasite, stochastic events and co‐evolutionary interactions. Here, we use a serial passage experiment (SPE) with three strains of a heterothallic fungal parasite (Ascosphaera apis) of the Honey bee (Apis mellifera) to assess how evolving under increasing competitive pressure affects parasite virulence and fitness evolution. The results show an increase in virulence after successive generations of selection and consequently faster production of spores. This faster sporulation, however, did not translate into more spores being produced during this longer window of sporulation; rather, it appeared to induce a loss of fitness in terms of total spore production. There was no evidence to suggest that a greater diversity of competing strains was a driver of this increased virulence and subsequent fitness cost, but rather that strain‐specific competitive interactions influenced the evolutionary outcomes of mixed infections. It is possible that the parasite may have evolved to avoid competition with multiple strains because of its heterothallic mode of reproduction, which highlights the importance of understanding parasite biology when predicting disease dynamics.  相似文献   

7.
Allocation of resources to competing processes of growth, maintenance, or reproduction is arguably a key process driving the physiology of life history trade‐offs and has been shown to affect immune defenses, the evolution of aging, and the evolutionary ecology of offspring quality. Here, we develop a framework to investigate the evolutionary consequences of physiological dynamics by developing theory linking reproductive cell dynamics and components of fitness associated with costly resource allocation decisions to broader life history consequences. We scale these reproductive cell allocation decisions to population‐level survival and fecundity using a life history approach and explore the effects of investment in reproduction or tissue‐specific repair (somatic or reproductive) on the force of selection, reproductive effort, and resource allocation decisions. At the cellular level, we show that investment in protecting reproductive cells increases fitness when reproductive cell maturation rate is high or reproductive cell death is high. At the population level, life history fitness measures show that cellular protection increases reproductive value by differential investment in somatic or reproductive cells and the optimal allocation of resources to reproduction is moulded by this level of investment. Our model provides a framework to understand the evolutionary consequences of physiological processes underlying trade‐offs and highlights the insights to be gained from considering fitness at multiple levels, from cell dynamics through to population growth.  相似文献   

8.
The possibility of complicated dynamic behavior driven by nonlinear feedbacks in dynamical systems has revolutionized science in the latter part of the last century. Yet despite examples of complicated frequency dynamics, the possibility of long‐term evolutionary chaos is rarely considered. The concept of “survival of the fittest” is central to much evolutionary thinking and embodies a perspective of evolution as a directional optimization process exhibiting simple, predictable dynamics. This perspective is adequate for simple scenarios, when frequency‐independent selection acts on scalar phenotypes. However, in most organisms many phenotypic properties combine in complicated ways to determine ecological interactions, and hence frequency‐dependent selection. Therefore, it is natural to consider models for evolutionary dynamics generated by frequency‐dependent selection acting simultaneously on many different phenotypes. Here we show that complicated, chaotic dynamics of long‐term evolutionary trajectories in phenotype space is very common in a large class of such models when the dimension of phenotype space is large, and when there are selective interactions between the phenotypic components. Our results suggest that the perspective of evolution as a process with simple, predictable dynamics covers only a small fragment of long‐term evolution.  相似文献   

9.
We present two theoretical approaches to investigate whether organismal complexity, defined as the number of quantitative traits determining fitness, and the potential for adaptive diversification are correlated. The first approach is independent of any specific ecological model and based on curvature properties of the fitness landscape as a function of the dimension of the trait space. This approach indeed suggests a positive correlation between complexity and diversity. An assumption made in this first approach is that the potential for any pair of traits to interact in their effect on fitness is independent of the dimension of the trait space. In the second approach, we circumvent making this assumption by analyzing the evolutionary dynamics in an explicit consumer‐resource model in which the shape of the fitness landscape emerges from the underlying mechanistic ecological model. In this model, consumers are characterized by several quantitative traits and feed on a multidimensional resource distribution. The consumer's feeding efficiency on the resource is determined by the match between consumer phenotype and resource item. This analysis supports a positive correlation between the complexity of the evolving consumer species and its potential to diversify with the additional insight that also increasing resource complexity facilitates diversification.  相似文献   

10.
Traditionally, to determine the possible evolutionary behaviour of an ecological system using adaptive dynamics, it is necessary to calculate the fitness and its derivatives at a singular point. We investigate the claim that the possible evolutionary behaviour can be predicted directly from the population dynamics, without the need for calculation, by applying three criteria — one based on the form of the density dependent rates and two on the role played by the evolving parameters. Taking a general continuous time model, with broad ecological range, we show that the claim is true. Initially, we assume that individuals enter in class 1 and move through population classes sequentially; later we relax these assumptions and find that the criteria still apply. However, when we consider models where the evolving parameters appear non-linearly in the dynamics, we find some aspects of the criteria fail; useful but weaker results on possible evolutionary behaviour now apply.  相似文献   

