首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Empirical demonstrations of feedbacks between ecology and evolution are rare. Here, we used a field experiment to test the hypothesis that avian predators impose density-dependent selection (DDS) on Timema cristinae stick insects. We transplanted wild-caught T. cristinae to wild bushes at 50 : 50 cryptic : conspicuous morph ratio and manipulated density by transplanting either 24 or 48 individuals. The frequency of the conspicuous morph was reduced by 73% in the low-density treatment, but only by 50% in the high-density treatment, supporting a hypothesis of negative DDS. Coupled with previous studies on T. cristinae, which demonstrate that maladaptive gene flow reduces population density, we support an eco-evolutionary feedback loop in this system. Furthermore, our results support the hypothesis that predator satiation is the mechanism driving DDS. We found no effects of T. cristinae density on the abundance or species richness of other arthropods. Eco-evolutionary feedbacks, driven by processes like DDS, can have implications for adaptive divergence and speciation.  相似文献   

2.
Individual heterogeneity in life history shapes eco‐evolutionary processes, and unobserved heterogeneity can affect demographic outputs characterising life history and population dynamical properties. Demographic frameworks like matrix models or integral projection models represent powerful approaches to disentangle mechanisms linking individual life histories and population‐level processes. Recent developments have provided important steps towards their application to study eco‐evolutionary dynamics, but so far individual heterogeneity has largely been ignored. Here, we present a general demographic framework that incorporates individual heterogeneity in a flexible way, by separating static and dynamic traits (discrete or continuous). First, we apply the framework to derive the consequences of ignoring heterogeneity for a range of widely used demographic outputs. A general conclusion is that besides the long‐term growth rate lambda, all parameters can be affected. Second, we discuss how the framework can help advance current demographic models of eco‐evolutionary dynamics, by incorporating individual heterogeneity. For both applications numerical examples are provided, including an empirical example for pike. For instance, we demonstrate that predicted demographic responses to climate warming can be reversed by increased heritability. We discuss how applications of this demographic framework incorporating individual heterogeneity can help answer key biological questions that require a detailed understanding of eco‐evolutionary dynamics.  相似文献   

3.
The scale‐eating cichlid fish Perissodus microlepis is a textbook example of bilateral asymmetry due to its left or right‐bending heads and of negative frequency‐dependent selection, which is proposed to maintain this stable polymorphism. The mechanisms that underlie this asymmetry remain elusive. Several studies had initially postulated a simple genetic basis for this trait, but this explanation has been questioned, particularly by reports observing a unimodal distribution of mouth shapes. We hypothesize that this unimodal distribution might be due to a combination of genetic and phenotypically plastic components. Here, we expanded on previous work by investigating a formerly identified candidate SNP associated to mouth laterality, documenting inter‐individual variation in feeding preference using stable isotope analyses, and testing their association with mouth asymmetry. Our results suggest that this polymorphism is influenced by both a polygenic basis and inter‐individual non‐genetic variation, possibly due to feeding experience, individual specialization, and intraspecific competition. We introduce a hypothesis potentially explaining the simultaneous maintenance of left, right, asymmetric and symmetric mouth phenotypes due to the interaction between diverse eco‐evolutionary dynamics including niche construction and balancing selection. Future studies will have to further tease apart the relative contribution of genetic and environmental factors and their interactions in an integrated fashion.  相似文献   

