首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nocturnal primate species are often difficult to discriminate by gross visual bodily characteristics. This is also true for the world's smallest primate taxon, the Malagasy mouse lemurs. Recent findings imply that this taxon contains sibling species that can be diagnosed noninvasively by their species-specific advertisement call. We used comparative bioacoustics in order to explore variation of this call type and to assess species status of three European colonies. Acoustic variation was compared within and between colonies as well as with known species-specific differences. It was further related to morphological and genetic variations to investigate in how far it covaries with them. Results show that acoustic and genetic differences revealed by random amplified polymorphic DNA (RAPD) fingerprinting separated colonies reliably, but were on a different level than known species-specific differences. A Mantel test showed that acoustic differences were weakly correlated to genetic, but not to morphological differences. Our study is the first to reveal that both acoustic signaling and genetics clearly establish the species status for nocturnal primate populations. It also suggests that acoustic traits change at a more obvious and rapid pace than morphology in isolated populations, and may be used as an indication of conditions that may favor the evolution of subspecies.  相似文献   

2.
Patterns of geographic variation in communication systems can provide insight into the processes that drive phenotypic evolution. Although work in birds, anurans, and insects demonstrates that acoustic signals are sensitive to diverse selective and stochastic forces, processes that shape variation in mammalian vocalizations are poorly understood. We quantified geographic variation in the advertisement songs of sister species of singing mice, montane rodents with a unique mode of vocal communication. We tested three hypotheses to explain spatial variation in the song of the lower altitude species, Scotinomys teguina: selection for species recognition in sympatry with congener, S. xerampelinus, acoustic adaptation to different environments, and stochastic divergence. Mice were sampled at seven sites in Costa Rica and Panamá; genetic distances were estimated from mitochondrial control region sequences, between‐site differences in acoustic environment were estimated from climatic data. Acoustic, genetic and geographic distances were all highly correlated in S. teguina, suggesting that population differentiation in song is largely shaped by genetic drift. Contrasts between interspecific genetic‐acoustic distances were significantly greater than expectations derived from intraspecific contrasts, indicating accelerated evolution of species‐specific song. We propose that, although much intraspecific acoustic variation is effectively neutral, selection has been important in shaping species differences in song.  相似文献   

3.
Drift, selection, or their combined effects commonly drive geographic variation in traits. Clarifying the relative roles of each process is a long‐standing research goal in evolutionary biology. Acoustic signals of bats are a phenotypic characteristic that plays an important role in social organization and species recognition. We extensively sampled the Chinese rufous horseshoe bat (Rhinolophus sinicus) throughout China and Vietnam and reconstructed a species phylogeny to better understand the patterns and causes of the geographic variation of acoustic signals. Our results showed that the resting frequency (RF) of calls varied with latitude, sex, and distance among different colony locations. RF differences were not correlated with genetic distance (based on only one nuclear locus and the mitochondrial locus), climatic factors (mean annual temperature and mean annual precipitable water), or body size, although differences in calls increased with distance among various populations. This suggests that cultural drift may play more important roles than genetic drift and acoustic adaptation in shaping acoustic differences within regions in R. sinicus.  相似文献   

4.
Advertisement calls are often important noninvasive tools for discriminating cryptic species and for assessing specific diversity and speciation patterns in nature. We investigated the contribution of these calls to uncover specific diversity in nocturnal Malagasy lemurs. We compared sexual advertisement and predator advertisement calls of two mouse lemur species, western gray and eastern rufous mouse lemurs (Microcebus murinus and M. rufus, respectively) living in two contrasting habitats (dry deciduous vs. rain forest), and analyzed them statistically. Both species emitted several highly variable whistle calls in the context of predator-avoidance. Intrapopulation variation was high and overlapped interspecific variation. Sexual advertisement calls, given in the mating context, displayed a totally distinct, species-specific acoustic structure. Whereas gray mouse lemurs produced rapidly multifrequency modulated, long trill calls, rufous mouse lemurs gave slowly frequency-modulated short chirp calls. Our results suggest specific status for gray and rufous mouse lemurs and indicate the importance of predation and social needs in shaping vocal communication.  相似文献   