11.
Tumors are complex cellular and acellular environments within which cancer clones are under continuous selection pressures. Cancer cells are in a permanent mode of interaction and competition with each other as well as with the immediate microenvironment. In the course of these competitive interactions, cells share information regarding their general state of fitness, with less‐fit cells being typically eliminated via apoptosis at the hands of those cells with greater cellular fitness. Competitive interactions involving exchange of cell fitness information have implications for tumor growth, metastasis, and therapy outcomes. Recent research has highlighted sophisticated pathways such as Flower, Hippo, Myc, and p53 signaling, which are employed by cancer cells and the surrounding microenvironment cells to achieve their evolutionary goals by means of cell competition mechanisms. In this review, we discuss these recent findings and explain their importance and role in evolution, growth, and treatment of cancer. We further consider potential physiological conditions, such as hypoxia and chemotherapy, that can function as selective pressures under which cell competition mechanisms may evolve differently or synergistically to confer oncogenic advantages to cancer.  相似文献   

12.
Fitness is a central but notoriously vexing concept in evolutionary biology. The propensity interpretation of fitness is often regarded as the least problematic account for fitness. It ties an individual's fitness to a probabilistic capacity to produce offspring. Fitness has a clear causal role in evolutionary dynamics under this account. Nevertheless, the propensity interpretation faces its share of problems. We discuss three of these. We first show that a single scalar value is an incomplete summary of a propensity. Second, we argue that the widespread method of “abstracting away” environmental idiosyncrasies by averaging over reproductive output in different environments is not a valid approach when environmental changes are irreversible. Third, we point out that expanding the range of applicability for fitness measures by averaging over more environments or longer time scales (so as to ensure environmental reversibility) reduces one's ability to distinguish selectively relevant differences among individuals because of mutation and eco‐evolutionary feedbacks. This series of problems leads us to conclude that a general value of fitness that is both explanatory and predictive cannot be attained. We advocate for the use of propensity‐compatible methods, such as adaptive dynamics, which can accommodate these difficulties.  相似文献   

13.
Traditionally, to determine the possible evolutionary behaviour of an ecological system using adaptive dynamics, it is necessary to calculate the fitness and its derivatives at a singular point. We investigate the claim that the possible evolutionary behaviour can be predicted directly from the population dynamics, without the need for calculation, by applying three criteria — one based on the form of the density dependent rates and two on the role played by the evolving parameters. Taking a general continuous time model, with broad ecological range, we show that the claim is true. Initially, we assume that individuals enter in class 1 and move through population classes sequentially; later we relax these assumptions and find that the criteria still apply. However, when we consider models where the evolving parameters appear non-linearly in the dynamics, we find some aspects of the criteria fail; useful but weaker results on possible evolutionary behaviour now apply.  相似文献   

14.
Understanding the effects of sex and migration on adaptation to novel environments remains a key problem in evolutionary biology. Using a single‐cell alga Chlamydomonas reinhardtii, we investigated how sex and migration affected rates of evolutionary rescue in a sink environment, and subsequent changes in fitness following evolutionary rescue. We show that sex and migration affect both the rate of evolutionary rescue and subsequent adaptation. However, their combined effects change as the populations adapt to a sink habitat. Both sex and migration independently increased rates of evolutionary rescue, but the effect of sex on subsequent fitness improvements, following initial rescue, changed with migration, as sex was beneficial in the absence of migration but constraining adaptation when combined with migration. These results suggest that sex and migration are beneficial during the initial stages of adaptation, but can become detrimental as the population adapts to its environment.  相似文献   

15.
16.
Free fitness that always increases in evolution   总被引:1,自引:0,他引:1  
I here introduce a free fitness function in population biology, which monotonically increases with time and takes its maximum at the evolutionary equilibrium. By suitably defining an "index" for each state, the free fitness is expressed as the average index plus an entropy term. In many cases, the index has a biologically clear meaning, such as the logarithmic population mean fitness. The technique is applicable to any Markov process model (either continuous or discrete) with a positive steady state. I discuss four examples from various branches of population biology: (1) one-locus-two-allele system of population genetics with mutation, selection, and random genetic drift; (2) evolutionary dynamics of quantitative characters; (3) a molecular evolution model; and (4) an ecological succession model. Introducing free fitness clarifies the balance between systematic forces (e.g. natural selection or successional trend toward the climax) and disturbing processes (e.g. random drift).  相似文献   