4.
5.
In the face of rapid anthropogenic environmental change, it is increasingly important to understand how ecological and evolutionary interactions affect the persistence of natural populations. Augmented gene flow has emerged as a potentially effective management strategy to counteract negative consequences of genetic drift and inbreeding depression in small and isolated populations. However, questions remain about the long‐term impacts of augmented gene flow and whether changes in individual and population fitness are reflected in ecosystem structure, potentiating eco‐evolutionary feedbacks. In this study, we used Trinidadian guppies (Poecilia reticulata) in experimental outdoor mesocosms to assess how populations with different recent evolutionary histories responded to a scenario of severe population size reduction followed by expansion in a high‐quality environment. We also investigated how variation in evolutionary history of the focal species affected ecosystem dynamics. We found that evolutionary history (i.e., gene flow vs. no gene flow) consistently predicted variation in individual growth. In addition, gene flow led to faster population growth in populations from one of the two drainages, but did not have measurable impacts on the ecosystem variables we measured: zooplankton density, algal growth, and decomposition rates. Our results suggest that benefits of gene flow may be long‐term and environment‐dependent. Although small in replication and duration, our study highlights the importance of eco‐evolutionary interactions in determining population persistence and sets the stage for future work in this area.  相似文献   

6.
Recent recognition that ecological and evolutionary processes can operate on similar timescales has led to a rapid increase in theoretical and empirical studies on eco‐evolutionary dynamics. Progress in the fields of evolutionary biology, genomics and ecology is greatly enhancing our understanding of rapid adaptive processes, the predictability of adaptation and the genetics of ecologically important traits. However, progress in these fields has proceeded largely independently of one another. In an attempt to better integrate these fields, the centre for ‘Adaptation to a Changing Environment’ organized a conference entitled ‘The genomic basis of eco‐evolutionary change’ and brought together experts in ecological genomics and eco‐evolutionary dynamics. In this review, we use the work of the invited speakers to summarize eco‐evolutionary dynamics and discuss how they are relevant for understanding and predicting responses to contemporary environmental change. Then, we show how recent advances in genomics are contributing to our understanding of eco‐evolutionary dynamics. Finally, we highlight the gaps in our understanding of eco‐evolutionary dynamics and recommend future avenues of research in eco‐evolutionary dynamics.  相似文献   

7.
Theory predicts that dispersal throughout metapopulations has a variety of consequences for the abundance and distribution of species. Immigration is predicted to increase abundance and habitat patch occupancy, but gene flow can have both positive and negative demographic consequences. Here, we address the eco‐evolutionary effects of dispersal in a wild metapopulation of the stick insect Timema cristinae, which exhibits variable degrees of local adaptation throughout a heterogeneous habitat patch network of two host‐plant species. To disentangle the ecological and evolutionary contributions of dispersal to habitat patch occupancy and abundance, we contrasted the effects of connectivity to populations inhabiting conspecific host plants and those inhabiting the alternate host plant. Both types of connectivity should increase patch occupancy and abundance through increased immigration and sharing of beneficial alleles through gene flow. However, connectivity to populations inhabiting the alternate host‐plant species may uniquely cause maladaptive gene flow that counters the positive demographic effects of immigration. Supporting these predictions, we find the relationship between patch occupancy and alternate‐host connectivity to be significantly smaller in slope than the relationship between patch occupancy and conspecific‐host connectivity. Our findings illustrate the ecological and evolutionary roles of dispersal in driving the distribution and abundance of species.  相似文献   

8.
Interest in eco‐evolutionary dynamics is rapidly increasing thanks to ground‐breaking research indicating that evolution can occur rapidly and can alter the outcome of ecological processes. A key challenge in this sub‐discipline is establishing how important the contribution of evolutionary and ecological processes and their interactions are to observed shifts in population and community characteristics. Although a variety of metrics to separate and quantify the effects of evolutionary and ecological contributions to observed trait changes have been used, they often allocate fractions of observed changes to ecology and evolution in different ways. We used a mathematical and numerical comparison of two commonly used frameworks – the Price equation and reaction norms – to reveal that the Price equation cannot partition genetic from non‐genetic trait change within lineages, whereas the reaction norm approach cannot partition among‐ from within‐lineage trait change. We developed a new metric that combines the strengths of both Price‐based and reaction norm metrics, extended all metrics to analyse community change and also incorporated extinction and colonisation of species in these metrics. Depending on whether our new metric is applied to populations or communities, it can correctly separate intraspecific, interspecific, evolutionary, non‐evolutionary and interacting eco‐evolutionary contributions to trait change.  相似文献   

