首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the range dynamics of Artemisia eriantha, a widespread, but rare, mountain plant with a highly disjunct distribution in the European Alpine System. We focused on testing the roles of vicariance and long‐distance dispersal in shaping the current distribution of the species. To this end, we collected AFLP and plastid DNA sequence data for 17 populations covering the entire distributional range of the species. Strong phylogeographical structure was found in both datasets. AFLP data suggested that almost all populations were genetically strongly differentiated, with 58% of the overall genetic variation partitioned among populations. Bayesian clustering identified five groups of populations: Balkans, Pyrenees, Central Apennines, one southwestern Alpine population and a Widespread cluster (eastern Pyrenees, Alps, Carpathians). Major groups were supported by neighbor‐joining and NeighbourNet analyses. Fourteen plastid haplotypes were found constituting five strongly distinct lineages: Alps plus Pyrenees, Apennines, Balkans, southern Carpathians, and a Widespread group (eastern Pyrenees, northern Carpathians, Mt. Olympus). Plastid DNA data suggested that A. eriantha colonized the European Alpine System in a westward direction. Although, in southern Europe, vicariant differentiation among the Iberian, Italian and Balkan Peninsulas predominated, thus highlighting their importance as glacial refugia for alpine species, in temperate mountain ranges, long‐distance dispersal prevailed. This study emphasizes that currently highly disjunct distributions can be shaped by both vicariance and long‐distance dispersal, although their relative importance may be geographically structured along, for instance, latitude, as in A. eriantha. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 214–226.  相似文献   

2.
Pleistocene ice‐ages greatly influenced the historical abundances of Pacific cod, Gadus macrocephalus, in the North Pacific and its marginal seas. We surveyed genetic variation at 11 microsatellite loci and mitochondrial (mt) DNA in samples from twelve locations from the Sea of Japan to Washington State. Both microsatellite (mean H = 0.868) and mtDNA haplotype (mean h = 0.958) diversities were large and did not show any geographical trends. Genetic differentiation between samples was significantly correlated with geographical distance between samples for both microsatellites (FST = 0.028, r2 = 0.33) and mtDNA (FST = 0.027, r2 = 0.18). Both marker classes showed a strong genetic discontinuity between northwestern and northeastern Pacific populations that likely represents groups previously isolated during glaciations that are now in secondary contact. Significant differences appeared between samples from the Sea of Japan and Okhotsk Sea that may reflect ice‐age isolations in the northwest Pacific. In the northeast Pacific, a microsatellite and mtDNA partition was detected between coastal and Georgia Basin populations. The presence of two major coastal mtDNA lineages on either side of the Pacific Ocean basin implies at least two ice‐age refugia and separate postglacial population expansions facilitated by different glacial histories. Northward expansions into the Gulf of Alaska were possible 14–15 kyr ago, but deglaciation and colonization of the Georgia Basin probably occurred somewhat later. Population expansions were evident in mtDNA mismatch distributions and in Bayesian skyline plots of the three major lineages, but the start of expansions appeared to pre‐date the last glacial maximum.  相似文献   

3.
Aim The environmental effect of Pleistocene climatic change in the Indo‐Oriental region has resulted in allopatric fragmentation and the generation of diversity in forest‐associated species. The aim of this study was to determine the extent to which Pleistocene climatic change has resulted in the fragmentation and speciation of an open‐habitat‐adapted mosquito, Anopheles vagus s.l., across its range. Location Anopheles vagus s.l. was sampled across the Indo‐Oriental region. Methods We generated 116 mitochondrial cytochrome c oxidase subunit I (COI) and 121 nuclear internal transcribed spacer 2 (ITS2) DNA sequences from 18 populations. Relationships between mitochondrial haplotypes were reconstructed using minimum spanning networks, and population structure was examined using analyses of molecular variance. The population history, including lineage divergence times, population expansion and gene flow, was inferred using beast and the isolation with migration (IM) model. Results There was no evidence to support the presence of the endemic Philippines species, A. limosus; instead, Philippine populations were closely related to, and derived from, A. vagus on the eastern Southeast Asian mainland. The most distinct populations were those from Java and East Timor, which differed from all other populations by all individuals having a 4‐bp insertion in the ITS2 sequence. The corresponding mitochondrial haplotypes had an estimated divergence time of 2.6 Ma [95% confidence interval (CI) 1.9–3.6 Ma]. Haplotype networks and analysis of molecular variance for COI supported western (Sri Lanka, India and Myanmar) and eastern (Thailand, Singapore, Cambodia, Vietnam and the Philippines) population groupings. This grouping structure results from the divergence of an eastern and a western mitochondrial lineage, estimated to have occurred 0.37 Ma (95% CI 0.26–0.55 Ma). Subsequent migration from the east to the west (0.16 Ma) is inferred to have created an admixture zone in Myanmar and Thailand. Main conclusions With the possible exception of populations from Java and East Timor, A. vagus appears to be one widespread genetically diverse taxon across its extensive range. The abundance of grassland during long interglacial periods may have facilitated population connectivity and range expansion across the Oriental and western Australasian regions.  相似文献   

