共查询到20条相似文献,搜索用时 0 毫秒
1.
Jeffrey J. Kelleway Neil Saintilan Peter I. Macreadie Charles G. Skilbeck Atun Zawadzki Peter J. Ralph 《Global Change Biology》2016,22(3):1097-1109
Shifts in ecosystem structure have been observed over recent decades as woody plants encroach upon grasslands and wetlands globally. The migration of mangrove forests into salt marsh ecosystems is one such shift which could have important implications for global ‘blue carbon’ stocks. To date, attempts to quantify changes in ecosystem function are essentially constrained to climate‐mediated pulses (30 years or less) of encroachment occurring at the thermal limits of mangroves. In this study, we track the continuous, lateral encroachment of mangroves into two south‐eastern Australian salt marshes over a period of 70 years and quantify corresponding changes in biomass and belowground C stores. Substantial increases in biomass and belowground C stores have resulted as mangroves replaced salt marsh at both marine and estuarine sites. After 30 years, aboveground biomass was significantly higher than salt marsh, with biomass continuing to increase with mangrove age. Biomass increased at the mesohaline river site by 130 ± 18 Mg biomass km?2 yr?1 (mean ± SE), a 2.5 times higher rate than the marine embayment site (52 ± 10 Mg biomass km?2 yr?1), suggesting local constraints on biomass production. At both sites, and across all vegetation categories, belowground C considerably outweighed aboveground biomass stocks, with belowground C stocks increasing at up to 230 ± 62 Mg C km?2 yr?1 (± SE) as mangrove forests developed. Over the past 70 years, we estimate mangrove encroachment may have already enhanced intertidal biomass by up to 283 097 Mg and belowground C stocks by over 500 000 Mg in the state of New South Wales alone. Under changing climatic conditions and rising sea levels, global blue carbon storage may be enhanced as mangrove encroachment becomes more widespread, thereby countering global warming. 相似文献
2.
Forty seven vibracores and fifteen radiocarbon dates have beenobtained to outline the Holocene history of the North Inlet saltmarsh basin. Marsh deposits date from about 3500 years BP and havetransgressed over a Late Pleistocene beach-ridge terrain that waspartly eroded by Late Holocene tidal channel meandering. Marsh mudalso has prograded southward over shallow subtidal estuarine Macomamuds which date from about 4500 years BP and which are stillaccumulating in adjacent Winyah Bay. The southward migration of themarsh environment probably is due to the southward migration ofboth North Inlet and the mouth of Winyah Bay. The stratigraphy ofthe North Inlet basin offers no evidence for Late Holocene sea-level oscillations.Application of this model of marsh history to the study long-term ecosystem succession driven by slowly rising sea level isdiscussed. 相似文献
3.
Laurence A. Boorman 《Wetlands Ecology and Management》1992,2(1-2):11-21
The present relationship between sea level and the zonation of salt marsh vegetation is discussed in terms of the salt marshes of the Essex and Kent coasts. These marshes are already decreasing in area as a result of a number of different environmental pressures, including the sinking of the land relative to the sea, at a rate of about 3 mm per year, the result of isostatic adjustment following the last glaciation. Because most British salt marshes are backed by a sea wall the marshes can not respond to rising sea levels by migrating landwards, thus increasing the impact of sea level change. In view of this and of the importance of salt marshes as protection for the sea walls themselves, a conceptual model has been developed, of the likely impact of climate change and the resulting sea level rise, on British salt marsh vegetation. The basis of this approach is the assumption that a rise in sea level will cause the drowning of certain existing vegetation zones and their subsequent replacement by new vegetation types appropriate to the changed sea level. Estimates have been made of the likely impact of rises in sea level of 0.5, 1.0 and 1.5 metres on the five major vegetation zones identified in East Anglia. The validity of this approach is discussed, together with the likely additive effect of present degenerative changes observed in the Essex salt marshes. It is estimated that over the next 60 years a sea level rise of only 0.5 m, when existing degeneration is taken to account, would cause a loss of over 40% of the present area of salt marsh in Essex and probably also in Kent. These losses would mainly effect the higher salt marsh vegetation zones which would be replaced by pioneer communities. These predictions would be greatly magnified by larger rises in sea level. The wider ecological implication of these changes and some possible remedial measures are considered. These predictions are discussed in relation to the situation in the rest of East Anglia and for Britain as a whole. 相似文献
4.
