首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2–5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century‐scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field‐based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant‐ and SOM‐derived CO2 separated via δ13CO2. Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM‐derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR.  相似文献   

2.
Coastal wetlands are a significant carbon (C) sink since they store carbon in anoxic soils. This ecosystem service is impacted by hydrologic alteration and management of these coastal habitats. Efforts to restore tidal flow to former salt marshes have increased in recent decades and are generally associated with alteration of water inundation levels and salinity. This study examined the effect of water level and salinity changes on soil organic matter decomposition during a 60‐day incubation period. Intact soil cores from impounded fresh water marsh and salt marsh were incubated after addition of either sea water or fresh water under flooded and drained water levels. Elevating fresh water marsh salinity to 6 to 9 ppt enhanced CO2 emission by 50%?80% and most typically decreased CH4 emissions, whereas, decreasing the salinity from 26 ppt to 19 ppt in salt marsh soils had no effect on CO2 or CH4 fluxes. The effect from altering water levels was more pronounced with drained soil cores emitting ~10‐fold more CO2 than the flooded treatment in both marsh sediments. Draining soil cores also increased dissolved organic carbon (DOC) concentrations. Stable carbon isotope analysis of CO2 generated during the incubations of fresh water marsh cores in drained soils demonstrates that relict peat OC that accumulated when the marsh was saline was preferentially oxidized when sea water was introduced. This study suggests that restoration of tidal flow that raises the water level from drained conditions would decrease aerobic decomposition and enhance C sequestration. It is also possible that the restoration would increase soil C decomposition of deeper deposits by anaerobic oxidation, however this impact would be minimal compared to lower emissions expected due to the return of flooding conditions.  相似文献   

3.
Agronomic practices such as crop residue return and additional nutrient supply are recommended to increase soil organic carbon (SOC) in arable farmlands. However, changes in the priming effect (PE) on native SOC mineralization in response to integrated inputs of residue and nutrients are not fully known. This knowledge gap along with a lack of understanding of microbial mechanisms hinders the ability to constrain models and to reduce the uncertainty to predict carbon (C) sequestration potential. Using a 13C‐labeled wheat residue, this 126‐day incubation study examined the dominant microbial mechanisms that underpin the PE response to inputs of wheat residue and nutrients (nitrogen, phosphorus and sulfur) in two contrasting soils. The residue input caused positive PE through “co‐metabolism,” supported by increased microbial biomass, C and nitrogen (N) extracellular enzyme activities (EEAs), and gene abundance of certain microbial taxa (Eubacteria, β‐Proteobacteria, Acidobacteria, and Fungi). The residue input could have induced nutrient limitation, causing an increase in the PE via “microbial nutrient mining” of native soil organic matter, as suggested by the low C‐to‐nutrient stoichiometry of EEAs. At the high residue, exogenous nutrient supply (cf. no‐nutrient) initially decreased positive PE by alleviating nutrient mining, which was supported by the low gene abundance of Eubacteria and Fungi. However, after an initial decrease in PE at the high residue with nutrients, the PE increased to the same magnitude as without nutrients over time. This suggests the dominance of “microbial stoichiometry decomposition,” supported by higher microbial biomass and EEAs, while Eubacteria and Fungi increased over time, at the high residue with nutrients cf. no‐nutrient in both soils. Our study provides novel evidence that different microbial mechanisms operate simultaneously depending on organic C and nutrient availability in a residue‐amended soil. Our results have consequences for SOC modeling and integrated nutrient management employed to increase SOC in arable farmlands.  相似文献   

