首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
One of the most important defenses for the eggs of ovipositing female organisms is to avoid being laid in the same habitat as their predators. However, for most organisms, completely avoiding an offspring's predators is not possible. One mechanism that has been largely overlooked is for females to partition an oviposition site into microhabitats that differ in quality for offspring survival. We conducted a series of experiments to examine whether female newts avoid microhabitats utilized by their offspring's primary predator, caddisfly larvae. Female newts avoided laying eggs near predatory caddisflies and shifted egg laying upward in the water column when provided with a vertical dimension. Caddisflies were attracted to chemical stimuli from female newts and their eggs, yet primarily used benthic areas in experimental chambers. Finally, results from a field experiment indicate that the behavioral strategy employed by female newts increases offspring survival. This subset of non‐genetic maternal effects, micro‐oviposition avoidance, is likely an important yet underexplored mechanism by which females increase offspring survival.  相似文献   

4.
Determining the patterns, causes and consequences of character displacement is central to our understanding of competition in ecological communities. However, the majority of competition research has occurred over small spatial extents or focused on fine-scale differences in morphology or behaviour. The effects of competition on broad-scale distribution and niche characteristics of species remain poorly understood but critically important. Using range-wide species distribution models, we evaluated whether Canada lynx (Lynx canadensis) or bobcat (Lynx rufus) were displaced in regions of sympatry. Consistent with our prediction, we found that lynx niches were less similar to those of bobcat in areas of sympatry versus allopatry, with a stronger reliance on snow cover driving lynx niche divergence in the sympatric zone. By contrast, bobcat increased niche breadth in zones of sympatry, and bobcat niches were equally similar to those of lynx in zones of sympatry and allopatry. These findings suggest that competitively disadvantaged species avoid competition at large scales by restricting their niche to highly suitable conditions, while superior competitors expand the diversity of environments used. Our results indicate that competition can manifest within climatic niche space across species’ ranges, highlighting the importance of biotic interactions occurring at large spatial scales on niche dynamics.  相似文献   

5.
We investigated habitat selection of Mus minutoides in northeastern Swaziland. We used powder tracking to determine how M. minutoides selected habitat at a fine scale and a broader path scale. At the fine scale, we measured per cent cover of grass and shrubs, the number of forbs and visual obstruction (VO) at five evenly spaced points along a mouse's pathway and at a paired random location. At the path scale, we calculated the relative displacement (RD) of each path as the ratio of the distance from the start to the end point of the path to the total length of the path (values near one indicate less preference). We found that M. minutoides were positively associated with increases in visual obstruction, grass cover, and shrub cover at the fine scale, but not at the path scale. Our results indicate that M. minutoides selection of vegetative features at the path scale is not as important as their fine‐scale selection of vegetative structure. In addition, the shrub encroachment on our study site may be directly beneficial to M. minutoides at the fine scale. Our results provide us with an increased understanding of the basic ecology of M. minutoides and information on their response to a changing landscape.  相似文献   

6.
Winter climate at northern latitudes is a challenge to small-bodied ungulates, and they modify behaviour to save energy and to increase the likelihood of survival. Also, the ongoing expansion of large carnivores in several European countries can lead to the recovery of (potentially energetically costly) anti-predator behaviours. In an area recently recolonized by Eurasian lynx Lynx lynx , we snow-tracked radio-collared roe deer Capreolus capreolus in order to investigate their bedding and feeding behaviour during winter, and assess how environmental factors affect their habitat use. We also tested the prediction that roe deer use more open sites than locally available in areas with a stalking predator such as the lynx. Our results showed that both bed sites and foraging sites had more cover, compared with random sites. Most of the variation in canopy cover and in the distance and foraging sites between bed sites and foraging sites was explained by prevailing weather. As the winter progressed, the presumed depletion of fat reserves promoted the use of more canopy cover at foraging sites by night, less by day and a decrease in the distance between beds, foraging sites and human activities. Males used artificial feeding sites less often and bedded further from humans than females. The data fit the hypothesis of tighter energy budgets for family groups (females with fawns) or that males are more cautious towards humans. There was no support for the hypothesis that roe deer used more open habitat than locally available in order to reduce their vulnerability to lynx predation. Owing to severe winter conditions and the danger of starvation, roe deer seem to be forced to accept a high risk when predators are present, not changing their main pattern of habitat use from comparative areas where predators are absent.  相似文献   

