共查询到20条相似文献,搜索用时 15 毫秒
1.
Jonathan P. Evans Emile van Lieshout Clelia Gasparini 《Proceedings. Biological sciences / The Royal Society》2013,280(1763)
The spectacular variability that typically characterizes male genital traits has largely been attributed to the role of sexual selection. Among the evolutionary mechanisms proposed to account for this diversity, two processes in particular have generated considerable interest. On the one hand, females may exploit postcopulatory mechanisms of selection to favour males with preferred genital traits (cryptic female choice; CFC), while on the other hand females may evolve structures or behaviours that mitigate the direct costs imposed by male genitalia (sexual conflict; SC). A critical but rarely explored assumption underlying both processes is that male and female reproductive traits coevolve, either via the classic Fisherian model of preference-trait coevolution (CFC) or through sexually antagonistic selection (SC). Here, we provide evidence for this prediction in the guppy (Poecilia reticulata), a polyandrous livebearing fish in which males transfer sperm internally to females via consensual and forced matings. Our results from a paternal half-sibling breeding design reveal substantial levels of additive genetic variation underlying male genital size and morphology—two traits known to predict mating success during non-consensual matings. Our subsequent finding that physically interacting female genital traits exhibit corresponding levels of genetic (co)variation reveals the potential intersexual coevolutionary dynamics of male and female genitalia, thereby fulfilling a fundamental assumption underlying CFC and SC theory. 相似文献
2.
Jim Mossman Jon Slate Stuart Humphries Tim Birkhead 《Evolution; international journal of organic evolution》2009,63(10):2730-2737
Sperm morphology (size and shape) and sperm velocity are both positively associated with fertilization success, and are expected to be under strong selection. Until recently, evidence for a link between sperm morphology and velocity was lacking, but recent comparative studies have shown that species with high levels of sperm competition have evolved long and fast sperm. It is therefore surprising that evidence for a phenotypic or genetic relationship between length and velocity within species is equivocal, even though sperm competition is played out in the intraspecific arena. Here, we first show that sperm velocity is positively phenotypically correlated with measures of sperm length in the zebra finch Taeniopygia guttata . Second, by using the quantitative genetic \"animal model\" on a dataset from a multigenerational-pedigreed population, we show that sperm velocity is heritable, and positively genetically correlated to a number of heritable components of sperm length. Therefore, selection for faster sperm will simultaneously lead to the evolution of longer sperm (and vice versa). Our results provide, for the first time, a clear phenotypic and genetic link between sperm length and velocity, which has broad implications for understanding how recently described macroevolutionary patterns in sperm traits have evolved. 相似文献
3.
4.
Aylwyn Scally 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2016,371(1699)
Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities in our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our long-standing model of spermatogenesis. I consider possible explanations for these discrepancies, including evolutionary changes in life-history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and changes in cellular mutation processes at different stages of the germline. I suggest a revised model of stem-cell state transitions during spermatogenesis, in which ‘dark’ gonial stem cells play a more active role than hitherto envisaged, with a long cycle time undetected in experimental observations. More generally, I argue that the mutation rate and its evolution depend intimately on the structure of the germline in humans and other primates.This article is part of the themed issue ‘Dating species divergences using rocks and clocks''. 相似文献
5.
Salinas LS Maldonado E Macías-Silva M Blackwell TK Navarro RE 《Genesis (New York, N.Y. : 2000)》2007,45(9):533-546
Vasa and Belle are conserved DEAD box RNA helicases required for germ cell function. Homologs of this group of proteins in several species, including mammals, are able to complement a mutation in yeast (DED1) suggesting that their function is highly conserved. It has been proposed that these proteins are required for mRNA translation regulation, but their specific mechanism of action is still unknown. Here we describe functions of VBH-1, a C. elegans protein closely related to Belle and Vasa. VBH-1 is expressed specifically in the C. elegans germline, where it is associated with P granules, the C. elegans germ plasm counterpart. vbh-1(RNAi) animals produce fewer offspring than wild type because of defects in oocyte and sperm production, and embryonic lethality. We also find that VBH-1 participates in the sperm/oocyte switch in the hermaphrodite gonad. We conclude that VBH-1 and its orthologs may perform conserved roles in fertility and development. 相似文献
6.