4.
A digital elevation model describing topography, tide elevation and inundation degree and frequency of a mangrove forest in North Brazil is discussed in relation to existing phosphate and physicochemical data in waters of an adjacent tidal creek. Due to smooth topography, an increase of 20 cm in tidal height above average neap tides increases flooded area from about 50 to 80%. Analysis of the relationship between microtopography, tidal height and flooding rate showed that in the upper 60 cm of the mangrove forest, increases of 20 cm in topographical height resulted in a doubling of the inundation frequency. This can be particularly relevant for the analysis of nutrient mobilization and vegetation structure of infrequently inundated wetlands. Throughout the year, low-tide phosphate in creek water was inversely proportional to the maximum area flooded during high tide, this correlation being higher during the dry season. Similarly, the inverse relationship between flooded areas and low-tide/high-tide pH ratios was highly significant during the dry season and the beginning of the rainy season. Although the high correlations obtained are based on data pairs obtained at high and low tide, it has to clarified whether the association between inundation degree and creek water pH is relevant for the stability of P compounds in sediment on the short scale of a tidal cycle.  相似文献   

5.
Sea level rise elicits short‐ and long‐term changes in coastal plant communities by altering the physical conditions that affect ecosystem processes and species distributions. While the effects of sea level rise on salt marshes and mangroves are well studied, we focus on its effects on coastal islands of freshwater forest in Florida's Big Bend region, extending a dataset initiated in 1992. In 2014–2015, we evaluated tree survival, regeneration, and understory composition in 13 previously established plots located along a tidal creek; 10 plots are on forest islands surrounded by salt marsh, and three are in continuous forest. Earlier studies found that salt stress from increased tidal flooding prevented tree regeneration in frequently flooded forest islands. Between 1992 and 2014, tidal flooding of forest islands increased by 22%–117%, corresponding with declines in tree species richness, regeneration, and survival of the dominant tree species, Sabal palmetto (cabbage palm) and Juniperus virginiana (southern red cedar). Rates of S. palmetto and J. virginiana mortality increased nonlinearly over time on the six most frequently flooded islands, while salt marsh herbs and shrubs replaced forest understory vegetation along a tidal flooding gradient. Frequencies of tidal flooding, rates of tree mortality, and understory composition in continuous forest stands remained relatively stable, but tree regeneration substantially declined. Long‐term trends identified in this study demonstrate the effect of sea level rise on spatial and temporal community reassembly trajectories that are dynamically re‐shaping the unique coastal landscape of the Big Bend.  相似文献   

6.
7.
The coastal ecosystems of temperate North America provide a variety of ecosystem services including high rates of carbon sequestration. Yet, little data exist for the carbon stocks of major tidal wetland types in the Pacific Northwest, United States. We quantified the total ecosystem carbon stocks (TECS) in seagrass, emergent marshes, and forested tidal wetlands, occurring along increasing elevation and decreasing salinity gradients. The TECS included the total aboveground carbon stocks and the entire soil profile (to as deep as 3 m). TECS significantly increased along the elevation and salinity gradients: 217 ± 60 Mg C/ha for seagrass (low elevation/high salinity), 417 ± 70 Mg C/ha for low marsh, 551 ± 47 Mg C/ha for high marsh, and 1,064 ± 38 Mg C/ha for tidal forest (high elevation/low salinity). Soil carbon stocks accounted for >98% of TECS in the seagrass and marsh communities and 78% in the tidal forest. Soils in the 0–100 cm portion of the profile accounted for only 48%–53% of the TECS in seagrasses and marshes and 34% of the TECS in tidal forests. Thus, the commonly applied limit defining TECS to a 100 cm depth would greatly underestimate both carbon stocks and potential greenhouse gas emissions from land‐use conversion. The large carbon stocks coupled with other ecosystem services suggest value in the conservation and restoration of temperate zone tidal wetlands through climate change mitigation strategies. However, the findings suggest that long‐term sea‐level rise effects such as tidal inundation and increased porewater salinity will likely decrease ecosystem carbon stocks in the absence of upslope wetland migration buffer zones.  相似文献   