7.
We evaluated patterns of occurrence and non-occurrence for Canada lynx (Lynx canadensis) across a 16,530-km2 study area in Maine to provide a better understanding of lynx habitat selection and habitat ecology on commercially managed forestlands in the Acadian Forest. Because of the influence of forest structure on lynx habitat selection and abundance of their primary prey, the snowshoe hare (Lepus americanus), and to improve our ability to build robust models, we used habitat information derived from a time series of Landsat satellite imagery spanning the period 1973–2004. We defined and mapped 10 forest types based on forest harvest history, time since harvest, and current forest condition. We compared a suite of models to evaluate relative influences of forest composition, habitat patch configuration, and hare density on habitat selection by lynx at the landscape scale. Occupied areas had greater average hare densities and percentage of mature conifer. Average hare density in occupied areas (0.74 hares/ha) was greater than in unoccupied areas (0.62 hares/ha), but was less than previous research has suggested may be necessary to support lynx populations in the southern portion of the species' range. No occupied areas occurred where average hare density was <0.5 hares/ha. Average hare density at the landscape-scale was strongly influenced by amount of high-quality hare habitat (i.e., conifer or mixedwood regenerating forest, 15–35 yr post-harvest). Edge density between mature conifer and high-quality hare habitat was substantially greater in occupied areas compared to unoccupied areas. Juxtaposition of those 2 forest types may provide edge habitat where lynx experience easier travel and improved access to prey in landscapes with extensive areas of high-quality hare habitat where travel and access may be somewhat limited by high understory stem density. Probability of occurrence declined nonlinearly with changes in hare density and percent mature conifer forest in the landscape; thus, suitability of currently occupied landscapes could change markedly with future changes in landscape-level hare densities and changing habitat associated with forest management. Where lynx conservation is a priority, we recommend that managers focus on creating and maintaining a minimum of 27% high-quality hare habitat within 100-km2 areas to promote landscape-scale hare densities >0.5 hares/ha. © The Wildlife Society, 2013  相似文献   

8.
9.
Red panda Ailurus fulgens, an endangered habitat specialist, inhabits a narrow distribution range in bamboo abundance forests along mountain slopes in the Himalaya and Hengduan Mountains. However, their habitat use may be different in places with different longitudinal environmental gradients, climatic regimes, and microclimate. This study aimed to determine the habitat variables affecting red panda distribution across different longitudinal gradients through a multivariate analysis. We studied habitat selection patterns along the longitudinal gradient in Nepal's Himalaya which is grouped into the eastern, central, and western complexes. We collected data on red panda presence and habitat variables (e.g., tree richness, canopy cover, bamboo abundance, water availability, tree diameter, tree height) by surveys along transects throughout the species’ potential range. We used a multimodal inference approach with a generalized linear model to test the relative importance of environmental variables. Although the study showed that bamboo abundance had a major influence, habitat selection was different across longitudinal zones. Both canopy cover and species richness were unimportant in eastern Nepal, but their influence increased progressively toward the west. Conversely, tree height showed a decreasing influence on habitat selection from Eastern to Western Nepal. Red panda's habitat selection revealed in this study corresponds to the uneven distribution of vegetation assemblages and the dry climatic gradient along the eastern‐western Himalayas which could be related to a need to conserve energy and thermoregulate. This study has further highlighted the need of importance of bamboo conservation and site‐specific conservation planning to ensure long‐term red panda conservation.  相似文献   

10.
Abstract Canada lynx (Lynx canadensis) were listed as threatened in the contiguous United States under the Endangered Species Act in March 2000. Little information on lynx ecology at the southern extent of their range was available at the time of listing, and no ecological studies had been conducted in the eastern USA. Between 1999 and 2004, we investigated habitat selection at natal dens in northern Maine to address questions on the importance of forest conditions to denning requirements. We compared within-stand characteristics of 26 den sites to general characteristics of the stands containing dens. We used logistic regression to identify components within stands that distinguished natal dens from the residual stand and used the information-theoretic approach to select models that best explained lynx den-site selection. The top-ranked model had 2 variables: tip-up mounds of blown-down trees and visual obscurity at 5 m from the den (wi = 0.92). Within-stand structure was useful for predicting lynx den-site selection in managed forests in Maine and suitable denning habitat did not appear to be limiting.  相似文献   

