首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ru Liu  Xigui Wang 《Luminescence》2020,35(1):114-119
Eu3+‐doped 6LaPO4–3La3PO7–2La7P3O18 red luminescent phosphors were synthesized by co‐deposition and high‐temperature solid‐state methods and its polyphase state was confirmed by X‐ray diffraction analysis. Transmission electron microscopy showed the grain morphology as a mixture of rods and spheres. Luminescence properties of the phosphor were investigated and its red emission parameters were evaluated as a function of Eu3+ concentration (3.00–6.00 mol%). Excitation spectra of 6LaPO4–3La3PO7–2La7P3O18:Eu3+ showed strong absorption bands at 280, 395, and 466 nm, while the luminescence spectra exhibited prominent red emission peak centred at 615 nm (5D07F2) in the red region. CIE chromaticity coordinates of the 6LaPO4–3La3PO7–2La7P3O18:5%Eu3+ phosphor were (0.668, 0.313) in the red region, and defined its potential application as a red phosphor.  相似文献   

2.
Europium ion (Eu2+) doped Sr2SiO4 phosphors with greenish‐yellow emission were synthesized using microwave‐assisted sintering. The phase structure and photoluminescence (PL) properties of the obtained phosphor samples were investigated. The PL excitation spectra of the Sr2SiO4:Eu2+ phosphors exhibited a broad band in the range of 260 nm to 485 nm with a maximum at 361 nm attributed to the 5f‐4d allowed transition of the Eu2+ ions. Under an excitation at 361 nm, the Sr2SiO4:Eu2+ phosphor exhibited a greenish‐yellow emission peak at 541 nm with an International‐Commission‐on‐Illumination (CIE) chromaticity of (0.3064, 0.4772). The results suggest that the microwave‐assisted sintering method is promising for the synthesis of phosphors owing to the decreased sintering time without the use of additional reductive agents.  相似文献   

3.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A solid‐state reaction route‐based LiTi2 ? xEux(PO4)3 was phosphor synthesized for the first time to evaluate its luminescence performance by excitation, emission and lifetime (τ) measurements. The LiTi2 ? xEux(PO4)3 phosphor was excited at λexci. = 397 nm to give an intense orange–red (597 nm) emission attributed to the 5D07F1 magnetic dipole (ΔJ = ±1) transition and red (616 nm) emission (5D07F2), which is an electric dipole (ΔJ = ±2) transition of the Eu3+ ion. Beside this, excitation and emission spectra of host LiTi2(PO4)3 powder were also reported. The effect of Eu3+ concentration on luminescence characteristics was explained from emission and lifetime profiles. Concentration quenching in the LiTi2 ? xEux(PO4)3 phosphor was studied from the Dexter's model. Dipole–quadrupole interaction is found to be responsible for energy transfer among Eu3+ ions in the host lattice. The LiTi2 ? xEux(PO4)3 phosphor displayed a reddish‐orange colour realized from a CIE chromaticity diagram. We therefore suggest that this new phosphor could be used as an optical material of technological importance in the field of display devices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this article we report Eu3+ luminescence in novel K3Ca2(SO4)3Cl phosphors prepared by wet chemical methods. The Eu3+ emission was observed at 594 nm and 615 nm, keeping the excitation wavelength constant at 396 nm nearer to light‐emitting diode excitation, Furthermore, phosphors were characterized by X‐ray diffraction for the confirmation of crystallinity. The variation of the photoluminescence intensity with impurity concentration has also been discussed. Thus, prominent emission in the red region makes prepared phosphors more applicable for white light‐emitting diodes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
KBaPO4 luminescent powdered phosphors doped with rare earth elements (RE = Sm3+,Eu3+,Dy3+) were successfully synthesized using a wet chemical method to identify the most suitable phosphor for solid‐state lighting based on the measurement of their emission spectra at excitation wavelengths. The X‐ray diffraction pattern of the as‐prepared KBaPO4 was well matched with its standard JCPDS file no. 330996, indicating the formation of the desired compound. Scanning electron microscopy images revealed irregular morphology, the material crystallized particles aggregated and were non‐uniform with particle sizes ranging from 1 to 100 μm. Photoluminescence excitation and emission spectra clearly indicated that the phosphor containing the Sm3+‐activated KBaPO4 phosphors could be efficiently excited at 403 nm and exhibited an emission mainly including two wavelength peaks at 559 nm and 597 nm. The phosphor containing the Eu3+‐activated KBaPO4 phosphors could be efficiently excited at 396 nm and exhibited a bright red emission mainly including two wavelength peaks at 594 nm and 617 nm. The phosphor containing the Dy3+‐activated KBaPO4 phosphors could be efficiently excited at 349 nm and exhibited wavelength peaks at 474 nm and 570 nm.  相似文献   

