首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the start of the 20th century, many invasive alien species (IAS) have spread rapidly around the world, causing serious threats to economies, societies and the environment. Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is an important quarantine insect species in many countries that spread around the world over the last century. This review collected information on the distribution of B. dorsalis to explore the patterns of its invasion expansion. We found B. dorsalis to be distributed in 75 countries (comprised of 124 geographical distribution regions: provinces or states) in Asia, Africa, North America, South America and Oceania up to 2017. Asia and Africa were the most represented regions, accounting for 86.3% of the total number of countries. From 1910 to 1990, B. dorsalis was only found in five countries, but in the last three decades, it has experienced a sharp increase in its rate of spread, invading 70 more countries. Global temperature anomaly has significantly positive correlation with the spread of B. dorsalis. The results of this review provide a theoretical basis for understanding and predicting the continued spread of B. dorsalis under global changes.  相似文献   

2.
Understanding the relationship between incursions of insect pests and established populations is critical to implementing effective control. Studies of genetic variation can provide powerful tools to examine potential invasion pathways and longevity of individual pest outbreaks. The major fruit fly pest in eastern Australia, Queensland fruit fly Bactrocera tryoni (Froggatt), has been subject to significant long‐term quarantine and population reduction control measures in the major horticulture production areas of southeastern Australia, at the species southern range limit. Previous studies have employed microsatellite markers to estimate gene flow between populations across this region. In this study, we used an independent genetic marker, mitochondrial DNA (mtDNA) sequences, to screen genetic variation in established and adjacent outbreak populations in southeastern Australia. During the study period, favorable environmental conditions resulted in multiple outbreaks, which appeared genetically distinctive and relatively geographically localized, implying minimal dispersal between simultaneous outbreaks. Populations in established regions were found to occur over much larger areas. Screening mtDNA (female) lineages proved to be an effective alternative genetic tool to assist in understanding fruit fly population dynamics and provide another possible molecular method that could now be employed for better understanding of the ecology and evolution of this and other pest species.  相似文献   

3.
The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), is the key pest of olives (Olea europaea L.). Classical biological control against this insect was previously attempted in Spain with Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae), with very limited success. Other parasitoids are now available for new classical biological control programmes. Before release of exotic parasitoids, an assessment of their potential impact on non‐target species is required. Surveys were conducted in different olive groves in south‐eastern Madrid to study wild tephritids associated with Asteraceae plants. We recorded plant species and their abundance and collected flower heads to identify and quantify tephritid species. Fruits from Rosa canina L. were also collected. After a multicriteria analysis (MCA), we propose Urophora hispanica Strobl, U. stylata (Fabricius) and Carpomya schineri (Loew) as candidates for further risk assessment experiments. Additional information on new associations between tephritid flies and Asteraceae plants and on autochthonous Hymenoptera parasitizing tephritids is provided.  相似文献   

4.
Chromatic cues to trap the oriental fruit fly, Bactrocera dorsalis   总被引:2,自引:0,他引:2  
Various colors have been used as visual cues to trap insect pests. For example, yellow traps for monitoring and control of the oriental fruit fly (Bactrocera dorsalis) have been in use for a very long time. However, the chromatic cue of using color traps has never been meticulously investigated. In this study, the spectral sensitivities of the photoreceptors in the compound eyes of B. dorsalis were measured intracellularly, and the theory of receptor quantum catch was applied to study the chromatic cue of fly attracting. Responses to five wavelength categories with peak wavelengths of 370, 380, 490, and 510 nm, and one with dual peaks at 350 and 490 nm were recorded. Based on spectral sensitivities, six colored papers were chosen to test the color preference of the fly, and an additional UV preference test was done to confirm the effect of the UV stimuli. It was concluded that UV and green stimuli (spectra: 300-380 nm and 500-570 nm) would enhance the attractiveness of a colored paper to the oriental fruit fly, and blue stimuli (380-500 nm) would diminish the attractiveness.  相似文献   