4.
5.
Past glaciation events have played a major role in shaping the genetic diversity and distribution of wild sheep in North America. The advancement of glaciers can isolate populations in ice‐free refugia, where they can survive until the recession of ice sheets. The major Beringian refugium is thought to have held thinhorn sheep (Ovis dalli) populations during times of glacial advance. While isolation in the major refugium can account for much of the genetic and morphological diversity seen in extant thinhorn sheep populations, mounting evidence suggests the persistence of populations in smaller minor refugia. We investigated the refugial origins of thinhorn sheep using ~10 000 SNPs obtained via a cross‐species application of the domestic sheep ovine HD BeadChip to genotype 52 thinhorn sheep and five bighorn sheep (O. canadensis) samples. Phylogenetic inference revealed a distinct lineage of thinhorn sheep inhabiting British Columbia, which is consistent with the survival of a group of thinhorn sheep in a minor refugium separate from the Beringian refugium. Isolation in separate glacial refugia probably mediated the evolution of the two thinhorn sheep subspecies, the white Dall's sheep (O. d. dalli), which persisted in Beringia, and the dark Stone's sheep (O. d. stonei), which utilized the minor refugium. We also found the first genetic evidence for admixture between sheep from different glacial refugia in south‐central Yukon as a consequence of post glacial expansion and recolonization. These results show that glaciation events can have a major role in the evolution of species inhabiting previously glaciated habitats and the need to look beyond established refugia when examining the evolutionary history of such species.  相似文献   

6.
Aim The distribution of genetic variation in the Australian dry sclerophyll plant Hardenbergia violacea (Fabaceae) is examined in the context of Pleistocene climate change in order to identify likely refugia. Particular consideration is given to the origin of range disjunctions in South Australia and Tasmania, and to determining whether the Tasmanian population is indigenous or recently introduced from mainland Australia. Location Southeastern Australian mainland and Tasmania. Methods A combination of chloroplast polymerase chain reaction–restriction fragment length polymorphism and genomic amplified fragment length polymorphism (AFLP) marker systems was used to examine the genetic structure of 292 individuals from 13 populations across the range of H. violacea in southeastern Australia. Results Hardenbergia violacea populations in Tasmania and southern Victoria were characterized by low, almost monotypic chloroplast diversity. New South Wales showed higher haplotype diversity and haplotype sharing among widely distributed populations. Principal coordinates analysis (PCoA) of the AFLP data found a strong latitudinal cline in AFLP variation from northern New South Wales south to Tasmania. The Tasmanian population formed an isolated and somewhat disjunct genetic cluster at one end of this cline. However, the South Australian population was an exception to the clinal variation shown by all other populations, forming a highly disjunct cluster in the PCoA. Within‐population genetic diversity was low in both disjunct populations. Main conclusions The genetic evidence indicates that the Tasmanian population is likely to be indigenous and probably the product of vicariance, which was followed by range contraction at the Last Glacial Maximum or an earlier glacial event. The deep phylogenetic disjunction in South Australia is evidence of a much earlier separation on mainland Australia. The chloroplast structure indicates that, during the Pleistocene, H. violacea underwent broad‐scale recolonization in southern Victoria and Tasmania, possibly from a large continental refugium in eastern New South Wales. We conclude that H. violacea, and presumably the sclerophyll communities in which it occurs, have undergone multiple range contractions to large continental refugia during different Pleistocene glaciations in southeastern Australia.  相似文献   