5.
6.
Bioacoustical studies in nonhuman primates have shown that loud calls can be reliably used as a noninvasive diagnostic tool for discriminating cryptic taxa, for their monitoring in the field as well as for the reconstruction of their phylogeny. To date, it is unknown, whether loud calls can be used for these purposes in sportive lemurs, for which current genetic studies suggest the existence of at least 24 cryptic species. The aim of this study was to compare the structure of loud calls of populations of sportive lemurs to characterize informative acoustic traits for taxa discrimination and to establish a phylogenetic tree based on acoustic structure. We have based our study on Inter-River-Systems (IRSs) as operational taxonomic units. Samples were collected from nine different localities of four IRSs along a transect from northwestern to northern Madagascar. Two call types, the ouah and the high-pitched call, were present in almost all IRSs. Six temporal and eight spectral parameters were measured in 196 calls of the best quality given by 21 different males. Variation within and between IRSs was assessed by multivariate statistics. Loud calls differed significantly among the different IRSs. The IRSs varied most in spectral parameters, whereas temporal parameters were less variable. Phylogenetic analysis using parsimony yielded 11 out of 17 acoustic characters as phylogenetically informative. The acoustic tree had an average branch support of 78%. Its topology coincided less with geographic distances than with genetic tree topology. Altogether our findings revealed that loud calls separated geographically isolated populations of sportive lemurs specifically. Based on these results, noninvasive tools for diagnosis and monitoring of cryptic species in nature can be developed for conservation management.  相似文献   

7.
Acoustic signals for mating are important traits that could drive population differentiation and speciation. Ecology may play a role in acoustic divergence through direct selection (e.g., local adaptation to abiotic environment), constraint of correlated traits (e.g., acoustic traits linked to another trait under selection), and/or interspecific competition (e.g., character displacement). However, genetic drift alone can also drive acoustic divergence. It is not always easy to differentiate the role of ecology versus drift in acoustic divergence. In this study, we tested the role of ecology and drift in shaping geographic variation in the advertisement calls of Microhyla fissipes. We examined three predictions based on ecological processes: (1) the correlation between temperature and call properties across M. fissipes populations; (2) the correlation between call properties and body size across M. fissipes populations; and (3) reproductive character displacement (RCD) in call properties between M. fissipes populations that are sympatric with and allopatric to a congener M. heymonsi. To test genetic drift, we examined correlations among call divergence, geographic distance, and genetic distance across M. fissipes populations. We recorded the advertisement calls from 11 populations of M. fissipes in Taiwan, five of which are sympatrically distributed with M. heymonsi. We found geographic variation in both temporal and spectral properties of the advertisement calls of M. fissipes. However, the call properties were not correlated with local temperature or the callers' body size. Furthermore, we did not detect RCD. By contrast, call divergence, geographic distance, and genetic distance between M. fissipes populations were all positively correlated. The comparisons between phenotypic Qst (Pst) and Fst values did not show significant differences, suggesting a role of drift. We concluded that genetic drift, rather than ecological processes, is the more likely driver for the geographic variation in the advertisement calls of M. fissipes.  相似文献   

8.
Divergence in signalling systems might play a central role in speciation. To assess the importance of possible causes of signal divergence, we examine two types of vocalizations within a geographically variable species complex, the greenish warblers (Phylloscopus trochiloides Sundevall). Calls, which are used by both sexes throughout the year, and songs, which are sung primarily by breeding males, differ distinctly between two distinct Siberian forms. Through a ring of southern populations that connect the northern forms, signal divergence is correlated with both geographic distance and genetic divergence. Calls and songs differ in their particular patterns of geographic variation, probably because of the larger influence of sexual selection on songs than on calls. These patterns are supportive of neither acoustic adaptation nor morphology being major drivers of divergence in vocalizations. Rather, these results support the importance of stochastic evolution of communication systems in the evolution of new species.  相似文献   

9.
Individually distinct vocalizations play an important role in animal communication, allowing call recipients to respond differentially based on caller identity. However, which of the many calls in a species'' repertoire should have more acoustic variability and be more recognizable is less apparent. One proposed hypothesis is that calls used over long distances should be more distinct because visual cues are not available to identify the caller. An alternative hypothesis proposes that close calls should be more recognizable because of their importance in social interactions. To examine which hypothesis garners more support, the acoustic variation and individual distinctiveness of eight call types of six wild western gorilla (Gorilla gorilla) females were investigated. Acoustic recordings of gorilla calls were collected at the Mondika Research Center (Republic of Congo). Acoustic variability was high in all gorilla calls. Similar high inter-individual variation and potential for identity coding (PIC) was found for all call types. Discriminant function analyses confirmed that all call types were individually distinct (although for call types with lowest sample size - hum, grumble and scream - this result cannot be generalized), suggesting that neither the distance at which communication occurs nor the call social function alone can explain the evolution of identity signaling in western gorilla communication.  相似文献   