Algae have important functional roles in estuarine wetlands. We quantified differences in macroalgal abundance, composition and diversity, and sediment chl a and pheophytin a (pheo a) among three National Wetlands Inventory (NWI) emergent marsh classes in four Oregon estuaries spanning a range of riverine to marine dominance. We also assessed the strength of macroalgal‐vascular plant associations and the degree to which environmental variables correlated with algal community metrics in marsh and woody wetlands. The frequency of occurrence of most macroalgal genera, total benthic macroalgal cover, macroalgal diversity, and sediment chl a content were several times higher in low emergent marsh than in high marsh or palustrine tidal marsh. Conversely, pheo a: chl a ratios were highest in high and palustrine marsh. Attached macroalgae (Fucus and Vaucheria) were strongly associated with plants common at lower tidal elevations such as Sarcocornia perennis and Jaumea carnosa; Ulva (an unattached alga) was not strongly associated with any common low marsh plants. In structural equation models, intertidal elevation was the most influential predictor of macroalgal cover and richness and chl a; light availability and soil salinity played secondary roles. Although common taxa such as Ulva spp. occurred across a broad range of salinities, wetlands with oligohaline soils (salinity < 5) had the lowest macroalgal diversity and lower sediment chl a. These types of baseline data on algal distributions are critical for evaluating the structural and functional impacts of future changes to coastal estuaries including sea‐level rise (SLR), altered salinity dynamics, and habitat modification. 相似文献
5.
J. P. Bakker J. de Leeuw K. S. Dijkema P. C. Leendertse H. H. T. Prins J. Rozema 《Hydrobiologia》1993,265(1-3):73-95
The area of salt marshes does no longer increase. The recent erosion coincides with a rise in MHT-level in the last 25 years. Despite the decrease in area, sedimentation continues, especially in the lower salt marsh, which acts as a sink of nitrogen. Assimilation and mineralization of nitrogen are in balance in most plant communities along the gradient from lower to higher salt marshes. Mineralization of nitrogen increases towards the higher salt marsh, whereas the above-ground production and the mean nitrogen content of plants decrease. There is a positive correlation between quality of food plants in salt marshes and breeding success of Brent geese in the arctic tundra. Sedimentation on mainland salt marshes can compensate for the expected sea level rise. This is not the case for island salt marshes, if the relative sea level rise is more than 0.5–1.0 cm yr−1. The natural succession on salt marshes results in an accumulation of organic material, which is related to the dominance of single plant species. It is not clear to which extent this process is enhanced by eutrophication from acid deposition and seawater. Human exploitation of unprotected salt marshes is old and heavy in the system of mound settlements. Reclamation rates by dikes in the last centuries were higher than the rate of area increase. Grazing by cattle as a management practice results in both a higher plant species-richness and community diversity than abandoning; hay-making is intermediate, but shows less structural diversity than grazing with low stocking density. The invertebrate fauna is favoured by a short period of abandoning, but eventually characteristic salt marsh invertebrates are replaced by inland species. Many bird species prefer grazed salt marshes. The final section gives some perspectives. Provided that no further embankments take place the optimal nature management option for plants and animals is a vegetation pattern, which includes areas with a low canopy (grazed) and areas with a tall canopy. 相似文献
6.
7.