7.
A novel blue‐emitting phosphor of Eu2+‐activated NaMgPO4 was prepared by combustion‐assisted synthesis. Sodium dihydrogen phosphate and magnesium nitrate were used as the source of Na, P and Mg, respectively. The ratios of magnesium and phosphorus components that were dissolved into the combustion solution were changed from 1:1 to 1:1.3. Their effect on the crystallinities and photoluminescence spectra of the phosphor particles were investigated. The post‐heated phosphor particles had a broad excitation wavelength that ranged from 240 to 410 nm. The phosphor particles prepared from the combustion solution with a 1:1.2 ratio of magnesium to phosphorus had maximum emission intensity under ultraviolet excitation. The effect of doped Eu2+ concentration on the emission intensity of NaMgPO4:Eu2+ was also investigated.  相似文献   

8.
Using a high‐temperature solid‐state reaction, the chlorine in Ba2YB2O6Cl is gradually replaced by F, and a new compound with the nominal chemical formula Ba2YB2O6F and two phosphors doped with Ce3+ and Eu3+, respectively, are obtained. X‐Ray diffraction and photoluminescence spectroscopy are used to characterize the as‐synthesized samples. The as‐synthesized Ba2YB2O6Cl exhibits bright blue emission in the spectral range ~ 330–410 nm with a maximum around 363 nm under X‐ray or UV excitation. Ba2YB2O6F:0.01Ce3+ exhibits blue emission in the range ~ 340–570 nm with a maximum around 383 nm. Ba2YB2O6F:0.01Eu3+ exhibits a predominantly 5D07 F2 emission (~610 nm) and the relative intensities of the 5D07 F0,1,2 emissions are tunable under different wavelength UV excitation. The luminescence behaviors of the two phosphors are explained simply in terms of the host composition and site occupancy probability of Ce3+ and Eu3+, respectively. The results indicate that these phosphors have potential application as a blue phosphor or as a red phosphor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A novel blue green‐emitting phosphor Ba2ZnSi2O7 : Eu2+ was prepared by combustion synthesis method and an efficient bluish green emission under from ultraviolet to visible light was observed. The emission spectrum shows a single intensive band centered at 503 nm, which corresponds to the 4f65d1 → 4f7 transition of Eu2+. The excitation spectrum is a broad band extending from 260 to 465 nm, which matches the emission of ultraviolet light‐emitting diodes (UV‐LEDs). The effect of doped Eu2+ concentration on the emission intensity of Ba2ZnSi2O7 : Eu2+ was also investigated. The result indicates that Ba2ZnSi2O7 : Eu2+ can be potentially useful as a UV radiation‐converting phosphor for white light‐emitting diodes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A series of Eu2+ activated SrCaP2O7 pyrophosphate phosphors were synthesized by the modified solid‐state reaction method. The X‐ray diffraction (XRD) and photoluminescence (PL) properties of these phosphors were investigated at room temperature. The excitation spectra indicate that these phosphors can be effectively excited by Hg‐free excitation. The emission spectra exhibit strong blue performance, which is due to the 4f65d1→4f7 transition of Eu2+. The Fourier transform infrared spectrum at room temperature was investigated and surface morphology has been studied by scanning electron microscope. The prepared phosphor exhibited intense blue emission at the 427 nm owing to Eu2+ ion by Hg‐free excitation at 330 nm, that is, solid‐state lighting excitation. Hence, the availability of such a phosphor will significantly help in the growth of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A europium (Eu)‐doped di‐calcium magnesium di‐silicate phosphor, Ca2MgSi2O7:Eu2+, was prepared using a solid‐state reaction method. The phase structure, particle size, surface morphology, elemental analysis, different stretching mode and luminescence properties were analyzed by X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) with energy dispersive X‐ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) and mechanoluminescence (ML). The phase structure of Ca2MgSi2O7:Eu2+ was an akermanite‐type structure, which belongs to the tetragonal crystallography with space group P4?21m; this structure is a member of the melilite group and forms a layered compound. The surface of the prepared phosphor was not found to be uniform and particle distribution was in the nanometer range. EDX and FTIR confirm the components of Eu2+‐doped Ca2MgSi2O7 phosphor. Under UV excitation, the main emission peak appeared at 530 nm, belonging to the broad emission ascribed to the 4f65d1→4f7 transition of Eu2+. The ML intensity of the prepared phosphor increased linearly with increasing impact velocity. A CIE color chromaticity diagram and ML spectrum confirmed that the prepared Ca2MgSi2O7:Eu2+ phosphor would emit green color and the ML spectrum was similar to that of PL, which indicated that ML is emitted from the same center of Eu2+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Ba3Al2O5Cl2:Eu2+ phosphor was prepared by combustion synthesis (CS). The prepared phosphor was excited at 329 nm; the phosphors shows an efficient bluish‐green wide‐band emission centred at 490 nm, which originates from the 4f6d1 → 4f7 transition of Eu2+ ions. The excitation spectra of the phosphors have a band centred at 329 nm. It was also characterized by XRD, FT–IR for confirmation of phase purity, and FT–IR analysis indicated the vibrations of metal–oxygen (M–O) groups. SEM shows the morphology of the phosphor at the submicron scale. The results indicate that Ba3Al2O5Cl2:Eu2+ phosphor may be applicable for solid‐state lighting purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A high intensity 464 nm excitable ZnWO4:Eu3+ red‐emitting phosphor for warm white lighting applications was prepared using a solid‐state reaction method by varying the dopant Eu3+ concentration. Crystalline purity and phase identification was confirmed and revealed using powder X‐ray diffraction and Rietveld refinement analysis. The surface morphology of Zn1‐xEuxWO4 (x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) was examined using scanning electron microscopy (SEM) techniques. From SEM analysis, the ZnWO4:Eu3+ phosphor prepared at 1–3% molar Eu3+ concentrations exhibited a small pebble‐like morphology with a smooth surface. On increasing the molar concentration of Eu3+ to >3%, the pebble stone morphology disappeared and a large, smooth irregular polygon‐shaped granular‐like morphology was obtained. Of the higher mol% Eu3+, the 4% Eu3+‐doped ZnWO4 showed the best photoluminescence properties with high intensity and sharp excitation at 395 and 464 nm, followed by red emission centred at 615 nm with excellent CIE coordinates (x = 0.58 and y = 0.41) in the core red region. Elemental composition and chemical state analysis were carried out for the 4% Eu3+‐doped ZnWO4 phosphor using X‐ray photoelectron spectroscopy and energy dispersive X‐ray spectroscopy studies. Based on all the above analyses, the Eu3+‐doped ZnWO4 phosphor was found to be a very efficient red‐emitting phosphor under near‐UV light as well as under visible light excitation and could be used for white LED and field emissive displays applications.  相似文献   