10.
Understanding the mechanisms accounting for the evolution of phenotypic diversity is central to evolutionary biology. We use molecular and phenotypic data to test hypotheses for 'leapfrog' patterns of geographical variation, in which phenotypically similar, disjunct populations are separated by distinct populations of the same species. Phylogenetic reconstructions revealed independent evolution of melanic plumage characters in different populations in the Neotropical avian genus Arremon. Thus, phenotypic similarities between distant populations cannot be explained by close phylogenetic affinity. Nor can they be attributed to recurring mutations in the MC1R gene, a locus involved in melanic pigmentation. A coalescent analysis indicates that plumage traits have become fixed at a faster rate than expected under genetic drift, suggesting that selection underlies their repeated evolution. In contrast to views that genetic drift drives phenotypic differentiation in Neotropical montane birds, our results imply that geographical variation preceding speciation may reflect the action of deterministic selective processes.  相似文献   

11.
The ability to recognise and discriminate between heterospecific and conspecific individuals plays an essential role in mate choice, reproductive isolation and thus species diversification. Many animals discriminate based on advertisement calls, whose evolution may be driven by a variety of forces such as natural selection, sexual selection or stochastic processes. The relative importance of stochastic processes acting on a given trait is usually correlated with its phylogenetic signal. Mate-recognition signals are complex traits composed of multiple features that could potentially respond independently to evolutionary forces. The advertisement call of anurans is used in species recognition and mate choice. In this study, we estimate the phylogenetic signal for body size and a suite of traits describing the male advertisement call from dart-poison frogs (Anura: Dendrobatidae). We found a surprisingly high phylogenetic signal for all call traits. In addition, call traits varied in their degree of phylogenetic signal, suggesting that evolutionary forces have been acting differently on different traits. Pulse duration showed the strongest phylogenetic signal. Peak frequency and body size were correlated and presented high phylogenetic signal indicating that the evolution of one trait may be driving or constraining the other. Since most variation in call traits can be explained by the phylogenetic history of the species, we cannot reject the hypothesis that stochastic processes account for significant evolutionary divergence in frog calls.  相似文献   

12.
Primate vocalizations convey a variety of information to conspecifics. The acoustic traits of these vocalizations are an effective vocal fingerprint to discriminate between sibling species for taxonomic diagnosis. However, the vocal behavior of nocturnal primates has been poorly studied and there are few studies of their vocal repertoires. We compiled a vocal repertoire for the Endangered Sambirano mouse lemur, Microcebus sambiranensis, an unstudied nocturnal primate of northwestern Madagascar, and compared the acoustic properties of one of their call types to those of M. murinus and M. rufus. We recorded vocalizations from radio-collared individuals using handheld recorders over 3 months. We also conducted an acoustic survey to measure the vocal activity of M. sambiranensis in four forest habitat types at the study site. We identified and classified five vocalization types in M. sambiranensis. The vocal repertoires of the three Microcebus species contain very similar call types but have different acoustic properties, with one loud call type, the whistle, having significantly different acoustic properties between species. Our acoustic survey detected more calls of M. sambiranensis in secondary forest, riparian forest, and forest edge habitats, suggesting that individuals may prefer these habitat types over primary forest. Our results suggest interspecific differences in the vocal repertoire of mouse lemurs, and that these differences can be used to investigate habitat preference via acoustic surveys.  相似文献   

13.
Recent morphological and molecular phylogenetic studies of mouse lemurs (Microcebus) living in the western and southern regions of Madagascar have shown that specific diversity had been considerably underestimated. In large part, this underestimate was due to the lack of sufficient specimens from given localities to assess properly the level of phenotypic variation within and between populations. The accurate delineation of specific boundaries has no doubt been confounded by the diminutive size, nocturnal habits, and subtle morphological variation characteristic of mouse lemurs, which can make field identification of individuals problematic. We illustrate the use of molecular phylogenetic analysis to reveal reproductive isolation in two sympatric mouse lemur species, Microcebus murinus and M. griseorufus. Their documentation in the Berenty Private Reserve in the extreme south of Madagascar verifies the historically-broad distribution of Microcebus griseorufus, a species recently resurrected from synonomy.  相似文献   