9.
Novel environmental conditions experienced by introduced species can drive rapid evolution of diverse traits. In turn, rapid evolution, both adaptive and non‐adaptive, can influence population size, growth rate, and other important ecological characteristics of populations. In addition, spatial evolutionary processes that arise from a combination of assortative mating between highly dispersive individuals at the expanding edge of populations and altered reproductive rates of those individuals can accelerate expansion speed. Growing experimental evidence shows that the effects of rapid evolution on ecological dynamics can be quite large, and thus it can affect establishment, persistence, and the distribution of populations. We review the experimental and theoretical literature on such eco‐evolutionary feedbacks and evaluate the implications of these processes for biological control. Experiments show that evolving populations can establish at higher rates and grow larger than non‐evolving populations. However, non‐adaptive processes, such as genetic drift and inbreeding depression can also lead to reduced fitness and declines in population size. Spatial evolutionary processes can increase spread rates and change the fitness of individuals at the expansion front. These examples demonstrate the power of eco‐evolutionary dynamics and indicate that evolution is likely more important in biocontrol programs than previously realized. We discuss how this knowledge can be used to enhance efficacy of biological control.  相似文献   

10.
The importance of ‘eco‐evolutionary feedbacks’ in natural systems is currently unclear. Here, we advance a general hypothesis for a particular class of eco‐evolutionary feedbacks with potentially large, long‐lasting impacts in complex ecosystems. These eco‐evolutionary feedbacks involve traits that mediate important interactions with abiotic and biotic features of the environment and a self‐driven reversal of selection as the ecological impact of the trait varies between private (small scale) and public (large scale). Toxic algal blooms may involve such eco‐evolutionary feedbacks due to the emergence of public goods. We review evidence that toxin production by microalgae may yield ‘privatised’ benefits for individual cells or colonies under pre‐ and early‐bloom conditions; however, the large‐scale, ecosystem‐level effects of toxicity associated with bloom states yield benefits that are necessarily ‘public’. Theory predicts that the replacement of private with public goods may reverse selection for toxicity in the absence of higher level selection. Indeed, blooms often harbor significant genetic and functional diversity: bloom populations may undergo genetic differentiation over a scale of days, and even genetically similar lineages may vary widely in toxic potential. Intriguingly, these observations find parallels in terrestrial communities, suggesting that toxic blooms may serve as useful models for eco‐evolutionary dynamics in nature. Eco‐evolutionary feedbacks involving the emergence of a public good may shed new light on the potential for interactions between ecology and evolution to influence the structure and function of entire ecosystems.  相似文献   

11.
The majority of animal species are ontogenetic omnivores, that is, individuals of these species change or expand their diet during life. If small ontogenetic omnivores compete for a shared resource with their future prey, ecological persistence of ontogenetic omnivores can be hindered, although predation by large omnivores facilitates persistence. The coupling of developmental processes between different life stages might lead to a trade‐off between competition early in life and predation later in life, especially for ontogenetic omnivores that lack metamorphosis. By using bioenergetic modeling, we study how such an ontogenetic trade‐off affects ecological and evolutionary dynamics of ontogenetic omnivores. We find that selection toward increasing specialization of one life stage leads to evolutionary suicide of noncannibalistic ontogenetic omnivores, because it leads to a shift toward an alternative community state. Ontogenetic omnivores fail to re‐invade this new state due to the maladaptiveness of the other life stage. Cannibalism stabilizes selection on the ontogenetic trade‐off, prevents evolutionary suicide of ontogenetic omnivores, and promotes coexistence of omnivores with their prey. We outline how ecological and evolutionary persistence of ontogenetic omnivores depends on the type of diet change, cannibalism, and competitive hierarchy between omnivores and their prey.  相似文献   

