首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Abstract Natural adhesive systems are adapted to attach to rough surfaces, but the underlying mechanisms have not been fully clarified. Attachment forces for the beetle Gastrophysa viridula were recorded on epoxy casts of surfaces with different roughness using a centrifuge device. Replicas were made of standardized polishing paper with asperity sizes ranging from 0.05 to 30 μm and of dock leaves (Rumex obtusifolius). Beetles adhered with a safety factor of up to 36 times body weight on smooth substrates or on casts of leaves of their host plant. On the rough substrates, forces were much lower and a minimum at small scale roughness (0.05 μm asperity size, with a mean safety factor of 5) was observed. Removal of the claws led to a significant reduction in force for rough substrates with asperity sizes ≥ 12 μm. Attachment forces of the hairy adhesive system itself (without the claws) slightly increased from small‐scale to large‐scale surface roughness, but remained below the level seen on the smooth substrate. This is explained by the inability of setal tips to make full contact to the surface.  相似文献   

2.
Lizards commonly climb in complex three-dimensional habitats, and gekkotans are particularly adept at doing this by using an intricate adhesive system involving setae on the ventral surface of their digits. However, it is not clear whether geckos always deploy their adhesive system, given that doing so may result in decreased (i.e. reduction in speed) locomotor performance. Here, we investigate circumstances under which the adhesive apparatus of clinging geckos becomes operative, and examine the potential trade-offs between speed and clinging. We quantify locomotor kinematics of a gecko with adhesive capabilities (Tarentola mauritanica) and one without (Eublepharis macularius). Whereas, somewhat unusually, E. macularius did not suffer a decrease in locomotor performance with an increase in incline, T. mauritanica exhibited a significant decrease in speed between the level and a 10° incline. We demonstrate that this results from the combined influence of slope and the deployment of the adhesive system. All individuals kept their digits hyperextended on the level, but three of the six individuals deployed their adhesive system on the 10° incline, and they exhibited the greatest decrease in velocity. The deployment of the adhesive system was dependent on incline, not surface texture (600 grit sandpaper and Plexiglas), despite slippage occurring on the level Plexiglas substrate. Our results highlight the type of sensory feedback (gravity) necessary for deployment of the adhesive system, and the trade-offs associated with adhesion.  相似文献   

3.
Understanding the effects of water temperature on the swimming performance of fishes is central in understanding how fish species will respond to global climate change. Metabolic cost of transport (COT)-a measure of the energy required to swim a given distance-is a key performance parameter linked to many aspects of fish life history. We develop a quantitative model to predict the effect of water temperature on COT. The model facilitates comparisons among species that differ in body size by incorporating the body mass-dependence of COT. Data from 22 fish species support the temperature and mass dependencies of COT predicted by our model, and demonstrate that modest differences in water temperature can result in substantial differences in the energetic cost of swimming.  相似文献   

4.
Geckos with subdigital adhesive pads can scale smooth vertical surfaces in defiance of gravity. The deployment of the adhesive system is activated by the musculoskeletal system during active traverses of such surfaces, but adhesion on such substrata can also be achieved by passive means, with the body weight of the gecko applying tensile loading to the adhesive setae, maintaining prolonged, static contact with the surface. To investigate whether passively induced adhesion is employed by geckos holding station on smooth vertical surfaces, we investigated the magnitude of shear force generation for the manus and pes, and the positioning of the limb segments and digits in Chondrodactylus bibronii in freely selected resting postures (head‐up, head‐down and facing laterally to the left and right). Our results indicate that different subsets of digits occupy positions consistent with them being passively loaded in different body orientations. Limb segment and digit orientation are consistent within, and differ between, the resting postures, and relatively few of the 20 digits are positioned to take advantage of gravitationally induced loading in any posture. The pedal digits have greater adhesive potential than the manual ones and, more frequently, capitalize on passive loading than do manual digits. This is especially evident in the commonly adopted head‐down resting posture.  相似文献   

5.
Catarrhine symphyseal morphology displays considerable variation. Although this has been related to dentition, phylogeny, sexual dimorphism, and facial orientation, most emphasis has been given to the functional significance of the symphysis to mechanical loading during mastication. The current state of knowledge regarding the mechanical significance of the symphysis is based on a combination of in vivo experimental and comparative studies on Macaca fascicularis. These approaches have provided considerable insight into the stereotypical patterns of loading in the symphyseal region during chewing and hypotheses related to the associated symphyseal morphologies. Finite element analysis (FEA) was used to assess how in silico manipulation translates into the mechanical loading hypotheses previously proposed experimentally. In particular, this study tests the form-function relationship of the symphysis of an adult M. fascicularis mandible during lateral transverse bending and dorsoventral shear of the mandibular symphysis, and a series of modified hypothetical morphologies including absence/presence of tori and variation in the inclination and depth of the symphysis. FEA results of this study support previous findings that stresses associated with lateral transverse bending and dorsoventral shear of the mandibular symphysis can be minimized via an increased labio-lingual thickness in the superior transverse torus, an oblique symphyseal inclination, and/or an increased symphyseal depth. The finding that reduction of strains related to lateral transverse bending and dorsoventral shear can be achieved through a number of different morphologies contributes to our understanding of the influence of morphological and/or developmental constraints, such as dental development, on symphyseal form.  相似文献   