14.
Relatively few data exist on population differences in the vocal behavior of mammals. Geographic variation in calls is of special interest because of the implications for resolving evolutionary and behavioral questions. For example, information on geographic variation in vocalizations complements morphological and molecular data used to infer phylogenetic relationships and provides evidence for the mechanisms underlying call development. A quantitative acoustic analysis of orangutan long calls was undertaken, comparing flanged adult males from four geographically distinct sites across Borneo and Sumatra, revealing consistent differences among the calls of individuals. Long calls produced by orangutans from the four sites in Borneo and Sumatra differ in quantitative acoustic measures. Discriminant function analysis reveals that acoustic variables can be used in combination to assign calls to the correct individual, site and island at rates higher than that expected by chance. Specifically, four acoustic parameters proved reliable for distinguishing among the individuals, between sites, and across the two islands that arguably represent populations from separate species or subspecies. Although Bornean and Sumatran long calls share a repetitive structure and show similar call rates (0.100–0.500 LCs/h) and maximum frequency bands (0.400–1.500 kHz), they differ significantly in the number of pulses per call, call speed, call duration, bandwidth, pulse duration, and dominant frequency. Strong consistency in these acoustic parameters is also seen among males within sites and the observed variation may allow for individual recognition. Individual identification by call structure presumably benefits dispersed orangutans, where individuals characteristically forage independently and both encounters and interactions with signaling males are highly variable and largely dependent on context. Acoustic recognition of callers facilitates the choice of which males to join or avoid, thus allowing receivers to manipulate potential costs and benefits of association.  相似文献   

15.
The relationship between cultural and genetic evolution was examined in the yellow-naped amazon Amazona auropalliata. This species has previously been shown to have regional dialects defined by large shifts in the acoustic structure of its learned contact call. Mitochondrial DNA sequence variation from a 680 base pair segment of the first domain of the control region was assayed in 41 samples collected from two neighbouring dialects in Costa Rica. The relationship of genetic variation to vocal variation was examined using haplotype analysis, genetic distance analysis, a maximum-likelihood estimator of migration rates and phylogenetic reconstructions. All analyses indicated a high degree of gene flow and, thus, individual dispersal across dialect boundaries. Calls sampled from sound libraries suggested that temporally stable contact call dialects occur throughout the range of the yellow-naped amazon, while the presence of similar dialects in the sister species Amazona ochrocephala suggests that the propensity to form dialects is ancestral in this clade. These results indicate that genes and culture are not closely associated in the yellow-naped amazon. Rather, they suggest that regional diversity in vocalizations is maintained by selective pressures that promote social learning and allow individual repertoires to conform to local call types.  相似文献   

16.
Geographic variation in primate vocalizations has been described at two levels. First, at the level of acoustic variation within the same call type between populations and, second, at the level of presence or absence of certain call types in different populations. Acoustic variation is of interest because there are several factors that can explain this variation, such as gene flow, ecological factors and population density. Here we focus on the first level in a Southeast Asian primate, the Thomas langur. We recorded male loud calls in four populations that differed in their geographic distances from each other and had varying geographic barriers in between them, such as rivers and mountain ranges. The presence of these barriers leads to expectations of loud call variation under the gene flow model, which are examined here. We conducted a principal components analysis to condense the number of acoustic variables. With a subsequent discriminant function analysis on the six principal component scores, we found that the percentage of loud calls that were correctly assigned to a population was relatively high (50.0-76.2%) when three randomly selected loud calls from each male were used. Using the discriminant functions from this analysis to predict population membership of the remainder of the loud calls yielded lower, but still relatively high correct assignment percentages (26.2-66.7%). Analyses to examine the influence of barriers on similarities between populations confirm our expectations. We discuss that differences in loud calls are probably most parsimoniously explained by gene flow (or the lack thereof) between the populations and that future studies of genetic differences are crucial to test this hypothesis.  相似文献   