8.
Tidal wetlands worldwide are undergoing rapid invasions by tall-growing clonal grasses. Prominent examples are invasions by species of the genera Spartina, Phragmites and Elymus. The responsible physiological and ecological drivers of these invasions are poorly understood. Physiological integration (PI) is a key trait of clonal plants, which enables the exchange of resources among ramets. We investigated PI in Elymus athericus, which has been rapidly spreading from high-marsh into low-marsh environments of European salt marshes during the last decades. We applied a nitrogen stable-isotope approach to trace nutrient translocation between ramets in a factorial mesocosm experiment. The experiment was set up to mimic an invasion pattern commonly found in tidal wetlands, i.e. from high-elevated and rarely flooded into low-elevated and frequently flooded microenvironments. We tested for intraspecific variability in PI by including two genotypes of Elymus that naturally occur at different elevations within the tidal frame, a high-marsh (HM) and a low-marsh (LM) genotype. PI strongly increased offspring ramet aboveground and belowground biomass by 62 and 81%, respectively. Offspring ramets under drained conditions had 95% greater belowground biomass than those under flooded conditions. LM genotype offspring ramets produced 27% more aboveground biomass than HM genotypes. Offspring ramets were clearly more enriched in 15N under flooded versus drained conditions; however, this positive effect of flooding on δ15N was only significant in the LM genotype. Our findings demonstrate the importance of PI for the growth of Elymus offspring ramets and thereby for the species' capacity for fast vegetative spread. We show that offspring ramets under stressful flooded conditions are more dependent on nutrient supply from parent ramets than those under drained conditions. Our data furthermore suggest a higher degree of adaptation to flooding via PI in the LM versus HM genotype. In conclusion, we highlight the importance of assessing PI and intraspecific trait variability to understand invasion processes within ecosystems.  相似文献   

9.
Climate change‐associated sea level rise is expected to cause saltwater intrusion into many historically freshwater ecosystems. Of particular concern are tidal freshwater wetlands, which perform several important ecological functions including carbon sequestration. To predict the impact of saltwater intrusion in these environments, we must first gain a better understanding of how salinity regulates decomposition in natural systems. This study sampled eight tidal wetlands ranging from freshwater to oligohaline (0–2 ppt) in four rivers near the Chesapeake Bay (Virginia). To help isolate salinity effects, sites were selected to be highly similar in terms of plant community composition and tidal influence. Overall, salinity was found to be strongly negatively correlated with soil organic matter content (OM%) and C : N, but unrelated to the other studied environmental parameters (pH, redox, and above‐ and below‐ground plant biomass). Partial correlation analysis, controlling for these environmental covariates, supported direct effects of salinity on the activity of carbon‐degrading extracellular enzymes (β‐1, 4‐glucosidase, 1, 4‐β‐cellobiosidase, β‐D‐xylosidase, and phenol oxidase) as well as alkaline phosphatase, using a per unit OM basis. As enzyme activity is the putative rate‐limiting step in decomposition, enhanced activity due to salinity increases could dramatically affect soil OM accumulation. Salinity was also found to be positively related to bacterial abundance (qPCR of the 16S rRNA gene) and tightly linked with community composition (T‐RFLP). Furthermore, strong relationships were found between bacterial abundance and/or composition with the activity of specific enzymes (1, 4‐β‐cellobiosidase, arylsulfatase, alkaline phosphatase, and phenol oxidase) suggesting salinity's impact on decomposition could be due, at least in part, to its effect on the bacterial community. Together, these results indicate that salinity increases microbial decomposition rates in low salinity wetlands, and suggests that these ecosystems may experience decreased soil OM accumulation, accretion, and carbon sequestration rates even with modest levels of saltwater intrusion.  相似文献   