7.
The chloroplast phylogeography of two peat mosses (Sphagnum fimbriatum and Sphagnum squarrosum) with similar distributions but different life history characteristics was investigated in Europe. Our main aim was to test whether similar distributions reflect similar phylogeographic and phylodemographic processes. Accessions covering the European distributions of the species were collected and approx. 2000 bp of the chloroplast genome of each species was sequenced. Maximum parsimony, statistical parsimony and phylodemographic analyses were used to address the question of whether these species with similar distributions show evidence of similar phylogeographic and phylodemographic processes. The chloroplast haplotypes of the currently spreading species S. fimbriatum showed strong geographic structure, whereas those of S. squarrosum, which has stable historical population sizes, showed only very weak geographic affinity and were widely distributed. We hypothesize that S. fimbriatum survived the last glaciations along the Atlantic coast of Europe, whereas S. squarrosum had numerous, scattered refugia in Europe. The dominance of one haplotype of S. fimbriatum across almost all of Europe suggests rapid colonization after the last glacial maximum. We hypothesize that high colonizing ability is an inherent characteristic of the species and its recent expansion in Europe is a response to climate change.  相似文献   

8.
Brito PH 《Molecular ecology》2005,14(10):3077-3094
The glacial refugia hypothesis indicates that during the height of the Pleistocene glaciations the temperate species that are today widespread in western Europe must have survived in small and climatically favourable areas located in the southern peninsulas of Iberia, Italy and Balkans. One such species is the tawny owl, a relatively sedentary, nonmigratory bird presently distributed throughout Europe. It is a tree-nesting species closely associated with deciduous and mixed coniferous woodlands. In this study I used control region mtDNA sequences from 187 individuals distributed among 14 populations to determine whether current genetic patterns in tawny owl populations were consistent with postglacial expansion from peninsular refugia. European, North African and Asian tawny owls were found to represent three distinct lineages, where North Africa is the sister clade to all European owls. Within Europe, I found three well-supported clades that correspond to each of the three allopatric refugia. Expansion patterns indicate that owls from the Balkan refugium repopulated most of northern Europe, while expansion out of Iberia and Italy had only regional effects leading to admixture in France. Estimates of population divergence times between refugia populations are roughly similar, but one order of magnitude smaller between Greece and northern Europe. Based on a wide range of mutation rates and generation times, divergence between refugia appears to date to the Pleistocene.  相似文献   

9.
In Europe, southern peninsulas served as major refugia during Pleistocene cold periods. However, growing evidence has revealed complex patterns of glacial survival within these southern regions, with multiple glacial refugia within each larger refugial area. We investigated the extent to which patterns of endemism and phylogeographic are concordant across animal species in the Iberian Peninsula, one of the most important unglaciated areas in Europe during the Pleistocene, can be explained in terms of climatic stability. We found that historical climatic stability (notably climate velocity measures integrating macroclimatic shifts with local spatial topoclimate gradients) was often among the most important predictors of endemic species richness for different taxonomic groups using models that also incorporated measures of modern climate. Furthermore, for some taxonomic groups, climatic stability was also correlated with patterns of spatial concordance in interpopulation genetic divergence across multiple taxa, and private haplotypes were more frequently found in relatively stable areas. Overall, our results suggest that both endemism patterns and cross‐taxa concordant phylogeographic patterns across the Iberian Peninsula to some extent are linked to spatial variation in Late Quaternary climate stability, in agreement with the proposed ‘refugia‐within‐refugia’ scenario. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 13–28.  相似文献   