17.
We use population genetic models to investigate the cooperative and conflicting synergistic fitness effects between genes from the nucleus and the mitochondrion. By varying fitness parameters, we examine the scope for conflict relative to cooperation among genomes and the utility of the “gene's eye view” analytical approach, which is based on the marginal average fitness of specific alleles. Because sexual conflict can maintain polymorphism of mitochondrial haplotypes, we can explore two types of evolutionary conflict (genomic and sexual) with one epistatic model. We find that the nuclear genetic architecture (autosomal, X‐linked, or Z‐linked) and the mating system change the regions of parameter space corresponding to the evolution by sexual and genomic conflict. For all models, regardless of conflict or cooperation, we find that population mean fitness increases monotonically as evolution proceeds. Moreover, we find that the process of gene frequency change with positive, synergistic fitnesses is self‐accelerating, as the success of an allele in one genome or in one sex increases the frequency of the interacting allele upon which its success depends. This results in runaway evolutionary dynamics caused by the positive intergenomic associations generated by selection. An inbreeding mating system tends to further accelerate these runaway dynamics because it maintains favorable host–symbiont or male–female gene combinations. In contrast, where conflict predominates, the success of an allele in one genome or in one sex diminishes the frequency of the corresponding allele in the other, resulting in considerably slower evolutionary dynamics. The rate of change of mean fitness is also much faster with positive, synergistic fitnesses and much slower where conflict is predominant. Consequently, selection rapidly fixes cooperative gene combinations, while leaving behind a slowing evolving residue of conflicting gene combinations at mutation–selection balance. We discuss how an emphasis on marginal fitness averages may obscure the interdependence of allelic fitness across genomes, making the evolutionary trajectories appear independent of one another when they are not.  相似文献   

18.
Recent recognition that ecological and evolutionary processes can operate on similar timescales has led to a rapid increase in theoretical and empirical studies on eco‐evolutionary dynamics. Progress in the fields of evolutionary biology, genomics and ecology is greatly enhancing our understanding of rapid adaptive processes, the predictability of adaptation and the genetics of ecologically important traits. However, progress in these fields has proceeded largely independently of one another. In an attempt to better integrate these fields, the centre for ‘Adaptation to a Changing Environment’ organized a conference entitled ‘The genomic basis of eco‐evolutionary change’ and brought together experts in ecological genomics and eco‐evolutionary dynamics. In this review, we use the work of the invited speakers to summarize eco‐evolutionary dynamics and discuss how they are relevant for understanding and predicting responses to contemporary environmental change. Then, we show how recent advances in genomics are contributing to our understanding of eco‐evolutionary dynamics. Finally, we highlight the gaps in our understanding of eco‐evolutionary dynamics and recommend future avenues of research in eco‐evolutionary dynamics.  相似文献   

19.
Infection by a temperate phage can lead to death of the bacterial cell, but sometimes these phages integrate into the bacterial chromosome, offering the potential for a more long‐lasting relationship to be established. Here we define three major ecological and evolutionary benefits of temperate phage for bacteria: as agents of horizontal gene transfer (HGT), as sources of genetic variation for evolutionary innovation, and as weapons of bacterial competition. We suggest that a coevolutionary perspective is required to understand the roles of temperate phages in bacterial populations.  相似文献   

20.
Local negative feedbacks occur when the occupation of a site by a species decreases the subsequent fitness of related individuals compared to potential competitors. Such negative feedbacks can enhance diversity by changing the spatial structure of the environment. The conditions, however, involve dispersive, environmental and evolutionary processes in complex interactive ways. We introduce a model that accounts for four mechanisms: colonisation‐competition‐extinction ecological dynamics, evolutionary dynamics, local negative feedbacks and environmental averaging. Three qualitatively distinct dynamics are possible, one dominated by specialists, another dominated by generalists and an intermediate situation exhibiting taxon cycles. We discuss how metacommunity diversity, macro‐ecological patterns and environmental patterning are linked to the three qualitative dynamics. The model provides classical shapes for morph‐abundance distributions, or diversity‐area relationships. Diversity can be high when specialists dominate or when taxon cycles happen. Finally, local negative feedbacks often yield fine‐grain environments for taxon cycle dynamics and coarse‐grain environments when generalists dominate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号