10.
土壤微生物胞外酶可有效反映气候变暖对土壤微生物功能和土壤有机质分解的影响.目前关于气候变暖对土壤微生物胞外酶活性(EEAs)影响的相关研究主要关注有机碳含量较丰富的表层土壤(0~20 cm),而对深层土壤(>20 cm)EEAs的研究仍较缺乏.因此,本研究关注土壤增温对亚热带不同深度(0~10 cm、10~20 cm、20~40 cm和40~60 cm)EEAs的影响及主要调控因素,其中微生物胞外酶包括参与碳循环的β-葡萄糖苷酶(BG)、纤维二糖水解酶(CBH)、酚氧化酶(PHO)和过氧化物氧化酶(PEO).结果表明: 土壤增温提高了0~10 cm和10~20 cm土壤所有胞外酶的活性(18%~69%).在20 cm以下的深层土壤中,土壤增温仅显著提高了20~40 cm的PHO(10%),而对其余胞外酶的活性无显著影响或有一定的抑制作用(13%~31%).冗余分析(RDA)结果表明: 在微生物可利用有机碳较丰富的表层土壤中,铵态氮(NH4+-N)和土壤含水率(M)是调控EEAs的主要因素,增温增强了微生物与植物之间的养分竞争,因而提高EEAs以获取微生物所需的养分NH4+-N;而在微生物底物有效性较低的深层土壤中,EEAs主要受可溶性有机质(可溶性有机碳和可溶性有机氮)和微生物生物量(MBC)的影响,增温提高深层土壤可溶性有机质的含量,为微生物提供更多的底物,减少微生物对EEAs的需求,进而降低EEAs.本研究发现,不同深度EEAs对土壤增温具有不同响应,且土壤增温条件下表层和深层土壤的EEAs具有明显不同的调控因素.因此,加强不同深度土壤微生物的研究对于准确评估生态系统碳循环对全球变暖的响应具有重要意义.  相似文献   

11.
Climate change impacts, such as accelerated sea‐level rise, will affect stress gradients, yet impacts on competition/stress tolerance trade‐offs and shifts in distributions are unclear. Ecosystems with strong stress gradients, such as estuaries, allow for space‐for‐time substitutions of stress factors and can give insight into future climate‐related shifts in both resource and nonresource stresses. We tested the stress gradient hypothesis and examined the effect of increased inundation stress and biotic interactions on growth and survival of two congeneric wetland sedges, Schoenoplectus acutus and Schoenoplectus americanus. We simulated sea‐level rise across existing marsh elevations and those not currently found to reflect potential future sea‐level rise conditions in two tidal wetlands differing in salinity. Plants were grown individually and together at five tidal elevations, the lowest simulating an 80‐cm increase in sea level, and harvested to assess differences in biomass after one growing season. Inundation time, salinity, sulfides, and redox potential were measured concurrently. As predicted, increasing inundation reduced biomass of the species commonly found at higher marsh elevations, with little effect on the species found along channel margins. The presence of neighbors reduced total biomass of both species, particularly at the highest elevation; facilitation did not occur at any elevation. Contrary to predictions, we documented the competitive superiority of the stress tolerator under increased inundation, which was not predicted by the stress gradient hypothesis. Multifactor manipulation experiments addressing plant response to accelerated climate change are integral to creating a more realistic, valuable, and needed assessment of potential ecosystem response. Our results point to the important and unpredicted synergies between physical stressors, which are predicted to increase in intensity with climate change, and competitive forces on biomass as stresses increase.  相似文献   

12.
Disturbance alters the structure and dynamics of communities. Here, we examined the effects of seasonal flooding on the lizard community structure by comparing two adjacent habitats, a seasonally flooded and a non‐flooded forest, in a Cerrado–Amazon ecotone area, the Cantão State Park, Tocantins state, Brazil. Despite the strong potential impact of seasonal flooding, the only significant environmental difference detected was more termite mounds in non‐flooded forests. Species richness was significantly higher in the non‐flooded forest. Colobosaura modesta, followed by Mabuya frenata and Anolis brasiliensis, were the only species that differed in number of captures between sites. Colobosaura modesta was exclusively found in the non‐flooded forest, while Anolis brasiliensis was the most captured in the flooded forest. Mabuya frenata is indicated as an indicator species in the flooded forest, and Colobosaura modesta in the non‐flooded forest. We found a significant association between lizard abundances and habitat characteristics, with flooding, canopy cover, and logs being the best predictors. A phylogenetic community structure analysis indicated a lack of structure in both lizard assemblages. Overall, we show that seasonal flooding can strongly impact species richness and species occurrence patterns, but not phylogenetic community structure. The Amazon–Cerrado transition is undergoing pronounced transformations due to deforestation and climate change. Despite being species‐poor compared with central areas in Amazon or Cerrado, this ecotone harbors species with important adaptations that could hold the key to persistence in human‐disturbed landscapes or during periods of climate change.  相似文献   