潮洪灾害、海平面上升已促使沿海城市由“抵御”向“适应”转变。通过修复盐沼提高海岸防护的韧性,已被认可是一种有效的适应对策。选取旧金山湾为案例,基于文献和实地调研,探究城市盐沼修复的实践路径和设计方法。研究表明,适应性管理是旧金山湾三代修复实践得以不断优化、发展的关键,帮助制定、调整目标和方法,弹性应对不确定性;旧金山湾通过发展修复设计导则,加速盐沼修复,促进形成更自然的盐沼;并修复过渡区,提供盐沼向内陆迁移的空间,缓解海岸挤迫。最后,提出中国河口海岸城市实施盐沼修复的可借鉴之处,推进海岸防护措施向基于自然的途径转变。 相似文献
8.
Feedbacks among inundation, sediment trapping, and vegetation productivity help maintain coastal wetlands facing sea‐level rise (SLR ). However, when the SLR rate exceeds a threshold, coastal wetlands can collapse. Understanding the threshold helps address key challenges in ecology—nonlinear response of ecosystems to environmental change, promotes communication between ecologists and resource managers, and facilitates decision‐making in climate change policies. We studied the threshold of SLR rate and developed a new threshold of SLR acceleration rate on sustainability of coastal wetlands as SLR is likely to accelerate due to enhanced anthropogenic forces. Deriving these two thresholds depends on the temporal scale, the interaction of SLR with other environmental factors, and landscape metrics, which have not been fully accounted for before this study. We chose a representative marine‐dominated estuary in the northern Gulf of Mexico, Grand Bay in Mississippi, to test the concept of SLR thresholds. We developed a mechanistic model to simulate wetland change and then derived the SLR thresholds for Grand Bay. The model results show that the threshold of SLR rate in Grand Bay is 11.9 mm/year for 2050, and it drops to 8.4 mm/year for 2100 using total wetland area as a landscape metric. The corresponding SLR acceleration rate thresholds are 3.02 × 10?4 m/year2 and 9.62 × 10?5 m/year2 for 2050 and 2100, respectively. The newly developed SLR acceleration rate threshold can help quantify the temporal lag before the rapid decline in wetland area becomes evident after the SLR rate threshold is exceeded, and cumulative SLR a wetland can adapt to under the SLR acceleration scenarios. Based on the thresholds, SLR that will adversely impact the coastal wetlands in Grand Bay by 2100 will fall within the likely range of SLR under a high warming scenario (RCP 8.5), highlighting the need to avoid RCP 8.5 to preserve these marshes. 相似文献
9.
Mark C. Livolsi Christopher K. Williams John M. Coluccy Matthew T. Dibona 《The Journal of wildlife management》2021,85(4):686-695
Waterfowl migrating and overwintering in the Atlantic Flyway depend on adequate availability of wetland plant communities to survive winter and fuel reproduction in the subsequent breeding season. Energetics models are the primary tool employed by conservation planners to estimate energetic carrying capacity based on energy supply and demand in different wetlands to assist with effective habitat conservation. Coastal impoundments have been used to provide a consistent, annual source of energy for migrating and wintering waterfowl. But few studies have attempted to comprehensively assess the relative value of managed coastal impoundments compared with unmanaged tidal salt marshes to wintering waterfowl in the Mid-Atlantic region with further consideration to the effect of sea level rise changing availability. We estimated biomass and energy of preferred foods for 5 dabbling duck species in 7 impoundments and 3 tidal salt marshes over winter by collecting soil core (n = 1,364), nekton (n = 426), and salt marsh snail (Melampus spp.; n = 87) samples in October, January, and April 2011–2013. Food-energy density was greater in freshwater impoundments for nearly all dabbling ducks (range = 183,344–562,089 kcal/ha), and typically greater in brackish impoundments (range = 169,665–357,160 kcal/ha) than most tidal salt marsh communities (range = 55,693–361,429 kcal/ha), whereas mudflat (range = 96,223–137,473 kcal/ha) and subtidal (range = 55,693–136,326 kcal/ha) communities typically contained the least energy. Extrapolating to the state level, we estimated 7.60 × 109–1.14 × 1010 kcal available within a 16-km buffer from the Delaware Bayshore, depending on species. Combining estimates for daily energy expenditure and food energy, we estimated 2.86 × 107–7.06 × 107 duck energy days currently available to dabbling ducks over winter. We estimated that in the next century, dabbling duck carrying capacities are likely to decrease under all but the most conservative sea level rise scenarios because of the gradual replacement of land-cover types that provide high energy density (i.e., low marsh, high marsh communities) with those that provide low energy density (i.e., subtidal, mudflat communities). Coastal impoundments in Delaware, USA, will provide increasingly important habitat for wintering dabbling ducks in the coming decades provided they are properly maintained and retain their current energetic density because they will contain a growing proportion of the available duck energy days on the landscape. Our research will assist managers in meeting target population goals for dabbling ducks in Delaware and the Mid-Atlantic region by highlighting key differences in the function and value of various wetlands. © 2021 The Wildlife Society. 相似文献
10.