5.
Good culturing methods play an important role in the study of insect behavior and its application to pest management. Here, we describe and validate a new method for rearing the parasitoid wasp, Diachasmimorpha kraussii, which attacks some of the world's worst fruit fly pests and is an internationally used biological control agent. Our method differs from standard culturing approaches by presenting adult wasps with host‐infested artificial media within a “culturing bag,” which mimics a natural (fruit) oviposition substrate. In laboratory trials using wild collected D. kraussii, the culturing bag method was compared to the use of host‐infested nectarines, and a commonly used laboratory method of presenting host‐infested artificial media within Petri dishes. The culturing bag method proved to be a significant improvement on both methods, combining the advantages of high host survival in artificial media with parasitism levels that were the equivalent to those recorded using host‐infested fruits. In our field study, culturing bags infested with the Queensland fruit fly, Bactrocera tryoni, and hung in a mixed peach and nectarine orchard proved to be effective “artificial fruits” attracting wild D. kraussii for oviposition. Significantly more adult wasps were reared from the culturing bags compared to field collected fruits. This was shown to be due to higher fruit fly larval density in the bags, as similar percentage parasitism rates were found between the culturing bags and ripe fruits. We discuss how this cheap, time‐efficient method could be applied to collecting and monitoring wild D. kraussii populations in orchards, and assist in maintaining genetic variability in parasitoid laboratory cultures.  相似文献   

6.
7.
Around the world, several pest tephritids are extending their ranges from warm tropical or Mediterranean climates into cooler temperate regions. The ability to tolerate climatic diversity is uncommon among insects, and understanding the population phenology drivers of such species across different parts of their range will be critical for their management. Here, we determined the role of temperature versus fruit availability on the population phenology of Queensland fruit fly, Bactrocera tryoni. Using a field site located at the subtropical/temperate interface, with host fruits continuously available, we monitored the development times and abundance of B. tryoni, a species which has invaded temperate Australia from the tropics. From fruit samples held at ambient and controlled conditions, the abundance of emerging flies was highly variable among collection dates, but the variance did not reflect the observed changes in temperature. For most samples, the survival rate of flies in a field site was lower than predicted by a day‐degree population model fitted with mean daily field temperatures. The development time of the immature stage in the field was prolonged, presumably due to cooler ambient conditions, but the fitted day‐degree population model consistently over‐predicted estimated development times. Our results indicate that at the subtropical/temperate interface, the decline in B. tryoni populations during winter is only partly driven by temperature and host availability. We classify B. tryoni as a climate generalist, which likely employs physiological as well as behavioural mechanisms to achieve broad climatic tolerance ranges.  相似文献   

8.
Classical biological control programmes rely on mass production of high‐quality beneficial insects for subsequent releases into the field. Psyttalia lounsburyi (Silvestri) (Hymenoptera: Braconidae) is a koinobiont larval–pupal endoparasitoid of tephritid flies that is being reared to support a classical biological control programme for olive fruit fly in California. The mass‐rearing system for a P. lounsburyi colony, initiated with insects originally collected in Kenya, was evaluated with the goal of increasing production, while at the same time reducing time requirements for rearing in a quarantine facility. We tested the effect of exposure time of a factitious host Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), on parasitization, adult production, superparasitism, and sex ratio of P. lounsburyi and survival of the host. Parasitization rates were highest (31%) at 3‐ and 4‐hr exposure times, while adult production (i.e., emergence of wasp progeny) was highest (16%) at the 2‐hr exposure time. Superparasitism over the course of the study was 1.5% and did not appear to be a factor affecting parasitoid production. The sex ratio of wasp progeny was male‐biased and did not vary significantly over different exposure times. The rate of stings on host larvae increased with exposure time and was consistent with decreases in pupal eclosion from larvae and emergence rate of adult flies. When compared to current rearing procedures, the 2‐hr exposure time resulted in an overall 2.8‐fold increase in P. lounsburyi production when standardized for time.  相似文献   

9.
The American cherry fruit fly is an invasive pest species in Europe, of serious concern in tart cherry production as well as for the potential to hybridize with the European cherry fruit fly, Rhagoletis cerasi L. (Diptera: Tephritidae), which might induce new pest dynamics. In the first European reports, the question arose whether only the eastern American cherry fruit fly, Rhagoletis cingulata (Loew) (Diptera: Tephritidae), is present, or also the closely related western American cherry fruit fly, Rhagoletis indifferens Curran. In this study, we investigate the species status of European populations by comparing these with populations of both American species from their native ranges, the invasion dynamics in German (first report in 1993) and Hungarian (first report in 2006) populations, and we test for signals of hybridization with the European cherry fruit fly. Although mtDNA sequence genealogy could not separate the two American species, cross‐species amplification of 14 microsatellite loci separated them with high probabilities (0.99–1.0) and provided evidence for R. cingulata in Europe. German and Hungarian R. cingulata populations differed significantly in microsatellite allele frequencies, mtDNA haplotype and wing pattern distributions, and both were genetically depauperate relative to North American populations. The diversity suggests independent founding events in Germany and Hungary. Within each country, R. cingulata displayed little or no structure in any trait, which agrees with rapid local range expansions. In cross‐species amplifications, signals of hybridization between R. cerasi and R. cingulata were found in 2% of R. cingulata individuals and in 3% of R. cerasi. All putative hybrids had R. cerasi mtDNA indicating that the original between‐species mating involved R. cerasi females and R. cingulata males.  相似文献   