7.
It is widely thought that small populations should have less additive genetic variance and respond less efficiently to natural selection than large populations. Across taxa, we meta‐analytically quantified the relationship between adult census population size (N) and additive genetic variance (proxy: h2) and found no reduction in h2 with decreasing N; surveyed populations ranged from four to one million individuals (1735 h2 estimates, 146 populations, 83 species). In terms of adaptation, ecological conditions may systematically differ between populations of varying N; the magnitude of selection these populations experience may therefore also differ. We thus also meta‐analytically tested whether selection changes with N and found little evidence for systematic differences in the strength, direction or form of selection with N across different trait types and taxa (7344 selection estimates, 172 populations, 80 species). Collectively, our results (i) indirectly suggest that genetic drift neither overwhelms selection more in small than in large natural populations, nor weakens adaptive potential/h2 in small populations, and (ii) imply that natural populations of varying sizes experience a variety of environmental conditions, without consistently differing habitat quality at small N. However, we caution that the data are currently insufficient to determine whether some small populations may retain adaptive potential definitively. Further study is required into (i) selection and genetic variation in completely isolated populations of known N, under‐represented taxonomic groups, and nongeneralist species, (ii) adaptive potential using multidimensional approaches and (iii) the nature of selective pressures for specific traits. 相似文献
8.
Both gamete competition and gamete limitation can generate anisogamy from ancestral isogamy, and both sperm competition (SC) and sperm limitation (SL) can increase sperm numbers. Here, we compare the marginal benefits due to these two components at any given population level of sperm production using the risk and intensity models in sperm economics. We show quite generally for the intensity model (where N males compete for each set of eggs) that however severe the degree of SL, if there is at least one competitor for fertilization (N − 1 ≥ 1), the marginal gains through SC exceed those for SL, provided that the relationship between the probability of fertilization (F) and increasing sperm numbers (x) is a concave function. In the risk model, as fertility F increases from 0 to 1.0, the threshold SC risk (the probability q that two males compete for fertilization) for SC to be the dominant force drops from 1.0 to 0. The gamete competition and gamete limitation theories for the evolution of anisogamy rely on very similar considerations: our results imply that gamete limitation could dominate only if ancestral reproduction took place in highly isolated, small spawning groups. 相似文献
9.
Alina Schenk Saioa Lpez Maik Kschischo Nicholas McGranahan 《Evolutionary Applications》2020,13(7):1550-1557
Precision medicine relies on targeting specific somatic alterations present in a patient's tumor. However, the extent to which germline ancestry may influence the somatic burden of disease has received little attention. We estimated the genetic ancestry of non‐small‐cell lung cancer (NSCLC) patients and performed an in‐depth analysis of the influence of genetic ancestry on the evolutionary disease course. Compared with European Americans (EA), African Americans (AA) with lung adenocarcinoma (LUAD) were found to be significantly younger and smoke significantly less. However, LUADs from AAs exhibited a significantly higher somatic mutation burden, with a more pronounced tobacco carcinogen footprint and increased frequencies of alterations affecting cancer genes. Conversely, no significant differences were observed between lung squamous cell carcinomas (LUSC) from EAs and AAs. Our results suggest germline ancestry influences the somatic evolution of LUAD but not LUSC. 相似文献
10.