10.
Inference of genetic structure and demographic history is fundamental issue in evolutionary biology. We examined the levels and patterns of genetic variation of a widespread mangrove species in the Indo‐West Pacific region, Bruguiera gymnorrhiza, using ten nuclear gene regions. Genetic variation of individual populations covering its distribution range was low, but as the entire species it was comparable to other plant species. Genetic differentiation among the investigated populations was high. They could be divided into two genetic clusters: the West and East clusters of the Malay Peninsula. Our results indicated that these two genetic clusters derived from their ancestral population whose effective size of which was much larger compared to the two extant clusters. The point estimate of speciation time between B. gymnorrhiza and Bruguiera sexangula was two times older than that of divergence time between the two clusters. Migration from the West cluster to the East cluster was much higher than the opposite direction but both estimated migration rates were low. The past Sundaland and/or the present Malay Peninsula are likely to prevent gene flow between the West and East clusters and function as a geographical or land barrier.  相似文献   

11.
12.
Vicariance and dispersal can strongly influence population genetic structure and allopatric speciation, but their importance in the origin of marine biodiversity is unresolved. In transitional estuarine environments, habitat discreteness and dispersal barriers could enhance divergence and provide insight to evolutionary mechanisms underlying marine and freshwater biodiversity. We examined this by assessing phylogeographic structure in the widespread amphipod Gammarus tigrinus across 13 estuaries spanning its northwest Atlantic range from Quebec to Florida. Mitochondrial cytochrome c oxidase I and nuclear internal transcribed spacer 1 phylogenies supported deep genetic structure consistent with Pliocene separation and cryptic northern and southern species. This break occurred across the Virginian-Carolinian coastal biogeographic zone, where an oceanographic discontinuity may restrict gene flow. Ten estuarine populations of the northern species occurred in four distinct clades, supportive of Pleistocene separation. Glaciation effects on genetic structure of estuarine populations are largely unknown, but analysis of molecular variance (AMOVA) supported a phylogeographic break among clades in formerly glaciated versus nonglaciated areas across Cape Cod, Massachusetts. This finding was concordant with patterns in other coastal species, though there was no significant relationship between latitude and genetic diversity. This supports Pleistocene vicariance events and divergence of clades in different northern glacial refugia. AMOVA results and private haplotypes in most populations support an allopatric distribution across estuaries. Clade mixture zones are consistent with historical colonization and human-mediated transfer. An isolation-by-distance model of divergence was detected after we excluded a suspected invasive haplotype in the St. Lawrence estuary. The occurrence of cryptic species and divergent population structure support limited dispersal, dispersed habitat distribution, and historical factors as important determinants of estuarine speciation and diversification.  相似文献   

13.
14.
Aim To investigate the impact of climatic oscillations and recognized biogeographic barriers on the evolutionary history of the garden skink (Lampropholis guichenoti), a common and widespread vertebrate in south‐eastern Australia. Location South‐eastern Australia. Methods Sequence data were obtained from the ND4 mitochondrial gene for 123 individuals from 64 populations across the entire distribution of the garden skink. A range of phylogenetic (maximum likelihood, Bayesian) and phylogeographic analyses (genetic diversity, Tajima’s D, ΦST, mismatch distribution) were conducted to examine the evolutionary history and diversification of the garden skink. Results A deep phylogeographic break (c. 14%), estimated to have occurred in the mid–late Miocene, was found between ‘northern’ and ‘southern’ populations across the Hunter Valley in northern New South Wales. Divergences among the geographically structured clades within the ‘northern’ (five clades) and ‘southern’ (seven clades) lineages occurred during the Pliocene, with the location of the major breaks corresponding to the recognized biogeographic barriers in south‐eastern Australia. Main conclusions Climatic fluctuations and the presence of several elevational and habitat barriers in south‐eastern Australia appear to be responsible for the diversification of the garden skink over the last 10 Myr. Further molecular and morphological work will be required to determine whether the two genetic lineages represent distinct species.  相似文献   