We have collected live and dead foraminiferal times-series data at 2-weekly intervals for a 12-month period from the intertidal zone of Cowpen Marsh, Tees Estuary, UK. The data from the 689 samples show profound differences between live and dead assemblages, although assemblages are dominated by just three species, Haynesina germanica, Jadammina macrescens and Trochammina inflata, which represent over 70% of the assemblage. The cumulative increase in species of most environments approximates to a lognormal or log series. None of the datasets show a broken stick pattern. The cumulative maximum number of species, which represents the species carrying capacity of the environment, is recorded earlier in the life assemblages than the dead counterparts. The dead assemblage of Cowpen Marsh is found to have a higher abundance (435 compared to 163 individuals/10 cm3) and number of species (52 compared to 28) than its live counterpart because the dead assemblage represents many generations added over a long period of time. In contrast, some species are recorded in the live dataset that were not found in the dead assemblage, indicating the dead record is either incomplete (e.g. taphonomic change) or inadequately sampled.We investigated the influence of patterns in cumulative increase on dead assemblages for sea-level reconstructions through the development of foraminiferal-based transfer functions. The cumulative transfer functions suggest that the performance improves during the first six sample intervals of the time-series dataset with reconstruction differing by 1.2 m and remains constant thereafter. 相似文献
11.
Jason A. Schmidt Robert McCleery Jennifer R. Seavey Susan E. Cameron Devitt Paige M. Schmidt 《Global Change Biology》2012,18(12):3536-3542
The extraordinary growth of human populations and development in coastal areas over the last half century has eliminated and degraded coastal habitats and threatened the persistence of associated wildlife. Moreover, human‐induced sea‐level rise (SLR) is projected to further eliminate and alter the same coastal ecosystems, especially low‐lying regions. Whereas habitat loss and wildlife population declines from development are well documented, contemporary SLR has not yet been implicated in declines of coastal faunal populations. In addition, the projection of severe synergistic impacts from the combination of development and SLR is well described, yet the scientific literature offers little empirical evidence of the influence of these forces on coastal wildlife. Analysis of aerial photographs from 1959 to 2006 provided evidence of a 64% net loss of the endangered Lower Keys marsh rabbit's (Sylvilagus palustris hefneri; LKMR) habitat, the majority due to SLR (>48%). Furthermore, there was a strong negative relationship between the proportion of development per island and the amount of new habitat formed. Islands with modest development (less than 8% of land area) saw formation of new areas of marsh vegetation suitable for rabbits, whereas islands with 8% or more of their lands developed between 1959 and 2006 saw little to no addition of LKMR habitat. Only 8% of habitat loss was directly due to conversion to impervious surfaces, indicating that the greatest threats from development were indirect, including blocking of the inland migration of habitat triggered by SLR. Our results were consistent with an ongoing squeeze of coastal ecosystems between rising seas and development as a threat to LKMR habitat, which raises concern for a wide variety of coastal species. Our results provide evidence that SLR has become a contemporary conservation concern, one that is exacerbated by development, and expected to increase in magnitude as ocean waters continue to rise. 相似文献
12.