10.
Raspberry ketone (RK) dietary supplements accelerate the emergence of sexual behaviour in developing Queensland fruit fly (Q‐fly) males and show promise as a pre‐release supplement for use in sterile insect technique (SIT) programs. However, the value of RK supplements in SIT programs would be greatly reduced if RK‐treated males are ineffective at inducing sexual inhibition in mated females. To test the effectiveness of matings by RK‐treated males, we here investigate the remating propensity of females mated by RK‐treated (1.25% or 5% RK in food) and RK‐untreated (control) males. Tested males received RK supplements mixed in sugar and yeast hydrolysate for 2 days after emerging and then received only sugar. To test for male age‐dependent effects, virgin females were mated to treated and untreated males that were 6, 8, 10, 20 or 30 days old. To test for persistence of sexual inhibition, mated females were tested for remating propensity at 1, 7 or 15 days after their first mating. RK‐treated males did not differ from control males in copula duration, and females mated by RK‐treated males did not differ from those mated by control males in remating propensity, second copula latency or second copula duration. RK‐treated Q‐fly males not only mate at younger ages but also their matings are as effective as those of untreated controls at inducing sexual inhibition in mates.  相似文献   

11.
Reproductive success of male insects commonly hinges both on their ability to secure copulations with many mates and also on their ability to inseminate and inhibit subsequent sexual receptivity of their mates to rival males. We here present the first investigation of sperm storage in Queensland fruit flies (Tephritidae: Bactrocera tryoni; a.k.a. 'Q-flies') and address the question of whether remating inhibition in females is directly influenced by or correlated with number of sperm stored from their first mates. We used irradiation to disrupt spermatogenesis and thereby experimentally reduce the number of sperm stored by some male's mates while leaving other aspects of male sexual performance (mating probability, latency until copulating, copula duration) unaffected. Females that mated with irradiated rather than normal males were less likely to store any sperm at all (50% vs. 89%) and, if some sperm were stored, the number was greatly reduced (median 11 vs. 120). Despite the considerable differences in sperm storage, females mated by normal males and irradiated males were similarly likely to remate at the next opportunity, indicating (1) number of sperm stored does not directly drive female remating inhibition and (2) factors actually responsible for remating inhibition are similarly expressed in normal and irradiated males. While overall levels of remating were similar for mates of normal and irradiated males, factors responsible for female remating inhibition were positively associated with presence and number of sperm stored by mates of normal but not irradiated males. We suggest seminal fluids as the most likely factor responsible for remating inhibition in female Q-flies, as these are likely to be transported in proportion to number of sperm in normal males, be uninfluenced by irradiation, and be transported without systematic relation to sperm number in irradiated males.  相似文献   

12.
The susceptibility of olive cultivars to the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), has seldom been studied. This article examines factors associated with olive fruit fly infestation of 16 commonly planted Sicilian olive cultivars. Total infestation data were simultaneously correlated with categorical and quantitative factors using ordinal logistic regression. When all factors were included in the analysis, year, sampling date, cultivar, and fruit color were highly significant, but the quantitative factors fruit volume, fruit elongation, and fruit hardness were not. When the analysis was repeated excluding cultivar, all quantitative factors were significant, and elongation and volume were highly significant. Spherical, large, and hard fruit seemed to be preferred by B. oleae over fruit that are elongate, small, and soft. Therefore, fruit color, elongation, volume, and hardness provide useful information regarding the susceptibility of cultivars. In both organic and conventional olive cultivation, information about olive cultivar susceptibility to olive fruit fly will help orchard managers to produce quality oil and table olives while reducing treatments for olive fruit fly control.  相似文献   