6.
7.
The adhesion of leukocytes to vascular surface is an important biomedical problem and has drawn extensive attention. In this study, we propose a compound drop model to simulate a leukocyte with a nucleus adhering to the surface of blood vessel under steady shear flow. A two-dimensional computational fluid dynamics (CFD) is conducted to determine the local distribution of pressure on the surface of the adherent model cell. By introducing the parameter of deformation index (DI), we investigate the deformation of the leukocyte and its nucleus under controlled conditions. Our numerical results show that: (i) the leukocyte is capable of deformation under external exposed flow field. The deformation index increases with initial contact angle and Reynolds number of external exposed flow. (ii) The nucleus deforms with the cell, and the deformation index of the leukocyte is greater than that of the nucleus. The leukocyte is more deformable while the nucleus is more capable of resisting external shear flow. (iii) The leukocyte and the nucleus are not able to deform infinitely with the increase of Reynolds number because the deformation index reaches a maximum. (iv) Pressure distribution confirms that there exists a region downstream of the cell, which produces high pressure to retard continuous deformation and provide a positive lift force on the cell. Meanwhile, we have measured the deformation of human leukocytes exposed to shear flow by using a flow chamber system. We found that the numerical results are well consistent with those of experiment. We conclude that the nucleus with high viscosity plays a particular role in leukocyte deformation.  相似文献   

8.
9.
The central tenet of ecomorphological theory holds that different ecological requirements lead to different organismal designs (morphology). Here, we studied the relationships between performance (interlocking grasping) and forelimb morphological traits in species of lizards that exploit different structural habitats in a phylogenetic context. The performance (measured by the maximum force of clinging to substrate) was measured on different substrate types. After phylogenetically informed analyses, we found that arboreal and saxicolous species showed stronger resistance to mechanical traction in all substrates when compared to generalists and sand dweller lizards. These species showed a positive relationship between forelimb dimensions (humerus length and length of claw of toe 5) and maximum force exerted, on the contrary, hand width, claw height (CH) of digits III and IV and claw length of toe 4 showed a negative relationship. In addition, we observed a partial positive correlation between CH and maximal cling force on rough surfaces, but not on smooth surfaces.  相似文献   

10.
A central issue in evolutionary biology concerns whether morphology, performance and habitat use have coevolved. We investigated evolutionary relationships among the size of the subdigital toepad, clinging ability and perch height in 12 species of Caribbean Anolis lizard. Specifically, we predicted that: (1) because larger anole species tend to perch high in the canopy, both toepad area and clinging ability should scale with positive allometry to enable small and large lizards to possess approximately similar ratios of both variables relative to mass; (2) anole species with relatively larger toepads (i.e. size-adjusted) should be relatively better clingers compared with species with relatively small toepads; (3) species that perch high in the canopy should possess relatively large clinging abilities (either on an absolute or a size-adjusted basis). Our first hypothesis was refuted, as both toepad area and clinging ability scaled close to isometry (0.67) relative to mass, indicating that large lizard species have low ratios of clinging ability to mass compared with small lizard species. However, our second and third predictions were confirmed. Anole species with relatively larger toepads were relatively better clingers compared with species with relatively smaller toepads. Anole species that perched high in the canopy (either on an absolute scale or relative to size) tended to have relatively larger toepads and greater clinging capacities compared with species that perched lower in the canopy. These data provide indirect comparative evidence that the evolution of increased toepad size in some anole species is adaptive, by facilitating the occupation of perches high in the canopy.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 389–398.  相似文献   