Evolutionary theory predicts that selection will favour sperm traits that maximize fertilization success in local fertilization environments. In externally fertilizing species, osmolality of the fertilization medium is known to play a critical role in activating sperm motility, but there remains limited evidence for adaptive responses to local osmotic environments. In this study, we used a split‐sample experimental design and computer‐assisted sperm analysis to (i) determine the optimal medium osmolality for sperm activation (% sperm motility and sperm velocity) in male common eastern froglets (Crinia signifera), (ii) test for among‐population variation in percentage sperm motility and sperm velocity at various activation‐medium osmolalities and (iii) test for among‐population covariation between sperm performance and environmental osmolality. Frogs were obtained from nine populations that differed in environmental osmolality, and sperm samples of males from different populations were subjected to a range of activation‐medium osmolalities. Percentage sperm motility was optimal between 10 and 50 mOsm kg?1, and sperm velocity was optimal between 10 and 100 mOsm kg?1, indicating that C. signifera has evolved sperm that can function across a broad range of osmolalities. As predicted, there was significant among‐population variation in sperm performance. Furthermore, there was a significant interaction between activation‐medium osmolality and environmental osmolality, indicating that frogs from populations with higher environmental osmolality produced sperm that performed better at higher osmolalities in vitro. This finding may reflect phenotypic plasticity in sperm functioning, or genetic divergence resulting from spatial variation in the strength of directional selection. Both of these explanations are consistent with evolutionary theory, providing some of the first empirical evidence that local osmotic environments can favour adaptive sperm motility responses in species that use an external mode of fertilization. 相似文献
11.
Ignacio G. Hermosell Terje Laskemoen Melissah Rowe Anders P. M?ller Timothy A. Mousseau Tomá? Albrecht Jan T. Lifjeld 《Biology letters》2013,9(5)
Interspecific variation in sperm size is enigmatic, but generally assumed to reflect species-specific trade-offs in selection pressures. Among passerine birds, sperm length varies sevenfold, and sperm competition risk seems to drive the evolution of longer sperm. However, little is known about factors favouring short sperm or constraining the evolution of longer sperm. Here, we report a comparative analysis of sperm head abnormalities among 11 species of passerine bird in Chernobyl, presumably resulting from chronic irradiation following the 1986 accident. Frequencies of sperm abnormalities varied between 15.7 and 77.3% among species, more than fourfold higher than in uncontaminated areas. Nonetheless, species ranked similarly in sperm abnormalities in unpolluted areas as in Chernobyl, pointing to intrinsic factors underlying variation in sperm damage among species. Scanning electron microscopy of abnormal spermatozoa revealed patterns of acrosome damage consistent with premature acrosome reaction. Sperm length, but not sperm competition risk explained variation in sperm damage among species. This suggests that longer spermatozoa are more susceptible to premature acrosome reaction. Therefore, we hypothesize a trade-off between sperm length and sperm integrity affecting sperm evolution in passerine birds. 相似文献
12.
Cynthia M. Beall Kingman P. Strohl John Blangero Sarah Williams-Blangero Laura A. Almasy Michael J. Decker Carol M. Worthman Melvyn C. Goldstein Enrique Vargas Mercedes Villena Rudy Soria Ana Maria Alarcon Cristina Gonzales 《American journal of physical anthropology》1997,104(4):427-447