15.
Aim To identify connectivity patterns among coral reefs of the Indo‐West Pacific. Projecting connectivity forward in time provides a framework for studying long‐term source–sink dynamics in the region, and makes it possible to evaluate the manner in which migration shapes population genetic structure at regional scales. This information is essential for addressing critical gaps in knowledge for conservation planning efforts in one of the most biologically diverse regions on earth. Location Coral reefs of the Indo‐West Pacific, ranging from 15° S to 30° N and 95° E to 140° E. Methods Individual‐based biophysical dispersal models were used in conjunction with matrix projection to identify the expected patterns of exchange between coral reefs over time. Results Present‐day oceanographic conditions lead to the transport of larvae from the South China Sea into the Coral Triangle region via the Sulu Sea, and from northern Papua New Guinea and the Solomon Islands via Halmahera. The directionality of the system leads to the expected accumulation of organisms from outlying areas into the Coral Triangle region over time, particularly in the vicinity of the Maluku Islands and eastern Sulawesi. Coral reefs in Papua New Guinea, the Sulu Archipelago and areas within the Philippines are expected to be areas of high diversity as well. Main conclusions Biophysical dispersal models, used in conjunction with matrix projection, provide an effective means of simulating connectivity structure across the Indo‐West Pacific and thereby evaluating the directionality of genetic diversity. Migration appears to have a significant influence on population genetic structure in the region. Based on present‐day ocean currents, coral reefs in the South China Sea, northern Papua New Guinea and the Solomon Islands are contributing to high levels of diversity in the Coral Triangle.  相似文献   

16.
Patterns of population structure and historical genetic demography of blacknose sharks in the western North Atlantic Ocean were assessed using variation in nuclear‐encoded microsatellites and sequences of mitochondrial (mt)DNA. Significant heterogeneity and/or inferred barriers to gene flow, based on microsatellites and/or mtDNA, revealed the occurrence of five genetic populations localized to five geographic regions: the southeastern U.S Atlantic coast, the eastern Gulf of Mexico, the western Gulf of Mexico, Bay of Campeche in the southern Gulf of Mexico and the Bahamas. Pairwise estimates of genetic divergence between sharks in the Bahamas and those in all other localities were more than an order of magnitude higher than between pairwise comparisons involving the other localities. Demographic modelling indicated that sharks in all five regions diverged after the last glacial maximum and, except for the Bahamas, experienced post‐glacial, population expansion. The patterns of genetic variation also suggest that the southern Gulf of Mexico may have served as a glacial refuge and source for the expansion. Results of the study demonstrate that barriers to gene flow and historical genetic demography contributed to contemporary patterns of population structure in a coastal migratory species living in an otherwise continuous marine habitat. The results also indicate that for many marine species, failure to properly characterize barriers in terms of levels of contemporary gene flow could in part be due to inferences based solely on equilibrium assumptions. This could lead to erroneous conclusions regarding levels of connectivity in species of conservation concern.  相似文献   

17.
European black pine (Pinus nigra Arn.) is a widely distributed Mediterranean conifer. To test the hypothesis that fragmented populations in western Europe survived in situ during the last glacial rather than having been re-colonized in the postglacial period, genetic variation was assessed using a suite of 10 chloroplast DNA microsatellites. Among 311 individuals analysed, 235 haplotypes were detected revealing high levels of chloroplast haplotype diversity in most populations. Bayesian analysis using a model of linked loci, with no prior assumption of population structure, assigned individuals to 10 clusters that corresponded well with the six predefined sampling regions, while an analysis carried out at the population level and assuming unlinked loci, recovered the original six sampling regions. This regional structure was supported by a biogeographical analysis that detected five barriers, with the two most significant separating Alps from Corsica and southern Italy, and southern Spain from the Pyrenees. No signals of demographic expansion were detected, and comparisons of R(ST) with pR(ST) suggested that a stepwise mutational model was important in regional differentiation, but not in population-within-region differentiation. These tests support long-term persistence of the species within the six regions. The temporal depth estimate, assuming a high mutation rate in coalescent modelling, placed the deepest split between the Alps and the other regions at about 150 000 years ago, and the most recent split of Pyrenees from southern France at about 30 000 years ago. Taken together, the data suggest that chloroplast DNA is structured in black pine and disjunct populations in western Europe are likely to have been present during the Last Glacial Maximum.  相似文献   