12.
Extensive sampling and metagenomics analyses of plankton communities across all aquatic environments are beginning to provide insights into the ecology of microbial communities. In particular, the importance of metabolic exchanges that provide a foundation for ecological interactions between microorganisms has emerged as a key factor in forging such communities. Here we show how both studies of environmental samples and physiological experimentation in the laboratory with defined microbial co‐cultures are being used to decipher the metabolic and molecular underpinnings of such exchanges. In addition, we explain how metabolic modelling may be used to conduct investigations in reverse, deducing novel molecular exchanges from analysis of large‐scale data sets, which can identify persistently co‐occurring species. Finally, we consider how knowledge of microbial community ecology can be built into evolutionary theories tailored to these species’ unique lifestyles. We propose a novel model for the evolution of metabolic auxotrophy in microorganisms that arises as a result of symbiosis, termed the Foraging‐to‐Farming hypothesis. The model has testable predictions, fits several known examples of mutualism in the aquatic world, and sheds light on how interactions, which cement dependencies within communities of microorganisms, might be initiated.  相似文献   

13.
Population genetics struggles to model extinction; standard models track the relative rather than absolute fitness of genotypes, while the exceptions describe only the short‐term transition from imminent doom to evolutionary rescue. But extinction can result from failure to adapt not only to catastrophes, but also to a backlog of environmental challenges. We model long‐term adaptation to long series of small challenges, where fitter populations reach higher population sizes. The population's long‐term fitness dynamic is well approximated by a simple stochastic Markov chain model. Long‐term persistence occurs when the rate of adaptation exceeds the rate of environmental deterioration for some genotypes. Long‐term persistence times are consistent with typical fossil species persistence times of several million years. Immediately preceding extinction, fitness declines rapidly, appearing as though a catastrophe disrupted a stably established population, even though gradual evolutionary processes are responsible. New populations go through an establishment phase where, despite being demographically viable, their extinction risk is elevated. Should the population survive long enough, extinction risk later becomes constant over time.  相似文献   

14.
As ecology and evolution become ever more entwined, many areas of ecological theory are being re‐examined. Eco‐evolutionary analyses of classic coexistence mechanisms are yielding new insights into the structure and stability of communities. We examine fluctuation‐dependent coexistence models, identifying communities that are both ecologically and evolutionarily stable. Members of these communities possess distinct environmental preferences, revealing widespread patterns of limiting similarity. This regularity leads to consistent changes in the structure of communities across fluctuation regimes. However, at high amplitudes, subtle differences in the form of fluctuations dramatically affect the collapse of communities. We also show that identical fluctuations can support multiple evolutionarily stable communities – a novel example of alternative stable states within eco‐evolutionary systems. Consequently, the configuration of communities will depend on historical contingencies, including details of the adaptive process. Integrating evolution into the study of coexistence offers new insights, while enriching our understanding of ecology.  相似文献   

15.
16.
Eco‐industrial networks (EINs, of which eco‐industrial parks are a subset) have gained support as a solution that simultaneously reduces environmental burdens and promotes economic interests. EINs operate under a mutualistic framework, where waste materials and energy are exchanged between industries to their mutual benefit, creating a diverse web of flows. Recent studies have focused on analogies between food webs (FWs) and EINs, measuring a network's success at ecological imitation as representative of its sustainability. Studies have focused heavily on the number of links and nodes in a network, but have neglected the economic reality that each investment comes at the opportunity cost of all alternatives. This analysis focuses on the nestedness metric as used by ecologists to address this pivotal facet to the FW‐EIN analogy. Nestedness describes an ecological strategy for the position of links between nodes in a network in a way that maximizes network cycling for a given number of connections. This metric presents many advantages for EIN design and analysis, including maturity independence, size normalization, and a strong statistical record in highly mutualistic ecological systems. Application of nestedness to EINs indicates a lower presence of nested structures and more randomness than what is typically seen in FWs. The industrial networks also display a correlation between high nestedness and internal cycles, suggesting that the reuse of materials and energy in EINs can be improved upon by increasing the nestedness of structures.  相似文献   