Newcomers acclimatizing to high altitude and adult male Tibetan high altitude natives have increased ventilation relative to sea level natives at sea level. However, Andean and Rocky Mountain high altitude natives have an intermediate level of ventilation lower than that of newcomers and Tibetan high altitude natives although generally higher than that of sea level natives at sea level. Because the reason for the relative hypoventilation of some high altitude native populations was unknown, a study was designed to describe ventilation from adolescence through old age in samples of Tibetan and Andean high altitude natives and to estimate the relative genetic and environmental influences. This paper compares resting ventilation and hypoxic ventilatory response (HVR) of 320 Tibetans 9–82 years of age and 542 Bolivian Aymara 13–94 years of age, native residents at 3,800–4,065 m. Tibetan resting ventilation was roughly 1.5 times higher and Tibetan HVR was roughly double that of Aymara. Greater duration of hypoxia (older age) was not an important source of variation in resting ventilation or HVR in either sample. That is, contrary to previous studies, neither sample acquired hypoventilation in the age ranges under study. Within populations, greater severity of hypoxia (lower percent of oxygen saturation of arterial hemoglobin) was associated with slightly higher resting ventilation among Tibetans and lower resting ventilation and HVR among Aymara women, although the associations accounted for just 2–7% of the variation. Between populations, the Tibetan sample was more hypoxic and had higher resting ventilation and HVR. Other systematic environmental contrasts did not appear to elevate Tibetan or depress Aymara ventilation. There was more intrapopulation genetic variation in these traits in the Tibetan than the Aymara sample. Thirty-five percent of the Tibetan, but none of the Aymara, resting ventilation variance was due to genetic differences among individuals. Thirty-one percent of the Tibetan HVR, but just 21% of the Aymara, HVR variance was due to genetic differences among individuals. Thus there is greater potential for evolutionary change in these traits in the Tibetans. Presently, there are two different ventilation phenotypes among high altitude natives as compared with sea level populations at sea level: lifelong sustained high resting ventilation and a moderate HVR among Tibetans in contrast with a slightly elevated resting ventilation and a low HVR among Aymara. Am J Phys Anthropol 104:427–447, 1997. © 1997 Wiley-Liss, Inc. 相似文献
13.
Sperm length is highly variable, both between and within species, but the evolutionary significance of this variation is poorly understood. Sexual selection on sperm length requires a significant additive genetic variance, but few studies have actually measured this. Here we present the first estimates of narrow sense heritability of sperm length in a social insect, the bumblebee Bombus terrestris. In spite of a balanced and straightforward rearing design of colonies, and the possibility to replicate measurements of sperm within single males nested within colonies, the analysis proved to be complex. Several appropriate statistical models were derived, each depending on different assumptions. The heritability estimates obtained ranged from h 2 = 0.197 ± 0.091 to h 2 = 0.429 ± 0.154. All our estimates were substantially lower than previous estimates of sperm length heritability in non-social insects and vertebrates. 相似文献
14.
Evolutionary responses of herbivores to their host plants depend not only on selection from plants, but also on the genetic basis of traits relating to host use. The genetic basis of such traits has been investigated extensively among terrestrial insect herbivores, but has received almost no attention among marine herbivores. We tested whether performance traits in the herbivorous marine amphipod Peramphithoe parmerong display heritable variation and, for the first time for a marine herbivore, whether selection has resulted in local adaptation to host plants on two spatial scales. Peramphithoe parmerong displayed heritable genetic variation for survival on two host macroalgae, the high-quality Sargassum linearifolium and the poor-quality Padina crassa, and for growth on S. linearifolium. Differences in performance on different hosts thus have the potential to select for differential use of hosts by this amphipod. Despite this potential, there was no evidence among field populations of local adaptation to host algae on either scale tested: between hosts within a site or among sites differing in algal species composition. Within a site, amphipods were not more likely to prefer or perform better on the host on which they were collected. Similarly, amphipods collected from sites in which P. crassa was present were not more likely to perform well on this host than amphipods collected from sites where this alga was not found. Ecological factors that may explain the persistence of P. parmerong on P. crassa and the possibility of phylogenetic constraints on host use by P. parmerong are discussed. 相似文献
15.