13.
To avoid submergence during sea‐level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea‐level rise may change. To compare how well mangroves and salt marshes accommodate sea‐level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table‐marker horizon system. Comparison of land movement with relative sea‐level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub‐root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small‐scale disturbance of the plant canopy also had no effect on elevation trajectories—contrary to work in peat‐forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion, subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea‐level rise.  相似文献   

14.
Both litter composition and site environment are important factors influencing litter decomposition, but their relative roles in driving spatial variation in litter decomposition among wetlands remain unclear. The responses of mass loss and nutrient dynamics to site environment and litter source were investigated in Carex brevicuspis leaves from the Dongting Lake wetlands, China, using reciprocal transplants of litterbags. Litters originating from lower elevation (24–25 m; flooded for 180–200 days every year) and higher elevation (27–28 m; flooded for 60–90 days every year) sites were incubated simultaneously at lower and higher sites at three locations for 1 year. The remaining litter mass, N, P, and lignin contents were analyzed during decomposition. Initial N and P contents were richer in litters from lower sites than those from higher ones. The decomposition rate was higher for the litters originating from lower sites (0.0030 day?1) than those from higher ones (0.0025 day?1) and higher at lower sites (0.0031 day?1) than at higher sites (0.0024 day?1). Litters from lower sites displayed greater N and P mineralization than those from higher sites, whereas only P dynamics were affected by site elevation. The variation in litter decomposition rate among the different litter source groups was twice that among the different site elevation groups. These data indicate that, in wetlands ecosystems, litter composition plays a more important role in the speed of litter decomposition than site environment (here represented by site elevation).  相似文献   

15.
《Aquatic Botany》2005,82(4):250-268
Lepidium latifolium L. is an invasive exotic crucifer that has spread explosively in wetlands and riparian areas of the western United States. To understand the ecophysiological characteristics of L. latifolium that affect its ability to invade riparian areas and wetlands, we examined photosynthesis, chlorophyll concentration, carbohydrate partitioning and nutrient uptake in L. latifolium in response to soil flooding. Photosynthesis of flooded plants was about 60–70% of the rate of unflooded controls. Chlorophyll concentrations of flooded plants were about 60–70% of the unflooded plants during 15–50 days of flooding. Flooding resulted in an increase in leaf starch concentration, but root starch concentration was not significantly affected. However, concentrations of soluble sugar were significantly higher in both leaves and roots of flooded plants than unflooded controls. On day 50 after initial flooding, the concentrations of N, P, K and Zn in leaves of flooded plants were lower than in control plants. The concentrations of Mn and Fe in leaves of flooded plants were eight and two times those of control plants, respectively. In contrast, N, P, K and Zn concentrations of roots of flooded plants were slightly higher than in unflooded plants. The concentrations of Fe and Mn in roots of flooded plants were 15 and 150 times those of the control plants, respectively. The transport of P, K, and Zn to shoots decreased and that of Mn increased under flooding. The accumulation of N, K and Zn in roots decreased and that of Mn increased in response to flooding. The results suggested that the maintenance of relatively high photosynthesis and the accumulation of soluble sugar in roots of flooded plants are important adaptations for this species in flooded environments. Despite a reduction in photosynthesis and disruption in nutrient and photosynthate allocation in response to flooding, L. latifolium was able to survive 50 days of flooding stress. Overall, L. latifolium performed like a facultative hydrophyte species under flooding.  相似文献   