18.
Understanding the biotic consequences of Pleistocene range shifts and fragmentation remains a fundamental goal in historical biogeography and evolutionary biology. Here, we combine species distribution models (SDM) from the present and two late Quaternary time periods with multilocus genetic data (mitochondrial DNA and microsatellites) to evaluate the effect of climate‐induced habitat shifts on population genetic structure in the Large‐blotched Ensatina (Ensatina eschscholtzii klauberi), a plethodontid salamander endemic to middle and high‐elevation conifer forest in the Transverse and Peninsular Ranges of southern California and northern Baja California. A composite SDM representing the range through time predicts two disjunct refugia, one in southern California encompassing the core of the species range and the other in the Sierra San Pedro Mártir of northern Baja California at the southern limit of the species range. Based on our spatial model, we would expect a pattern of high connectivity among populations within the northern refugium and, conversely, a pattern of isolation due to long‐term persistence of the Sierra San Pedro Mártir population. Our genetic results are consistent with these predictions based on the hypothetical refugia in that (i) historical measures of population connectivity among stable areas are correlated with gene flow estimates; and (ii) there is strong geographical structure between separate refugia. These results provide evidence for the role of recent climatic change in shaping patterns of population persistence and connectivity within the Transverse and Peninsular Ranges, an evolutionary hotspot.  相似文献   

19.
Plant species distributed across terrestrial islands can show significant genetic divergence among populations if seed and pollen dispersal are restricted. We assessed the genetic connectivity between populations of Grevillea georgeana, restricted to seven disjunct inselbergs in semi‐arid Western Australia. The phylogeographical pattern and population genetics of populations were determined using sequence data from two plastid DNA intergenic spacers and ten nuclear microsatellite loci. The plastid DNA markers indicated high genetic differentiation among the majority of populations. Haplotypes were restricted to individual inselbergs, with the exception of two that were shared among three isolated populations that formed part of an elongated greenstone belt and that may be connected via inaccessible populations of G. georgeana. There was also strong differentiation within some of the populations, suggesting long‐term isolation and persistence of G. georgeana on these terrestrial islands. Overall, the genetic patterns suggest limited seed dispersal, with differentiation in the plastid DNA genome being driven by genetic drift. In contrast, pollen movement, although generally restricted, may occur between neighbouring populations, resulting in a pattern of isolation by distance in the nuclear markers. This potential for limited or no seed dispersal, but connectivity via pollen flow, should be considered, given that many of the inselbergs are under consideration for resource development. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 155–168.  相似文献   

20.
Aim Cloud forests of northern Mesoamerica represent the northern and southern limit of the contact zone between species otherwise characteristic of North or South America. Several phylogeographic studies featuring temperate conifer species have improved our understanding of species responses to environmental changes. In contrast, conifer species that presumably colonized northern Mesoamerica from South America are far less studied. A phylogeographic study of Podocarpus matudae (Podocarpaceae) was conducted to identify any major evolutionary divergences or disjunctions across its range and to determine if its current distribution is associated with pre‐Quaternary climatic and/or long‐distance dispersal events. Location Northern Mesoamerica (Mexico and Guatemala). Methods Sixteen populations (157 individuals) of P. matudae were screened for variation at two plastid DNA markers. The intra‐specific phylogenetic relationships among haplotypes were reconstructed using Bayesian inference. Population genetic analyses were undertaken to gain insight into the evolutionary history of these populations. To test whether genetic divergence among populations occurred at different time‐scales plastid DNA sequence data and fossil‐ and coalescent‐based calibrations were integrated. Results The combination of plastid markers yielded 11 haplotypes. Differentiation among populations based on DNA variation (GST) (0.707, SE 0.0807) indicated a clear population structure in P. matudae. Differentiation for ordered alleles (NST) (0.811, SE 0.0732) was higher than that for GST, indicating phylogeographical structure in P. matudae. Most of the total variation (81.3%, P < 0.0001) was explained by differences among populations. The estimated divergence time between the unique haplotypes from a Guatemalan population and the two most common haplotypes from the Sierra Madre Oriental in Mexico was between 10 and 20 Ma, and further haplotype divergence in the poorly resolved clade of the Sierra Madre Oriental occurred between 3 and 0.5 Ma. Main conclusions Divergence estimations support the hypothesis that extant Podocarpus matudae populations are pre‐Quaternary relicts. This finding is consistent with fossil and pollen data that support a Miocene age for temperate floristic elements in Mesoamerican cloud forests, whereas further haplotype divergence within the Sierra Madre Oriental, Chiapas and Guatemala occurred more recently, coinciding with Pleistocene cloud forest refugia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号