11.
Two-dimensional simulation of trabecular surface remodeling was conducted for a human proximal femur to investigate the structural change of cancellous bone toward a uniform stress state. Considering that a local mechanical stimulus plays an important role in cellular activities in bone remodeling, local stress nonuniformity was assumed to drive trabecular structural change to seek a uniform stress state. A large-scale pixel-based finite element model was used to simulate structural changes of individual trabeculae over the entire bone. As a result, the initial structure of trabeculae changed from isotropic to anisotropic due to trabecular microstructural changes caused by surface remodeling according to the mechanical environment in the proximal femur. Under a single-loading condition, it was shown that the apparent structural property evaluated by fabric ellipses corresponded to the apparent stress state in cancellous bone. As is observed in the actual bone, a distributed trabecular structure was obtained under a multiple-loading condition. Through these studies, it was concluded that trabecular surface remodeling toward a local uniform stress state at the trabecular level could naturally bring about functional adaptation phenomenon at the apparent tissue level. The proposed simulation model would be capable of providing insight into the hierarchical mechanism of trabecular surface remodeling at the microstructural level up to the apparent tissue level.  相似文献   

12.
Knowledge of elastic properties and of their variation in the cortical bone of the craniofacial skeleton is indispensable for creating accurate finite-element models to explore the biomechanics and adaptation of the skull in primates. In this study, we measured elastic properties of the external cortex of the rhesus monkey craniofacial skeleton, using an ultrasonic technique. Twenty-eight cylindrical cortical specimens were removed from each of six craniofacial skeletons of adult Macaca mulatta. Thickness, density, and a set of longitudinal and transverse ultrasonic velocities were measured on each specimen to allow calculation of the elastic properties in three dimensions, according to equations derived from Newton's second law and Hooke's law. The axes of maximum stiffness were determined by fitting longitudinal velocities measured along the perimeter of each cortical specimen to a sinusoidal function. Results showed significant differences in elastic properties between different functional areas of the rhesus cranium, and that many sites have a consistent orientation of maximum stiffness among specimens. Overall, the cortical bones of the rhesus monkey skull can be modeled as orthotropic in many regions, and as transversely isotropic in some regions, e.g., the supraorbital region. There are differences from human crania, suggesting that structural differences in skeletal form relate to differences in cortical material properties across species. These differences also suggest that we require more comparative data on elastic properties in primate craniofacial skeletons to explore effectively the functional significance of these differences, especially when these differences are elucidated through modeling approaches, such as finite-element modeling.  相似文献   

13.
Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole, Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration and RNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments.  相似文献   

14.
1. Experimental data on the maximum growth and food consumption of winter‐acclimatised Atlantic salmon (Salmo salar) juveniles from three Norwegian rivers situated at 59 and 70°N were compared with predictions from published models of growth and food consumption of summer‐acclimatised fish from the same populations. 2. All winter‐acclimatised fish maintained positive growth and a substantial energy intake over the whole range of experimental temperature (1–6 °C). This contrasted with predictions from growth models based on summer acclimatised Atlantic salmon, where growth and energy intake ceased at approximately 5 °C. 3. Growth and food consumption varied significantly among populations. Winter‐acclimatised fish from a Northern population had a higher mass‐specific growth rate, higher energy intake and higher growth efficiency than southern populations, which is contrary to predictions from models developed using summer‐acclimatised salmon, where fish from the Northern population had the lowest growth efficiency. 4. The experiment provides evidence that thermal performance varies seasonally and suggests adaptation to the annual thermal regime.  相似文献   

15.
Theoretically, individuals whose ancestors evolved in cold and/or dry climates should have greater nasal mucosal surface area relative to air volume of the nasal passages than individuals whose ancestors evolved in warm, humid climates. A high surface-area-to-volume (SA/V) ratio allows relatively more air to come in contact with the mucosa and facilitates more efficient heat and moisture exchange during inspiration and expiration, which would be adaptive in a cold, dry environment. Conversely, a low SA/V ratio is not as efficient at recapturing heat and moisture during expiration and allows for better heat dissipation, which would be adaptive in a warm, humid environment. To test this hypothesis, cross-sectional measurements of the nasal passages that reflect surface area and volume were collected from a sample of CT scans of patients of European and African ancestry. Results indicate that individuals of European descent do have higher SA/V ratios than individuals of African descent, but only when decongested. Otherwise, the two groups show little difference. This pattern of variation may be due to selection for different SA/V configurations during times of physical exertion, which has been shown to elicit decongestion. Relationships between linear measurements of the skeletal nasal aperture and cavity and cross-sectional dimensions were also examined. Contrary to predictions, the nasal index, the ratio of nasal breadth to nasal height, is not strongly correlated with internal dimensions. However, differences between the nasal indices of the two groups are highly significant. These results may be indicative of different adaptive solutions to the same problem.  相似文献   