Dawn M. Higginson Scott Pitnick 《Biological reviews of the Cambridge Philosophical Society》2011,86(1):249-270
Sperm are often considered to be individuals, in part because of their unique genetic identities produced as a result of synapsis during meiosis, and in part due to their unique ecology, being ejected away from the soma to continue their existence in a foreign environment. Selection at the level of individual sperm has been suggested to explain the evolution of two enigmatic sperm phenotypes: sperm heteromorphism, where more than one type of sperm is produced by a male, and sperm conjugation, where multiple sperm join together for motility and transport through the female reproductive tract before dissociation prior to fertilization. In sperm heteromorphic species, only one of the sperm morphs typically participates in fertilization, with the non‐fertilizing “parasperm” being interpreted as reproductive altruists. Likewise, in species with sperm conjugation, high levels of sperm mortality have been suggested to be required for conjugate break‐up and this has been considered evidence of kin‐selected altruism. However, it is unclear if sperm possess the heritable variation in fitness (i.e. are individuals) required for the evolution of cooperation. We investigate the question of sperm individuality by focusing on how sperm morphology is determined and how sperm conjugates are formed. Concentrating on sperm conjugation, we discuss functional hypotheses for the evolutionary maintenance of this remarkable trait. Additionally, we speculate on the potential origins of sperm heteromorphism and conjugation, and explore the diversification and losses of these traits once they have arisen in a lineage. We find current evidence insufficient to support the concept of sperm control over their form or function. Thus, without additional evidence of haploid selection (i.e. sperm phenotypes that reflect their haploid genome and result in heritable differences in fitness), sperm heteromorphism and conjugation should be interpreted not as cooperation but rather as traits selected at the level of the male, much like other ejaculatory traits such as accessory gland proteins and ejaculate size. 相似文献
16.
Cecilia S. Blengini Naretto Sergio Cardozo Gabriela Laura C. Giojalas Chiaraviglio Margarita 《Ecology and evolution》2014,4(21):4080-4092
In polyandrous species, sperm morphometry and sperm velocity are under strong sexual selection. Although several hypotheses have been proposed to explain the role of sperm competition in sperm trait variation, this aspect is still poorly understood. It has been suggested that an increase in sperm competition pressure could reduce sperm size variation or produce a diversity of sperm to maximize male fertilization success. We aim at elucidating the variability of sperm morphometric traits and velocity in two Tupinambis lizards in the context of sperm competition risk. Sperm traits showed substantial variation at all levels examined: between species, among males within species, and within the ejaculate of individual males. Sperm velocity was found to be positively correlated with flagellum: midpiece ratio, with relatively longer flagella associated with faster sperm. Our results document high variability in sperm form and function in lizards. 相似文献
17.
Evolutionary theory predicts that selection will favor phenotypic plasticity in sperm traits that maximize fertilization success in dynamic fertilization environments. In species with external fertilization, osmolality of the fertilization medium is known to play a critical role in activating sperm motility, but evidence for osmotic‐induced sperm plasticity is limited to euryhaline fish and marine invertebrates. Whether this capacity extends to freshwater taxa remains unknown. Here, we provide the first test for plasticity in sperm‐motility activation in response to osmotic environment in an anuran amphibian. Male common eastern froglets (Crinia signifera) were acclimated to either low (0 mOsmol kg−1) or high (50 mOsmol kg−1) environmental osmolality, and using a split‐sample experimental design, sperm were activated across a range of osmolality treatments (0, 25, 50, 75, 100, and 200 ± 2 mOsmol kg−1). Unexpectedly, there was no detectable shift in the optimal osmolality for sperm‐motility activation after approximately 13 weeks of acclimation (a period reflecting the duration of the winter breeding season). However, in both the low and high acclimation treatments, the optimal osmolality for sperm‐motility activation mirrored the osmolality at the natural breeding site, indicating a phenotypic match to the local environment. Previously it has been shown that C. signifera display among‐population covariation between environmental osmolality and sperm performance. Coupled with this finding, the results of the present study suggest that inter‐population differences reflect genetic divergence and local adaptation. We discuss the need for experimental tests of osmotic‐induced sperm plasticity in more freshwater taxa to better understand the environmental and evolutionary contexts favoring adaptive plasticity in sperm‐motility activation. 相似文献
18.