16.
Aboveground biomass, macro‐organic matter (MOM), and wetland soil characteristics were measured periodically between 1983 and 1998 in a created brackish‐water marsh and a nearby natural marsh along the Pamlico River estuary, North Carolina to evaluate the development of wetland vegetation and soil dependent functions after marsh creation. Development of aboveground biomass and MOM was dependent on elevation and frequency of tidal inundation. Aboveground biomass of Spartina alterniflora, which occupied low elevations along tidal creeks and was inundated frequently, developed to levels similar to the natural marsh (750 to 1,300 g/m2) within three years after creation. Spartina cynosuroides, which dominated interior areas of the marsh and was flooded less frequently, required 9 years to consistently achieve aboveground biomass equivalent to the natural marsh (600 to 1,560 g/m2). Aboveground biomass of Spartina patens, which was planted at the highest elevations along the terrestrial margin and seldom flooded, never consistently developed aboveground biomass comparable with the natural marsh during the 15 years after marsh creation. MOM (0 to 10 cm) generally developed at the same rate as aboveground biomass. Between 1988 and 1998, soil bulk density decreased and porosity and organic C and N pools increased in the created marsh. Like vegetation, wetland soil development proceeded faster in response to increased inundation, especially in the streamside zone dominated by S. alterniflora. We estimated that in the streamside and interior zones, an additional 30 years (nitrogen) to 90 years (organic C, porosity) are needed for the upper 30 cm of created marsh soil to become equivalent to the natural marsh. Wetland soil characteristics of the S. patens community along upland fringe will take longer to develop, more than 200 years. Development of the benthic invertebrate‐based food web, which depends on organic matter enrichment of the upper 5 to 10 cm of soil, is expected to take less time. Wetland soil characteristics and functions of created irregularly flooded brackish marshes require longer to develop compared with regularly flooded salt marshes because reduced tidal inundation slows wetland vegetation and soil development. The hydrologic regime (regularly vs. irregularly flooded) of the “target” wetland should be considered when setting realistic expectations for success criteria of created and restored wetlands.  相似文献   

17.
Mangroves are among the world's most carbon‐dense ecosystems, but they are threatened by rapid climate change and rising sea levels. The accumulation and decomposition of soil organic matter (SOM) are closely tied to mangroves' carbon sink functions and resistance to rising sea levels. However, few studies have investigated the response of mangrove SOM dynamics to likely future environmental conditions. We quantified how mangrove SOM decay is affected by predicted global warming (+4°C), sea level changes (simulated by altering of the inundation duration to 0, 2, and 6 hr/day), and their interaction. Whilst changes in inundation duration between 2 and 6 hr/day did not affect SOM decay, the treatment without inundation led to a 60% increase. A warming of 4°C caused SOM decay to increase by 21%, but longer inundation moderated this temperature‐driven increase. Our results indicate that (a) sea level rise is unlikely to decrease the SOM decay rate, suggesting that previous mangrove elevation gain, which has allowed mangroves to persist in areas of sea level rise, might result from changes in root production and/or mineral sedimentation; (b) sea level fall events, predicted to double in frequency and area, will cause periods of intensified SOM decay; (c) changing tidal regimes in mangroves due to sea level rise might attenuate increases in SOM decay caused by global warming. Our results have important implications for forecasting mangrove carbon dynamics and the persistence of mangroves and other coastal wetlands under future scenarios of climate change.  相似文献   