17.
Eco‐evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco‐evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco‐evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host–virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade‐off between host resistance and growth then maintained host diversity over time (trade‐off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations.  相似文献   

18.
There persist two widely held but mutually inconsistent views on the evolution of post‐fertile lifespan of human females. The first, prevalent within anthropology, sees post‐fertile lifespan (PFLS) in the light of adaptive processes, focusing on the social and economic habits of humans that selected for a lengthy PFLS. 1 - 3 This view rests on the assumption that human PFLS is distinct from that of other species, and focuses on quantifying the selective causes and consequences of that difference. The second view, prevalent within gerontology and comparative biology, emphasizes that PFLS is a phylogenetically widespread trait 4 - 6 or that human PFLS is predictable based on life‐history allometries. 7 In this view, human PFLS is part of a broad cross‐species pattern and its genesis cannot, therefore, rely on human‐specific traits. Those who advocate the second view have questioned the “special pleading” for human specific explanations of PFLS, 4 and have argued that human PFLS is quantitatively greater but not qualitatively different than PFLS in many other animals. 5 , 8 Papers asking whether human PFLS is explained by the importance of mothers more than grandmothers, whether paternal or maternal grandparents have more of an effect on child survival, or who is providing the excess calories are associated with the first view that assumes the need to explain the existence of human PFLS on the basis of a uniquely human socioecology. Anthropologists largely see human PFLS as derived, while comparative gerontologists point to evidence that it is one instance of a ubiquitous cross‐species pattern. The two groups generally occupy non‐overlapping research circles, in terms of conferences and journals, and therefore interact little enough to largely avoid the need to reconcile their views, allowing the persistence of misconceptions in each field. Our goal is to identify and address the most important of these misconceptions and thereby make clear that both of these seemingly incongruent views contain valid points. We argue that two distinct but related traits have been lumped together under the same concept of “post‐reproductive lifespan,” one (post‐fertile viability) that is tremendously widespread and another (a post‐fertile life stage) that is derived to hominins, and that the differences and connections between these two traits are necessary for understanding human life‐history evolution.  相似文献   

19.
Understanding the consequences of environmental change on ecological and evolutionary dynamics is inherently problematic because of the complex interplay between them. Using invertebrates in microcosms, we characterise phenotypic, population and evolutionary dynamics before, during and after exposure to a novel environment and harvesting over 20 generations. We demonstrate an evolved change in life‐history traits (the age‐ and size‐at‐maturity, and survival to maturity) in response to selection caused by environmental change (wild to laboratory) and to harvesting (juvenile or adult). Life‐history evolution, which drives changes in population growth rate and thus population dynamics, includes an increase in age‐to‐maturity of 76% (from 12.5 to 22 days) in the unharvested populations as they adapt to the new environment. Evolutionary responses to harvesting are outweighed by the response to environmental change (~ 1.4 vs. 4% change in age‐at‐maturity per generation). The adaptive response to environmental change converts a negative population growth trajectory into a positive one: an example of evolutionary rescue.  相似文献   

20.
Understanding the ecological consequences of evolutionary change is a central challenge in contemporary biology. We propose a framework based on the ~25 elements represented in biology, which can serve as a conduit for a general exploration of poorly understood evolution‐to‐ecology links. In this framework, known as ecological stoichiometry, the quantity of elements in the inorganic realm is a fundamental environment, while the flow of elements from the abiotic to the biotic realm is due to the action of genomes, with the unused elements excreted back into the inorganic realm affecting ecological processes at higher levels of organization. Ecological stoichiometry purposefully assumes distinct elemental composition of species, enabling powerful predictions about the ecological functions of species. However, this assumption results in a simplified view of the evolutionary mechanisms underlying diversification in the elemental composition of species. Recent research indicates substantial intraspecific variation in elemental composition and associated ecological functions such as nutrient excretion. We posit that attention to intraspecific variation in elemental composition will facilitate a synthesis of stoichiometric information in light of population genetics theory for a rigorous exploration of the ecological consequences of evolutionary change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号