Jordan A. Rosencranz Karen M. Thorne Kevin J. Buffington John Y. Takekawa Ryan F. Hechinger Tara E. Stewart Richard F. Ambrose Glen M. MacDonald Mark A. Holmgren Jeff A. Crooks Robert T. Patton Kevin D. Lafferty 《Ecology and evolution》2018,8(16):8115-8125
Sea‐level rise (SLR) impacts on intertidal habitat depend on coastal topology, accretion, and constraints from surrounding development. Such habitat changes might affect species like Belding's savannah sparrows (Passerculus sandwichensis beldingi; BSSP), which live in high‐elevation salt marsh in the Southern California Bight. To predict how BSSP habitat might change under various SLR scenarios, we first constructed a suitability model by matching bird observations with elevation. We then mapped current BSSP breeding and foraging habitat at six estuarine sites by applying the elevation‐suitability model to digital elevation models. To estimate changes in digital elevation models under different SLR scenarios, we used a site‐specific, one‐dimensional elevation model (wetland accretion rate model of ecosystem resilience). We then applied our elevation‐suitability model to the projected digital elevation models. The resulting maps suggest that suitable breeding and foraging habitat could decline as increased inundation converts middle‐ and high‐elevation suitable habitat to mudflat and subtidal zones. As a result, the highest SLR scenario predicted that no suitable breeding or foraging habitat would remain at any site by 2100 and 2110. Removing development constraints to facilitate landward migration of high salt marsh, or redistributing dredge spoils to replace submerged habitat, might create future high salt marsh habitat, thereby reducing extirpation risk for BSSP in southern California. 相似文献
13.
Jeffrey J. Kelleway Kyle Cavanaugh Kerrylee Rogers Ilka C. Feller Emilie Ens Cheryl Doughty Neil Saintilan 《Global Change Biology》2017,23(10):3967-3983
Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea‐level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change. 相似文献
14.
潮汐盐沼湿地具有高的碳积累速率和低的CH_4排放量,是地球上最密集的碳汇之一。同时,气候变暖和海平面上升可能使得盐沼湿地更迅速的捕获和埋藏大气中的CO_2,因此盐沼湿地的\"蓝碳\"在减缓气候变化方面扮演着重要角色。潮汐盐沼湿地与其他湿地类型最大的区别和最显著的特征是在周期性潮汐作用下出现淹没和暴露,同时伴随盐分表聚与淋洗的干湿交替,可能是控制盐沼湿地碳交换过程和碳收支平衡的关键因素。但是,当前潮汐水动力过程及其周期性干湿交替对盐沼湿地碳交换关键过程和碳汇形成机制的影响尚不十分清楚。另外,以往相关研究通常孤立地考虑垂直方向上CO_2或CH_4交换或横向方向上的可溶性有机碳(DOC)、可溶性无机碳(DIC)、颗粒有机碳(POC)交换通量对盐沼湿地碳平衡进行评估,显然不够准确。因此,为了精确评估和预测盐沼湿地蓝碳的吸存能力,必须系统研究潮汐不同阶段对盐沼湿地碳交换过程的影响;深入分析潮汐作用下盐沼湿地碳交换的微生物机制;关注潮汐水动力作用对盐沼湿地DOC、DIC和POC产生、释放以及向邻近水体输出的影响;阐明潮汐作用对盐沼湿地碳汇形成机制的影响;纳入潮汐水动力过程作为变量,建立盐沼湿地碳循环模型。 相似文献
15.