18.
Modeling Habitat Change in Salt Marshes After Tidal Restoration   总被引:4,自引:0,他引:4  
Salt marshes continue to degrade in the United States due to indirect human impacts arising from tidal restrictions. Roads or berms with inadequate provision for tidal flow hinder ecosystem functions and interfere with self‐maintenance of habitat, because interactions among vegetation, soil, and hydrology within tidally restricted marshes prevent them from responding to sea level rise. Prediction of the tidal range that is expected after restoration relative to the current geomorphology is crucial for successful restoration of salt marsh habitat. Both insufficient (due to restriction) and excessive (due to subsidence and sea level rise) tidal flooding can lead to loss of salt marshes. We developed and applied the Marsh Response to Hydrological Modifications model as a predictive tool to forecast the success of management scenarios for restoring full tides to previously restricted areas. We present an overview of a computer simulation tool that evaluates potential culvert installations with output of expected tidal ranges, water discharges, and flood potentials. For three New England tidal marshes we show species distributions of plants for tidally restricted and nonrestricted areas. Elevation ranges of species are used for short‐term (<5 years) predictions of changes to salt marsh habitat after tidal restoration. In addition, elevation changes of the marsh substrate measured at these sites are extrapolated to predict long‐term (>5 years) changes in marsh geomorphology under restored tidal regimes. The resultant tidal regime should be designed to provide habitat requirements for salt marsh plants. At sites with substantial elevation losses a balance must be struck that stimulates elevation increases by improving sediment fluxes into marshes while establishing flooding regimes appropriate to sustain the desired plants.  相似文献   

19.
Chen Y  Wen Y  Cheng J  Xue C  Yang D  Zhou Q 《Bioresource technology》2011,102(3):2433-2440
Dissolved oxygen (DO) concentrations have often been shown to be important to decomposition rates of plant litter and thus may be a key factor in determining the supply of dissolved organic carbon (DOC) and carbon-dependent denitrification in wetlands. During the 2 months operation, DOC accumulation in anaerobic condition was superior to aerobic condition due to higher activities of hydrolase enzymes and lower hydrolysates converted to gaseous C. Also, much higher denitrification rates were observed in wetland when using anaerobic litter leachate as the carbon source, and the available carbon source (ACS) could be used as a good predictor of denitrification rate in wetland. According to the results of this study, extracellular enzymes activities (EEAs) in wetland would change as a short-term consequence of DO. This may alter balance of litter carbon flux and the characteristics of DOC, which may, in turn, have multiple effects on denitrification in wetlands.  相似文献   

20.
Permafrost thaw in the Arctic driven by climate change is mobilizing ancient terrigenous organic carbon (OC) into fluvial networks. Understanding the controls on metabolism of this OC is imperative for assessing its role with respect to climate feedbacks. In this study, we examined the effect of inorganic nutrient supply and dissolved organic matter (DOM) composition on aquatic extracellular enzyme activities (EEAs) in waters draining the Kolyma River Basin (Siberia), including permafrost‐derived OC. Reducing the phenolic content of the DOM pool resulted in dramatic increases in hydrolase EEAs (e.g., phosphatase activity increased >28‐fold) supporting the idea that high concentrations of polyphenolic compounds in DOM (e.g., plant structural tissues) inhibit enzyme synthesis or activity, limiting OC degradation. EEAs were significantly more responsive to inorganic nutrient additions only after phenolic inhibition was experimentally removed. In controlled mixtures of modern OC and thawed permafrost endmember OC sources, respiration rates per unit dissolved OC were 1.3–1.6 times higher in waters containing ancient carbon, suggesting that permafrost‐derived OC was more available for microbial mineralization. In addition, waters containing ancient permafrost‐derived OC supported elevated phosphatase and glucosidase activities. Based on these combined results, we propose that both composition and nutrient availability regulate DOM metabolism in Arctic aquatic ecosystems. Our empirical findings are incorporated into a mechanistic conceptual model highlighting two key enzymatic processes in the mineralization of riverine OM: (i) the role of phenol oxidase activity in reducing inhibitory phenolic compounds and (ii) the role of phosphatase in mobilizing organic P. Permafrost‐derived DOM degradation was less constrained by this initial ‘phenolic‐OM’ inhibition; thus, informing reports of high biological availability of ancient, permafrost‐derived DOM with clear ramifications for its metabolism in fluvial networks and feedbacks to climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号