13.
During the course of studies, Bactrocera (Bactrocera) latifrons (Hendel), B. (B.) nigrofemoralis White and Tsuruta, Dacus (Callantra) longicornis Wiedemann, Dacus (Callantra) sphaeroidalis (Bezzi), Cyrtostola limbata (Hendel) and Pliomelaena udhampurensis Agarwal and Kapoor were recorded for the first time in Himachal Pradesh in a cucurbit ecosystem. Apart from these, other species viz. Bactrocera tau, Bactrocera cucurbitae, Bactrocera dorsalis, Bactrocera zonata, Bactrocera scutellaris, Bactrocera diversa and Dioxyna sororcula (Wiedemann) were also identified. Distribution records of B. (B.) dorsalis (Hendel), B. (B.) zonata (Saunders), Bactrocera (Hemigymnodacus) diversa (Coquillett), B. (Zeugodacus) cucurbitae (Coquillett), B. (Z.) scutellaris (Bezzi) and B. (Z.) tau (Walker) has been described.  相似文献   

14.
15.
The increasing number of tephritid pest invasions worldwide highlights the importance of interspecific interactions among tephritid pests. The melon fly [Zeugodacus cucurbitae (Coquillett)], the pumpkin fruit fly [Zeugodacus tau (Walker)], and the oriental fruit fly [Bactrocera dorsalis (Hendel)] (all Diptera: Tephritidae) are neotropical fruit flies with overlapping distributions. Their interactions during mating hours have rarely been observed in nature due to their nocturnal behavior. Here, laboratory studies were conducted under no-choice and choice conditions to quantify interspecific mating. The interactions during mating hours resulted in interspecific mating, which reduced conspecific mating success and interrupted mating activity patterns. Successful interspecific mating pairs of Z. cucurbitae and Z. tau were recorded in no-choice and choice tests. Interspecific mating between male Z. cucurbitae and female Z. tau significantly reduced conspecific mating in Z. tau. Observations of the diel mating activity patterns showed that male Z. cucurbitae initiated calling behaviors earlier than Z. tau males, giving Z. cucurbitae more chances to court Z. tau. Though males of neither Zeugodacus species formed mating pairs with B. dorsalis, Zeugodacus males reduced conspecific mating in B. dorsalis in the choice trials. Thus, interspecific interactions among Z. cucurbitae, Z. tau, and B. dorsalis affected conspecific mating; interrupted conspecific mating activity patterns were recorded in all three species. This information could be used to improve management practices.  相似文献   

16.
Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), infests many horticultural fruit crops in the eastern part of Australia. Farmers usually apply synthetic insecticides to control this pest. Little is known on the use of plant products especially vegetable oils for fruit fly control although they are considered to be safer than synthetic insecticides. In this study, safflower oil was investigated for its mechanism and effectiveness against female B. tryoni. In a laboratory test, safflower oil treatments (2.5 and 5.0 ml l?1) reduced the number of fly punctures on treated artificial fruits, no matter whether pre‐punctures were present or absent. Safflower oil treatments also reduced the number of fly landings and eggs laid, but only when the treated artificial fruits were without pre‐punctures. These results confirmed that safflower oil is active against female B. tryoni mainly by preventing this fruit fly from making oviposition punctures, not by discouraging them from depositing eggs or by repelling them. The slippery nature of safflower oil is considered to be responsible for a reduction in the susceptibility of artificial fruit to fruit fly punctures. Further investigation using fruit‐bearing tomato plants (a no‐choice test) in a glasshouse situation revealed that safflower oil application at concentrations of 10 and 15 ml l?1 reduced the number of oviposition punctures but failed to reduce the number of eggs laid. To increase efficacy of safflower oil under field conditions, multiple tools may be needed to reduce fruit fly populations and oviposition behaviour, such as the addition of trap‐crops, provision of artificial oviposition sites, or mixing the insecticides with the oil.  相似文献   