Daniel A. Friess Ken W. Krauss Erik M. Horstman Thorsten Balke Tjeerd J. Bouma Demis Galli Edward L. Webb 《Biological reviews of the Cambridge Philosophical Society》2012,87(2):346-366
Intertidal wetlands such as saltmarshes and mangroves provide numerous important ecological functions, though they are in rapid and global decline. To better conserve and restore these wetland ecosystems, we need an understanding of the fundamental natural bottlenecks and thresholds to their establishment and long‐term ecological maintenance. Despite inhabiting similar intertidal positions, the biological traits of these systems differ markedly in structure, phenology, life history, phylogeny and dispersal, suggesting large differences in biophysical interactions. By providing the first systematic comparison between saltmarshes and mangroves, we unravel how the interplay between species‐specific life‐history traits, biophysical interactions and biogeomorphological feedback processes determine where, when and what wetland can establish, the thresholds to long‐term ecosystem stability, and constraints to genetic connectivity between intertidal wetland populations at the landscape level. To understand these process interactions, research into the constraints to wetland development, and biological adaptations to overcome these critical bottlenecks and thresholds requires a truly interdisciplinary approach. 相似文献
16.
Christopher R. Field Trina S. Bayard Carina Gjerdrum Jason M. Hill Susan Meiman Chris S. Elphick 《Global Change Biology》2017,23(5):2058-2070
Sea‐level rise will affect coastal species worldwide, but models that aim to predict these effects are typically based on simple measures of sea level that do not capture its inherent complexity, especially variation over timescales shorter than 1 year. Coastal species might be most affected, however, by floods that exceed a critical threshold. The frequency and duration of such floods may be more important to population dynamics than mean measures of sea level. In particular, the potential for changes in the frequency and duration of flooding events to result in nonlinear population responses or biological thresholds merits further research, but may require that models incorporate greater resolution in sea level than is typically used. We created population simulations for a threatened songbird, the saltmarsh sparrow (Ammodramus caudacutus), in a region where sea level is predictable with high accuracy and precision. We show that incorporating the timing of semidiurnal high tide events throughout the breeding season, including how this timing is affected by mean sea‐level rise, predicts a reproductive threshold that is likely to cause a rapid demographic shift. This shift is likely to threaten the persistence of saltmarsh sparrows beyond 2060 and could cause extinction as soon as 2035. Neither extinction date nor the population trajectory was sensitive to the emissions scenarios underlying sea‐level projections, as most of the population decline occurred before scenarios diverge. Our results suggest that the variation and complexity of climate‐driven variables could be important for understanding the potential responses of coastal species to sea‐level rise, especially for species that rely on coastal areas for reproduction. 相似文献
17.
Estuarine and Tidal Wetland Restoration in the United Kingdom: Policy Versus Practice 总被引:7,自引:0,他引:7
John Pethick 《Restoration Ecology》2002,10(3):431-437
Restoration of reclaimed marshes in the United Kingdom, referred to as managed realignment, is both a scientific and a political issue. A cross‐party House of Commons report to Government stressed that provision of long‐term sustainable coastal defenses must start with the premise that “coasts need space” and that government must work to increase public awareness, scientific knowledge, and political will to facilitate such a retreat from the almost sacrosanct existing shoreline. Government, in turn, has agreed with the basis of the report but is aware of conflicting interests, not least the European legislation, which has designated large areas of reclaimed marshes as Special Areas of Conservation that cannot legally be restored to their former tidal processes. Against this background, it is essential that scientific research provides convincing arguments for the necessity for managed realignment, the location, extent, and type of marshlands that need to be restored to provide sustainable flood defenses, maintain and enhance conservation status, and ensure a healthy functioning estuarine system. We examine the political and scientific issues involved, discuss model predictions and field experiments into realignment techniques, and outline the preliminary results of such experiments showing the evolution of restored intertidal wetlands in the United Kingdom. 相似文献
18.
