Optical imaging is a key modality for observing biological specimen with higher spatial resolution. However, scattering and absorption of light in tissues are inherent barriers in maximizing imaging depth in biological tissues. To achieve this goal, use of light at near‐infrared spectrum can improve the present situation. Here, the capability of saturated two‐photon saturated excitation (TP‐SAX) fluorescence microscopy to image at depths of >2.0 mm, with submicron resolution in transparent mouse brain imaging, is demonstrated. At such depths with scattering‐enlarged point spread function (PSF), we find that TP‐SAX is capable to provide spatial resolution improvement compared to its corresponding TPFM, which is on the other hand already providing a much improved resolution compared with single‐photon confocal fluorescence microscopy. With the capability to further improve spatial resolution at such deep depth with scattering‐enlarged PSF, TP‐SAX can be used for exquisite visualization of delicate cerebral neural structure in the scattering regime with a submicron spatial resolution inside intact mouse brain. 相似文献
Two‐photon microscopy is the tool of choice for fluorescence imaging of deep tissues with high resolution, but can be limited in three‐dimensional acquisition speed and penetration depth. In this work, these issues are addressed by using an acoustic optofluidic lens capable of ultrafast beam shaping on a pixel basis. Driving the lens with different phase profiles enables high‐speed volumetric imaging, or enhanced signal‐to‐background for deeper penetration. Further details can be found in the article by Simonluca Piazza et al. ( e201700050 )
We present one‐ and two‐photon‐absorption fluorescence spectroscopic analysis of biliverdin (BV) chromophore–based single‐domain near‐infrared fluorescent proteins (iRFPs). The results of these studies are used to estimate the internal electric fields acting on BV inside iRFPs and quantify the electric dipole properties of this chromophore, defining the red shift of excitation and emission spectra of BV‐based iRFPs. The iRFP studied in this work is shown to fit well the global diagram of the red‐shift tunability of currently available BV‐based iRFPs as dictated by the quadratic Stark effect, suggesting the existence of the lower bound for the strongest red shifts attainable within this family of fluorescent proteins. The absolute value of the two‐photon absorption (TPA) cross section of a fluorescent calcium sensor based on the studied iRFP is found to be significantly larger than the TPA cross sections of other widely used genetically encodable fluorescent calcium sensors. 相似文献
In vivo microscopy has recently become a gold standard in lung immunology studies involving small animals, largely benefiting from the democratization of multiphoton microscopy allowing for deep tissue imaging. This technology represents currently our only way of exploring the lungs and inferring what happens in human respiratory medicine. The interest of lung in vivo microscopy essentially relies upon its relevance as a study model, fulfilling physiological requirements in comparison with in vitro and ex vivo experiments. However, strategies developed in order to overcome movements of the thorax caused by breathing and heartbeats remain the chief drawback of the technique and a major source of invasiveness. In this context, minimizing invasiveness is an unavoidable prerequisite for any improvement of lung in vivo microscopy. This review puts into perspective the main techniques enabling lung in vivo microscopy, providing pros and cons regarding invasiveness.
Intravital imaging has emerged as a novel and efficient tool for visualization of in situ dynamics of cellular behaviors and cell‐microenvironment interactions in live animals, based on desirable microscopy techniques featuring high resolutions, deep imaging and low phototoxicity. Intravital imaging, especially based on multi‐photon microscopy, has been used in bone research for dynamics visualization of a variety of physiological and pathological events at the cellular level, such as bone remodeling, hematopoiesis, immune responses and cancer development, thus, providing guidance for elucidating novel cellular mechanisms in bone biology as well as guidance for new therapies. This review is aimed at interpreting development and advantages of intravital imaging in bone research, and related representative discoveries concerning bone matrices, vessels, and various cells types involved in bone physiologies and pathologies. Finally, current limitations, further refinement, and extended application of intravital imaging in bone research are concluded. 相似文献
We present experiments on cell cultures and brain slices that demonstrate two-photon optogenetic pH sensing and pH-resolved brain imaging using a laser driver whose spectrum is carefully tailored to provide the maximum contrast of a ratiometric two-photon fluorescence readout from a high-brightness genetically encoded yellow-fluorescent-protein-based sensor, SypHer3s. Two spectrally isolated components of this laser field are set to induce two-photon-excited fluorescence (2PEF) by driving SypHer3s through one of two excitation pathways—via either the protonated or deprotonated states of its chromophore. With the spectrum of the laser field accurately adjusted for a maximum contrast of these two 2PEF signals, the ratio of their intensities is shown to provide a remarkably broad dynamic range for pH measurements, enabling high-contrast optogenetic deep-brain pH sensing and pH-resolved 2PEF imaging within a vast class of biological systems, ranging from cell cultures to the living brain. 相似文献