16.
Many evolutionary ecological studies have documented sexual dimorphism in morphology or behaviour. However, to what extent a sex-specific morphology is used differently to realize a certain level of behavioural performance is only rarely tested. We experimentally quantified flight performance and wing kinematics (wing beat frequency and wing stroke amplitude) and flight morphology (thorax mass, body mass, forewing aspect ratio, and distance to centre of forewing area) in the butterfly Pararge aegeria (L.) using a tethered tarsal reflex induced flight set-up under laboratory conditions. On average, females showed higher flight performance than males, but frequency and amplitude did not differ. In both sexes, higher flight performance was partly determined by wing beat frequency but not by wing stroke amplitude. Dry body mass, thorax mass, and distance to centre of forewing area were negatively related to wing beat frequency. The relationship between aspect ratio and wing stroke amplitude was sex-specific: females with narrower wings produced higher amplitude whereas males show the opposite pattern. The results are discussed in relation to sexual differences in flight behaviour.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 675–687.  相似文献   

17.
Four genetically distinct stocks of age 2+ years largemouth bass Micropterus salmoides were produced using adults collected from two regions in the upper midwest (central Illinois, IL and south-eastern Wisconsin, WI, U.S.A.). Two pure stocks (IL × IL and WI × WI), as well as both of their reciprocal F1 interstock hybrids (IL × WI and WI × IL) were produced in research ponds in Champaign, IL. In general, swimming performance, routine oxygen consumption and activity were highest at 18 × C, intermediate at 12 × C, and lowest at 6. C for all stocks. However, performance indicators varied among stocks at each of the temperatures. The pure Illinois stock (IL × IL) had the lowest activity: cost ratio at 18 × C and the highest at 6_ C (based upon swimming strength, routine activity rates and routine metabolic rates). The opposite pattern was observed for the other pure stock (WI × WI). Although differences were less distinct at lower temperatures, the two pure stocks (IL × IL and WI × WI) outperformed both interstock hybrids. These results indicate that not only do non-native stocks appear to have reduced performance relative to locally adapted stocks, but also that interstock hybrids exhibit performance impairments, not hybrid vigour.  相似文献   

18.
The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or antiinflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural antithrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (< 60 microm) compared with coarse grain NiTi compacts (< 100 microm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features.  相似文献   

19.
AIM: To investigate the influence of antibiotic-induced morphological changes on adhesion and motility abilities and surface properties of nosocomial Pseudomonas aeruginosa under different physiological states. METHODS AND RESULTS: The effects of subinhibitory concentration (sub-MIC) of Piperacillin/Tazobactam (P/T) and Imipenem (IMP) were studied on P. aeruginosa adhesion (1 h) using a modified microtitre-plate assay, on their ability to swim and to twitch, on surface hydrophobicity and on acid-base interactions of P. aeruginosa strains by measuring their ability to adhere to n-hexadecane, chloroform and ethyl acetate, respectively. Our results show that antibiotic-induced morphological changes and bacterial physiological state can affect differently surface properties, motility and adhesion abilities of P. aeruginosa. CONCLUSIONS: Under different physiological states P/T induced morphological changes, reduced motility abilities, decreased adhesion to polystyrene and cell surface hydrophobicity (CSH). Moreover, P/T and IMP led to similar changes in exponential population adhesion to chloroform and ethyl acetate. Additionally, IMP induced morphological changes and showed no differences on CSH, adhesion and motility abilities in both growth phases. SIGNIFICANCE AND IMPACT OF THE STUDY: Adhesion is an attractive target for new antibacterial strategies, namely by using sub-MIC antibiotics that induce morphological, motility and surface properties changes, which are dependent of P. aeruginosa phenotype and physiological state.  相似文献   

20.
In a comparative study of variation in primate skulls, Wood and Lieberman ([ 2001 ] Am. J. Phys. Anthropol. 116:13–25) proposed that a predictable relationship exists between in vivo bone‐strain magnitudes and the extent of morphological variation in skeletal structures. They hypothesized that regions subject to high strains are prone to enhanced levels of variation. Three questions are posed with respect to the plausibility of this hypothesis. First, does the proposed relationship hold at different levels of analysis (e.g., for more restricted anatomical regions in which large strain gradients are present)? Second, is the biomechanical rationale for the hypothesis sound, given the current understanding of bone biology? Third, is the hypothesis obviated by consideration of the functional matrix concept of skull development, in which osseous growth is posited to be governed by surrounding soft tissues (e.g., muscle and tendon) and developing spaces (e.g., the nasal capsule)? The different perspectives explored by these questions suggest that the validity of the hypothesis, despite having a defensible theoretical rationale, is likely to be context‐specific. A direct role for strain magnitude in conditioning morphological variation is difficult to demonstrate either comparatively or theoretically, and it is unlikely that a single strain threshold or interval can be directly associated with elevated variation in the skeleton. The conceptual framework of the functional matrix (which allows for independent growth among different regions of the skull) conceivably contravenes the premise of a uniform relationship of strain magnitude to morphological variability. Am J Phys Anthropol, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号