17.
Given the important role that animal vocalizations play in mate attraction and resource defence, acoustic signals are expected to play a significant role in speciation. Most studies, however, have focused on the acoustic traits of male animals living in the temperate zone. In contrast to temperate environments, in the tropics, it is commonplace for both sexes to produce complex acoustic signals. Therefore, tropical birds offer the opportunity to compare the sexes and provide a more comprehensive understanding of the evolution of animal signals. In this study, we quantified patterns of acoustic variation in Rufous‐and‐white Wrens (Thryophilus rufalbus) from five populations in Central America. We quantified similarities and differences between male and female songs by comparing the role that acoustic adaptation, cultural isolation and neutral genetic divergence have played in shaping acoustic divergence. We found that males and females showed considerable acoustic variation across populations, although females exhibited greater population divergence than males. Redundancy analysis and partial‐redundancy analysis revealed significant relationships between acoustic variation and ecological variables, genetic distance, and geographic distance. Both ambient background noise and geographic distance explained a high proportion of variance for both males and females, suggesting that both acoustic adaptation and cultural isolation influence song. Overall, our results indicate that parallel evolutionary forces act on male and female acoustic signals and highlight the important role that cultural drift and selection play in the evolution of both male and female songs.  相似文献   

18.
In this paper, we compare the advertisement calls of 207 neotropical strawberry poison frogs (Dendrobates pumilio) collected in 21 localities along a transect from northern Costa Rica to western Panama. Populations varied most in call duration and call rate, while pulse rate and duty cycle were less variable. Multivariate analyses showed that call variation followed a cline with higher call rates, shorter calls, lower duty cycles and higher pulse rates in the southeast. Body size decreased towards the southeast and explained most variation in dominant frequency, as well as some residual variation in call rate. We conclude that a combination of geography and morphology is largely responsible for call variation within this species. Two inferred bio‐acoustic groups were roughly in accordance with two genetic groups, geographically separated in central Costa Rica. However, genetic distances among populations did not co‐vary with call dissimilarity after correction for geographic distances. Thus, differences in calls between genetic groups are probably mainly a result of clinal variation. These findings agree with the general observation that bio‐acoustic variation is often not (highly) associated with genetic divergence. Moreover, colour polymorphism observed among Panamanian populations was not reflected in a higher variability in call parameters relative to the monomorphic Costa Rican populations.  相似文献   

19.
Plant functional trait variation in tropical forests results from taxonomic differences in phylogeny and associated genetic differences, as well as, phenotypic plastic responses to the environment. Accounting for the underlying mechanisms driving plant functional trait variation is important for understanding the potential rate of change of ecosystems since trait acclimation via phenotypic plasticity is very fast compared to shifts in community composition and genetic adaptation. We here applied a statistical technique to decompose the relative roles of phenotypic plasticity, genetic adaptation, and phylogenetic constraints. We examined typically obtained plant functional traits, such as wood density, plant height, specific leaf area, leaf area, leaf thickness, leaf dry mass content, leaf nitrogen content, and leaf phosphorus content. We assumed that genetic differences in plant functional traits between species and genotypes increase with environmental heterogeneity and geographic distance, whereas trait variation due to plastic acclimation to the local environment is independent of spatial distance between sampling sites. Results suggest that most of the observed trait variation could not be explained by the measured environmental variables, thus indicating a limited potential to predict individual plant traits from commonly assessed parameters. However, we found a difference in the response of plant functional traits, such that leaf traits varied in response to canopy‐light regime and nutrient availability, whereas wood traits were related to topoedaphic factors and water availability. Our analysis furthermore revealed differences in the functional response of coexisting neotropical tree species, which suggests that endemic species with conservative ecological strategies might be especially prone to competitive exclusion under projected climate change.  相似文献   

20.
Evolutionary divergence in behavioural traits related to mating may represent the initial stage of speciation. Direct selective forces are usually invoked to explain divergence in mate‐recognition traits, often neglecting a role for neutral processes or concomitant differentiation in ecological traits. We adopted a multi‐trait approach to obtain a deeper understanding of the mechanisms behind allopatric divergence in the Amazonian frog, Allobates femoralis. We tested the null hypothesis that geographic distance between populations correlates with genetic and phenotypic divergence, and compared divergence between mate‐recognition (acoustic) and ecological (coloration, body‐shape) traits. We quantified geographic variation in 39 phenotypic traits and a mitochondrial DNA marker among 125 individuals representing eight populations. Geographic variation in acoustic traits was pronounced and tracked the spatial genetic variation, which appeared to be neutral. Thus, the evolution of acoustic traits tracked the shared history of the populations, which is unexpected for pan‐Amazonian taxa or for mate‐recognition traits. Divergence in coloration appeared uncorrelated with genetic distance, and might be partly attributed to local selective pressures, and perhaps to Batesian mimicry. Divergence in body‐shape traits was low. The results obtained depict a complex evolutionary scenario and emphasize the importance of considering multiple traits when disentangling the forces behind allopatric divergence. ©2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 826–838.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号