11.
When wild‐caught Eurasian lynx (Lynx lynx) from the Slovak Carpathian Mountains were reintroduced to Central Switzerland in the early 1970s and spread through the north‐western Swiss Alps (NWA), they faced a largely unfamiliar landscape with strongly fragmented forests, high elevations, and intense human land use. For more than 30 years, radio‐collared lynx have been monitored during three different project periods (in the 1980s, 1990s, and 2010s). Our study explored, how lynx over generations have learned to adjust to the alpine environment. We predicted that (1) lynx nowadays select more strongly for open habitats, higher elevations, and steep slopes compared to the early stages of recolonization and that (2) consequently, there were significant changes in the Eurasian lynx’ prey spectrum. To test our predictions, we analyzed telemetry data (VHF, GPS) of 13 adult resident lynx in the NWA over 35 years, using Resource Selection Functions. Furthermore, we compared kills recorded from different individuals inhabiting the same region during three project periods. In general, lynx preferred forested areas, but over the years, they avoided open habitat less. Compared to the early stage of the recolonization, lynx in the most recent project period selected for higher elevations and the proportion of chamois in their prey spectrum surmounted that of roe deer. Potential driving factors for the observed changes could be increasing tolerance to human presence, intraspecific competition, or fitness benefits through exploitation of new resources. Long‐term studies like ours provide important insight into how animals can respond to sudden environmental changes, e.g., in the course of translocations into new areas or anthropogenic alterations of their habitats.  相似文献   

12.
Spatial distribution and habitat selection are integral to the study of animal ecology. Habitat selection may optimize the fitness of individuals. Hutchinsonian niche theory posits the fundamental niche of species would support the persistence or growth of populations. Although niche‐based species distribution models (SDMs) and habitat suitability models (HSMs) such as maximum entropy (Maxent) have demonstrated fair to excellent predictive power, few studies have linked the prediction of HSMs to demographic rates. We aimed to test the prediction of Hutchinsonian niche theory that habitat suitability (i.e., likelihood of occurrence) would be positively related to survival of American beaver (Castor canadensis), a North American semi‐aquatic, herbivorous, habitat generalist. We also tested the prediction of ideal free distribution that animal fitness, or its surrogate, is independent of habitat suitability at the equilibrium. We estimated beaver monthly survival probability using the Barker model and radio telemetry data collected in northern Alabama, United States from January 2011 to April 2012. A habitat suitability map was generated with Maxent for the entire study site using landscape variables derived from the 2011 National Land Cover Database (30‐m resolution). We found an inverse relationship between habitat suitability index and beaver survival, contradicting the predictions of niche theory and ideal free distribution. Furthermore, four landscape variables selected by American beaver did not predict survival. The beaver population on our study site has been established for 20 or more years and, subsequently, may be approaching or have reached the carrying capacity. Maxent‐predicted increases in habitat use and subsequent intraspecific competition may have reduced beaver survival. Habitat suitability‐fitness relationships may be complex and, in part, contingent upon local animal abundance. Future studies of mechanistic SDMs incorporating local abundance and demographic rates are needed.  相似文献   

13.
Effects of large mammalian herbivores on woody vegetation tend to be heterogeneous in space and time, but the factors that drive such heterogeneity are poorly understood. We examined the influence of fine‐scale habitat heterogeneity on the distribution and browsing effects of two of the largest African terrestrial mammals, the elephant and giraffe. We conducted this study within a 120‐ha (500 x 2,400 m) ForestGEO long‐term vegetation monitoring plot located at Mpala Research Center, Kenya. The plot traverses three distinct topographic habitats (“plateau,” “steep slopes,” and “valley”) with contrasting elevation, slope, soil properties, and vegetation composition. To quantify browsing damage, we focused on Acacia mellifera, a palatable tree species that occurs across the three habitat categories. Overall tree density, species richness, and diversity were highest on the steep slopes and lowest on the plateau. Acacia mellifera trees were tallest and had the lowest number of stems per tree on the steep slopes. Both elephant and giraffe avoided the steep slopes, and their activity was higher during the wet season than during the dry season. Browsing damage on Acacia mellifera was lowest on the steep slopes. Elephant browsing damage was highest in the valley, whereas giraffe browsing damage was highest on the plateau. Our findings suggest that fine‐scale habitat heterogeneity is an important factor in predicting the distribution of large herbivores and their effects on vegetation and may interact with other drivers such as edaphic variations to influence local variation in vegetation structure and composition.  相似文献   