B.W. Ribbons 《Plant Ecology & Diversity》2013,6(1):103-104
Summary Three different oxygen-containing germination environments demonstrate the profound influence exerted by environmental oxygen (02) on growth and plastogenesis in coleoptiles of light-germinated rice seedlings. Coleoptile greening is extensive in low numbers of seedlings germinated in a sealed, initially air-saturated, static water environment and in large numbers of seedlings germinated under unagitated water underambient gaseous exchange conditions. In seedlings germinated in air (?21% 02), coleoptile greening is sparse and extension growth is much reduced compared with coleoptile extension growth of the submerged seedlings. Coleoptile greening and shoot and root growth are completely inhibited under hypoxia resulting from large numbers of germinating seedlings competing for the limited 02 supply in the sealed, initially air-saturated, static water environment. Coleoptile extension growth is highest under hypoxia and lowest under ?21% 02. The observations presented here demonstrate that 02 stress and non- stress conditions serve as environmental signals which influence growth behaviour and plastogenesis in coleoptiles of light-germinated rice seedlings. 相似文献
19.
This study was conducted at three locations in a bottomland hardwood forest with a distinct elevation and hydrological gradient: ridge (high, dry), transition, and swamp (low, wet). At each location, concentrations of soil greenhouse gases (N2O, CH4, and CO2), their fluxes to the atmosphere, and soil redox potential (Eh) were measured bimonthly, while the water table was monitored every day. Results show that soil Eh was significantly (P < 0.001) correlated with water table: a negative correlation at the ridge and transition locations, but a positive correlation at the permanently flooded swamp location. Both soil gas profile analysis and surface gas flux measurements indicated that the ridge and transition locations could be a sink of atmospheric CH4, especially in warm seasons, but generally functioned as a minor source of CH4 in cool seasons. The swamp location was a major source of CH4, and the emission rate was higher in the warm seasons (mean 28 and median 23 mg m?2 h?1) than in the cool seasons (both mean and median 13 mg m?2 h?1). Average CO2 emission rate was 251, 380 and 52 mg m?2 h?1 for the ridge, transition and swamp location, respectively. At each location, higher CO2 emission rates were also found in the warm seasons. The lowest CO2 emission rate was found at the swamp location, where soil C content was the highest, due to less microbial biomass, less CO2 production in such an anaerobic environment, and greater difficulty of CO2 diffusion to the atmosphere. Cumulative global warming potential emission from these three greenhouse gases was in an order of swamp > transition > ridge location. The ratio CO2/CH4 production in soil is a critical factor for evaluating the overall benefit of soil C sequestration, which can be greatly offset by CH4 production and emission. 相似文献
20.
Impacts of global climate change, such as sea level rise and severe drought, have altered the hydrology of coastal salt marshes resulting in submergence and subsequent degradation of ecosystem function. A potential method of rehabilitating these systems is the addition of sediment‐slurries to increase marsh surface elevation, thus ameliorating effects of excessive inundation. Although this technique is growing in popularity, the restoration of ecological function after sediment addition has received little attention. To determine if sediment subsidized salt marshes are functionally equivalent to natural marshes, we examined above‐ and belowground primary production in replicated restored marshes receiving four levels of sediment addition (29–42 cm North American Vertical Datum of 1988 [NAVD 88]) and in degraded and natural ambient marshes (4–22 cm NAVD 88). Moderate intensities of sediment‐slurry addition, resulting in elevations at the mid to high intertidal zone (29–36 cm NAVD 88), restored ecological function to degraded salt marshes. Sediment additions significantly decreased flood duration and frequency and increased bulk density, resulting in greater soil drainage and redox potential and significantly lower phytotoxic sulfide concentrations. However, ecological function in the restored salt marsh showed a sediment addition threshold that was characterized by a decline in primary productivity in areas of excessive sediment addition and high elevation (>36 cm NAVD 88). Hence, the addition of intermediate levels of sediment to submerging salt marshes increased marsh surface elevation, ameliorated impacts of prolonged inundation, and increased primary productivity. However, too much sediment resulted in diminished ecological function that was equivalent to the submerged or degraded system. 相似文献