Kji Sasakawa 《Entomological Science》2020,23(3):338-348
Sperm show marked morphological diversity, but the processes and mechanisms driving this diversity have not been fully elucidated. The beetle family Carabidae represents a potential model system for studying sperm trait evolution. In this study, sperm traits (mainly conjugation and sperm conjugate gross morphology) of 42 species from nine subfamilies of Carabidae were examined using light microscopy. Except in Harpalinae, the type of conjugation was shared by all members of a particular subfamily: in Carabinae, Elaphrinae, Patrobinae and Brachinae, sperm conjugates were observed in which variable numbers of sperm clumped together; in Nebriinae, Cicindelinae and Trechinae, sperm were not organized as conjugates but were present individually; and in Broscinae, both individual sperm and sperm conjugates were observed. In the remaining subfamily, Harpalinae, sperm conjugates were formed in most species, but a loss of conjugation was observed in some species. Mapping the observed sperm traits onto within‐family molecular phylogenetic trees suggested that sperm conjugation was ancestral, with loss of conjugation evolving in several lineages. In sperm conjugates, a short spermatostyle (the axis of sperm conjugates) was the ancestral state, while a long spermatostyle evolved in subsequent lineages. In the long spermatostyle trait, the flexible type without a conspicuous 3D structure was ancestral, while the type with a conspicuous 3D structure, such as the spiral structure, evolved in derived lineages. 相似文献
19.
A key issue in evolutionary biology is whether selection acting at levels higher than the individual can cause evolutionary change. If it can, then conceptual and empirical studies must consider how selection operates at multiple levels of biological organization. Here, we test the hypothesis that estimates of broad‐sense community heritability, , can be used to predict the evolutionary response by community‐level phenotypes when community‐level selection is imposed. Using an approach informed by classic quantitative genetics, we made three predictions. First, when we imposed community‐level selection, we expected a significant change in the average phenotype of arthropod communities associated with individual tree genotypes [we imposed selection by favoring high and low NMDS (nonmetric multidimensional scaling) scores that reflected differences in arthropod species richness, abundance and composition]. Second, we expected to predict the magnitude of the community‐level response. Third, we expected no significant change in average NMDS scores with community‐level selection imposed at random. We tested these hypotheses using three years of common garden data for 102 species comprising the arthropod communities, associated with nine clonally replicated Populus angustifolia genotypes. Each of our predictions were met. We conclude that estimates of account for the resemblance among communities sharing common ancestry, the persistence of community composition over time, and the outcome of selection when it occurs at the community level. Our results provide a means for exploring how this process leads to large‐scale community evolutionary change, and they identify the circumstances in which selection may routinely act at the community level. 相似文献
20.
H. P. UNDER FLS 《Botanical journal of the Linnean Society. Linnean Society of London》2000,134(1-2):159-177
Cutler suggested almost 30 years ago that there was convergent evolution between African and Australian Restionaceae in the distinctive culm anatomical features of Restionaceae. This was based on his interpretation of the homologies of the anatomical features, and these are here tested against a 'supertrec' phylogeny, based on three separate phvlogenies. The first is based on morphology and includes all genera; the other two are based on molecular sequences from the chloroplast genome-, one covers the African genera, and the other tin-Australian genera. This analysis corroborates Cutler's interpretation of convergent evolution between African and Australian Restionaceae. However, it indicates that for the Australian genera, the evolutionary pathway of the culm anatomy is much more complex than originally thought. In the most likely scenario, the ancestral Restionaceae have protective cells derived from the chlorenchyma. These persist in African Restionaceae, but are soon lost in Australian Restionaceae. Pillar cells and sclerenchyma ribs evolve early in the diversification of Australian Restionaceae, but are secondarily lost numerous times. In some of the reduction cases, the result is a very simple culm anatomy, which Cutler had interpreted as a primitively simple culm type, while in other cases it appears as if the functions of the ribs and pillars may have been taken over by a new structure, protective cells developed from epidermal, rather than chlorenchyma, cells. Cutler suggested that this convergent evolution might have been in response to Tertiary climatic deterioration, but this study finds no strong corroborating evidence for this. 相似文献