Dynamic intravital imaging is essential for revealing ongoing biological phenomena within living organisms and is influenced primarily by several factors: motion artifacts, optical properties and spatial resolution. Conventional imaging quality within a volume, however, is degraded by involuntary movements and trades off between the imaged volume, imaging speed and quality. To balance such trade‐offs incurred by two‐photon excitation microscopy during intravital imaging, we developed a unique combination of interlaced scanning and a simple image restoration algorithm based on biological signal sparsity and a graph Laplacian matrix. This method increases the scanning speed by a factor of four for a field size of 212 μm × 106 μm × 130 μm, and significantly improves the quality of four‐dimensional dynamic volumetric data by preventing irregular artifacts due to the movement observed with conventional methods. Our data suggest this method is robust enough to be applied to multiple types of soft tissue. 相似文献
Stroke is a significant cause of morbidity and long‐term disability globally. Detection of injured neuron is a prerequisite for defining the degree of focal ischemic brain injury, which can be used to guide further therapy. Here, we demonstrate the capability of two‐photon microscopy (TPM) to label‐freely identify injured neurons on unstained thin section and fresh tissue of rat cerebral ischemia‐reperfusion model, revealing definite diagnostic features compared with conventional staining images. Moreover, a deep learning model based on convolutional neural network is developed to automatically detect the location of injured neurons on TPM images. We then apply deep learning‐assisted TPM to evaluate the ischemic regions based on tissue edema, two‐photon excited fluorescence signal intensity, as well as neuronal injury, presenting a novel manner for identifying the infarct core, peri‐infarct area, and remote area. These results propose an automated and label‐free method that could provide supplementary information to augment the diagnostic accuracy, as well as hold the potential to be used as an intravital diagnostic tool for evaluating the effectiveness of drug interventions and predicting potential therapeutics. 相似文献
Optical coupling between a single, individually addressable neuron and a properly designed optical fiber is demonstrated. Two‐photon imaging is shown to enable a quantitative in situ analysis of such fiber–single‐neuron coupling in the live brain of transgenic mice. Fiber‐optic interrogation of single pyramidal neurons in mouse brain cortex is performed with the positioning of the fiber probe relative to the neuron accurately mapped by means of two‐photon imaging. These results pave the way for fiber‐optic interfaces to single neurons for a stimulation and interrogation of individually addressable brain cells in chronic in vivo studies on freely behaving transgenic animal models, as well as the integration of fiber‐optic single‐neuron stimulation into the optical imaging framework.
Dendritic spines arise as small protrusions from the dendritic shaft of various types of neuron and receive inputs from excitatory axons. Ever since dendritic spines were first described in the nineteenth century, questions about their function have spawned many hypotheses. In this review, we introduce understanding of the structural and biochemical properties of dendritic spines with emphasis on components studied with imaging methods. We then explore advances in in vivo imaging methods that are allowing spine activity to be studied in living tissue, from super-resolution techniques to calcium imaging. Finally, we review studies on spine structure and function in vivo. These new results shed light on the development, integration properties and plasticity of spines. 相似文献
For brain computer interfaces (BCI), the immune response to implanted electrodes is a major biological cause of device failure. Bioactive coatings such as neural adhesion molecule L1 have been shown to improve the biocompatibility, but are difficult to handle or produce in batches. Here, a synthetic zwitterionic polymer coating, poly(sulfobetaine methacrylate) (PSBMA) is developed for neural implants with the goal of reducing the inflammatory host response. In tests in vitro, the zwitterionic coating inhibits protein adsorption and the attachment of fibroblasts and microglia, and remains stable for at least 4 weeks. In vivo two‐photon microscopy on CX3CR1‐GFP mice shows that the zwitterionic coating significantly suppresses the microglial encapsulation of neural microelectrodes over a 6 h observation period. Furthermore, the lower microglial encapsulation on zwitterionic polymer‐coated microelectrodes is revealed to originate from a reduction in the size but not the number of microglial end feet. This work provides a facile method for coating neural implants with zwitterionic polymers and illustrates the initial interaction between microglia and coated surface at high temporal and spatial resolution. 相似文献
In this study, we describe an experimental system based on intravital two-photon microscopy for studying endocytosis in live animals. The rodent submandibular glands were chosen as model organs because they can be exposed easily, imaged without compromising their function and, furthermore, they are amenable to pharmacological and genetic manipulations. We show that the fibroblasts within the stroma of the glands readily internalize systemically injected molecules such as fluorescently conjugated dextran and BSA, providing a robust model to study endocytosis. We dynamically image the trafficking of these probes from the early endosomes to the late endosomes and lysosomes while also visualizing homotypic fusion events between early endosomes. Finally, we demonstrate that pharmacological agents can be delivered specifically to the submandibular salivary glands, thus providing a powerful tool to study the molecular machinery regulating endocytosis in a physiological context. 相似文献