17.
Changes in animal nutrition, particularly essential dietary components, alter global gene expression patterns. Our goal is to identify molecular markers that serve as early indicators of the quality of insect culture media. Markers of deficient culture media will increase the efficiency of developing optimal systems for mass rearing beneficial insects and some pest species because decisions on culture media quality can be made without waiting through one or several life cycles. The objective of our current study is to discover molecular markers of essential dietary lipid deficiency in the oriental fruit fly, Bactrocera dorsalis. We reared groups of fruit flies separately on media either devoid of or supplemented with wheat germ oil (WGO) and analyzed gene expression in third instar larvae and F(1) eggs using 2D electrophoresis. Gel densitometry revealed significant changes in expression levels of genes encoding eight proteins in larvae and 22 proteins in eggs. We identified these proteins by using mass spectrometry (MALDI TOF/TOF) and bioinformatic analyses of the protein sequences. Among these, we identified one gene encoding the receptor of activated C Kinase 1 (RACK1) that increased in expression by 6.8-fold in eggs from adults that were reared as larvae on media supplemented with WGO. RACK1 is an essential component of at least three intracellular signal transduction pathways, making it a good molecular marker candidate of lipid deficiency in fruit flies and possibly many other insect species.  相似文献   

18.
The Ethiopian fruit fly, Dacus ciliatus (Loew) (Diptera: Tephritidae), is a significant pest of cucurbit crops in Asia and Africa and is currently controlled with insecticides. The sterilizing effect of gamma radiation on D. ciliatus adults was investigated to assess the suitability of sterile insect technique (SIT) for use as an alternative, non‐chemical strategy for the control of this pest. Late pupae (48 h before emergence) were irradiated with 60, 80, 100, 120, and 140 Gy of gamma rays emitted by a 60Co source. Following emergence, the biological characteristics of the experimental cohorts (including all possible male‐female combinations of irradiated and untreated flies) were recorded. No significant negative effects of irradiation on pupal eclosion or the ability of newly emerged flies to fly were observed. Samples of eggs at reproductive fly‐ages (12‐, 15‐, and 17‐day‐old pairs) were collected and their hatch rates were assessed. At 60 Gy, females were completely sterilized, whereas complete sterilization of the males was observed only at 140 Gy (a small amount of fertility persisted even at 120 Gy). In addition to the above experiments, three fruit infestation trials were conducted with zucchini [Cucurbita pepo L. (Cucurbitaceae)] as the plant host and the pupae produced in those trials were collected and recorded. We observed significant (ca. 10%) infestation following treatment with up to 120 Gy and zero progeny only at 140 Gy, mirroring the egg‐hatch results. Our findings support the feasibility of SIT for the control of D. ciliatus.  相似文献   

19.
The olive fruit fly, Bactrocera oleae (Tephritidae), is a direct pest of olives that has invaded the Mediterranean Region and California. Psyttalia lounsburyi (Braconidae), a larval parasitoid from Africa, has been approved for release in the USA as a classical biological agent. However, it has been difficult to rear the parasitoid in the laboratory because it is multivoltine, and the host develops only in fresh olives, which are not available for most of the year. A method to rear the parasitoid on the factitious host, Mediterranean fruit fly (Ceratitis capitata) was developed, but it was not very efficient for producing large numbers of parasitoids needed for release. We developed a number of ways to improve the efficiency of rearing, including the frequency and duration of exposure for oviposition, optimizing the density of adult parasitoids, host age, as well as methods to quickly standardize the number of larvae exposed and to count emerging adult parasitoids. We significantly improved the number of progeny produced per female and the sex ratio of progeny. Thanks to these improvements, we produced in 2017 over 119,000 adults and shipped over 53,900 for release in California.  相似文献   

20.
We describe the diurnal temporal and spatial patterns of reproductive activities (mating and ovipositing) of adult tomato fruit flies, Neoceratitis cyanescens (Bezzi) (Diptera: Tephritidae), under laboratory, field‐cage and field conditions. The distribution pattern of flies in the different habitats (host and non‐host plants) showed temporal, physiological and sexual differences. Mature females were observed to frequent host plants preferentially, particularly in the late afternoon. By contrast, immature females preferred to rest on non‐host plants throughout the day. Males frequented mainly non‐host plants but some were observed on host fruits in the morning. Mating activity took place preferentially on non‐host plants, in the morning. In laboratory cages, females showed a strong daily propensity to engage in mating behaviour; the mean percentage of mating females was 88 ± 5%. Time allotted to this activity (4 h 52 min ± 1 h 23 min in laboratory cages and at least 3 h for the mating pairs observed in the field) appeared considerable compared to the time required to satisfy feeding or oviposition activities. Except for a few ovipositing females observed in the morning, oviposition activities occurred mainly in the late afternoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号