14.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

15.
An animal's choice of foraging habitat reflects its response to environmental cues and is likely to vary among individuals in a population. Analyzing the magnitude of individual habitat selection can indicate how resilient populations may be to anthropogenic habitat change, where individually varying, broadly generalist populations have the potential to adjust their behavior. We collected GPS point data from 39 European nightjars (Caprimulgus europaeus) at a UK breeding site where restoration measures have altered large areas of habitat between breeding seasons. We calculated individual habitat selection over four breeding seasons to observe changes that might align with change in habitat. We also analyzed change in home range size in line with change in habitat availability, to examine functional relationships that can represent trade‐offs made by the birds related to performance of the habitat. Individual explained more of the variation in population habitat selection than year for most habitat types. Individuals differed in the magnitude of their selection for different habitat types, which created a generalist population composed of both generalist and specialist individuals. Selection also changed over time but only significantly for scrub habitat (60% decrease in selection over 4 years). Across the population, individual home range size was 2% smaller where availability of cleared habitat within the home range was greater, but size increased by 2% where the amount of open water was higher, indicating the presence of trade‐offs related to habitat availability. These results highlight that using individual resource selection and specialization measures, in conjunction with functional responses to change, can lead to better understanding of the needs of a population. Pooling specialist and generalist individuals for analysis could hide divergent responses to change and consequently obscure information that could be important in developing effective conservation strategies.  相似文献   

16.
Disentangling the contribution of long‐term evolutionary processes and recent anthropogenic impacts to current genetic patterns of wildlife species is key to assessing genetic risks and designing conservation strategies. Here, we used 80 whole nuclear genomes and 96 mitogenomes from populations of the Eurasian lynx covering a range of conservation statuses, climatic zones and subspecies across Eurasia to infer the demographic history, reconstruct genetic patterns, and discuss the influence of long‐term isolation and/or more recent human‐driven changes. Our results show that Eurasian lynx populations shared a common history until 100,000 years ago, when Asian and European populations started to diverge and both entered a period of continuous and widespread decline, with western populations, except Kirov, maintaining lower effective sizes than eastern populations. Population declines and increased isolation in more recent times probably drove the genetic differentiation between geographically and ecologically close westernmost European populations. By contrast, and despite the wide range of habitats covered, populations are quite homogeneous genetically across the Asian range, showing a pattern of isolation by distance and providing little genetic support for the several proposed subspecies. Mitogenomic and nuclear divergences and population declines starting during the Late Pleistocene can be mostly attributed to climatic fluctuations and early human influence, but the widespread and sustained decline since the Holocene is more probably the consequence of anthropogenic impacts which intensified in recent centuries, especially in western Europe. Genetic erosion in isolated European populations and lack of evidence for long‐term isolation argue for the restoration of lost population connectivity.  相似文献   

17.
Abstract We studied den selection of Canada lynx (Lynx canadensis; hereafter lynx) at multiple ecological scales based on 57 dens from 19 females located in western Montana, USA, between 1999 and 2006. We considered 3 spatial scales in this analysis, including den site (11-m-radius circle surrounding dens), den area (100-m-radius circle), and den environ (1-km radius surrounding dens). Lynx denned in preexisting sheltered spaces created by downed logs (62%), root-wads from wind-thrown trees (19%), boulder fields (10%), slash piles (6%), and live trees (4%). Lynx preferentially selected den sites with northeasterly aspects that averaged 248. Average distance between dens of 13 females monitored in consecutive years was 2,248 m, indicating low den site fidelity. Lynx exhibited habitat selection at all 3 spatial scales. Based on logistic regression, den sites differed from the surrounding den areas in having higher horizontal cover and log volume. Abundant woody debris from piled logs was the dominant habitat feature at den sites. Lynx generally denned in mature spruce-fir (Picea-Abies) forests with high horizontal cover and abundant coarse woody debris. Eighty percent of dens were in mature forest stands and 13% in mid-seral regenerating stands; young regenerating (5%) and thinned (either naturally sparse or mechanically thinned) stands with discontinuous canopies (2%) were seldom used. Female lynx selected den areas with greater spruce-fir tree basal area, higher horizontal cover, and larger-diameter trees compared to random locations within their home range. Lynx selected den environs in topographically concave or drainage-like areas, and farther from forest edges than random expectation. Maintaining mature and mid-seral regenerating spruce-fir forests with high horizontal cover and abundant woody debris would be most valuable for denning when located in drainages or in concave, drainage-like basins. Management actions that alter spruce-fir forests to a condition that is sparsely stocked (e.g., mechanically thinned) and with low canopy closure (<50%) would create forest conditions that are poorly suitable for lynx denning.  相似文献   

18.
Abstract: We related winter habitat selection by Canada lynx (Lynx canadensis), relative abundance of snowshoe hares (Lepus americanus), and understory stem densities to evaluate whether lynx select stands with the greatest snowshoe hare densities or the greatest prey accessibility. Lynx (3 F, 3 M) selected tall (4.4-7.3 m) regenerating clear-cuts (11-26 yr postharvest) and established partially harvested stands (11-21 yr postharvest) and selected against short (3.4-4.3 m) regenerating clear-cuts, recent partially harvested stands (1-10 yr), mature second-growth stands (>40 yr), and roads and their edges (30 m on either side of roads). Lynx selected stands that provided intermediate to high hare density and intermediate cover for hares (i.e., prey access) but exhibited lower relative preference for stand types with highest hare densities where coniferous saplings exceeded 14,000 stems/ha.  相似文献   

19.
A fundamental problem in ecology is forecasting how species will react to major disturbances. As the climate warms, large, frequent, and severe fires are restructuring forested landscapes at large spatial scales, with unknown impacts on imperilled predators. We use the United States federally Threatened Canada lynx as a case study to examine how predators navigate recent large burns, with particular focus on habitat features and the spatial configuration (e.g., distance to edge) that enabled lynx use of these transformed landscapes. We coupled GPS location data of lynx in Washington in an area with several recent large fires and a number of GIS layers of habitat data to develop models of lynx habitat selection in recent burns. Random Forest habitat models showed lynx‐selected islands of forest skipped by large fires, residual vegetation, and areas where some trees survived to use newly burned areas. Lynx used burned areas as early as 1 year postfire, which is much earlier than the 2–4 decades postfire previously thought for this predator. These findings are encouraging for predator persistence in the face of fires, but increasingly severe fires or management that reduces postfire residual trees or slow regeneration will likely jeopardize lynx and other predators. Fire management should change to ensure heterogeneity is retained within the footprint of large fires to enable viable predator populations as fire regimes worsen with climate change.  相似文献   

20.
The Great Lakes and the St. Lawrence River are imposing barriers for wildlife, and the additive effect of urban and agricultural development that dominates the lower Great Lakes region likely further reduces functional connectivity for many terrestrial species. As the climate warms, species will need to track climate across these barriers. It is important therefore to investigate land cover and bioclimatic hypotheses that may explain the northward expansion of species through the Great Lakes. We investigated the functional connectivity of a vagile generalist, the bobcat, as a representative generalist forest species common to the region. We genotyped tissue samples collected across the region at 14 microsatellite loci and compared different landscape hypotheses that might explain the observed gene flow or functional connectivity. We found that the Great Lakes and the additive influence of forest stands with either low or high canopy cover and deep lake‐effect snow have disrupted gene flow, whereas intermediate forest cover has facilitated gene flow. Functional connectivity in southern Ontario is relatively low and was limited in part by the low amount of forest cover. Pathways across the Great Lakes were through the Niagara region and through the Lower Peninsula of Michigan over the Straits of Mackinac and the St. Marys River. These pathways are important routes for bobcat range expansion north of the Great Lakes and are also likely pathways that many other mobile habitat generalists must navigate to track the changing climate. The extent to which species can navigate these routes will be important for determining the future biodiversity of areas north of the Great Lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号