14.
Eu2+‐activated SrMg2Al16O27 novel phosphor was synthesized by a combustion method (550°C furnace). The prepared phosphor was first characterized by X‐ray diffraction (XRD) for confirmation of phase purity. SEM analysis showed the morphology of the phosphor. The photoluminescence characteristics showed broad‐band excitation at 324 nm, which was monitored at 465 nm emission wavelength. The SrMg2Al16O27:Eu2+ phosphor shows broad blue emission centred at 465 nm, emitting a blue light corresponding to 4f65d1 → 4f7 transition. Here we report the photoluminescence characteristics of the prepared phosphor and compare it with commercial BAM:Eu2+ phosphor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A series of blue phosphors Ca1.98–xMxPO4Cl:0.02Eu2+ (M = Mg and Sr) with different values of x were synthesized using a high‐temperature solid‐state reaction. X‐Ray diffraction and photoluminescence measurements were used to study the phase structure and luminescence properties. Ca2PO4Cl:0.02Eu2+ exhibits a tunable emission intensity and color due to the incorporation of Sr2+ or Mg2+. The incorporation of Sr2+ reduces the luminescence intensity and results in a slight red shift in the emission band. The incorporation of Mg2+ results in enhanced emission and a clear blue shift in the emission band along with a tunable chromatic coordination. Under excitation at λ = 334 nm, the emission intensity of the Mg2+‐doped Ca2PO4Cl:0.02Eu2+ is found to be 250% that of Ca2PO4Cl:0.02Eu2+. The luminescence behaviors of the as‐synthesized phosphors are discussed according to the host crystal structure and site occupancy of Eu2+. The results indicate that Mg2+‐doped Ca2PO4Cl:Eu2+ is more applicable as a near‐UV‐convertible blue phosphor for white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The synthesis, X‐ray diffraction, photoluminescence, TGA/DTA and FTIR techniques in Dy3+ activated Na2Sr(PO4)F phosphor are reported in this paper. The prepared phosphor gave blue, yellow and red emission in the visible region of the spectrum at 348 nm excitation. CIE color co‐ordinates of Na2Sr(PO4)F:Dy3+ are suitable as white light‐emitting phosphors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The K2Mg(SO4)2:Eu phosphor, synthesized by a solid‐state diffusion method, was studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. The X‐ray diffraction (XRD) pattern of the material was matched with the standard JCPDF No. 36–1499. For PL characteristics, K2Mg(SO4)2:Eu2+ showed an emission peak at 474 nm when excited at 340 nm, while it showed Eu3+ emission at 580 nm, and 594 nm splitting at 613 nm and 618 nm for an excitation of 396 nm wavelength due to radiative transitions from 5D0 to 7Fj (j = 0, 1, 2, 3). The Commission International de I′ Eclairage (CIE) chromaticity coordinates were also calculated for the K2Mg(SO4)2:Eu phosphor, and were close to the NTSC standard values. For the TL study, the prepared sample was irradiated using a 60Co source of γ‐irradiation at the dose rate of 0.322 kGy/h for 2 min. The formation of traps in K2Mg (SO4)2:Eu and the effects of γ‐radiation dose on the glow curve are discussed. Well defined broad glow peaks were obtained at 186°C. With increasing γ‐ray dose, the sample showed linearity in intensity. The presence of a single glow peak indicated that there was only one set of traps being activated within the particular temperature range. The presented phosphors were also studied for their fading, reusability and trapping parameters. There was just 2% fading during a period of 30 days, indicating no serious fading problem. Kinetic parameters were calculated using the initial rise method and Chen's half‐width method. Activation energy and frequency factor were found to be 0.77 eV and 1.41 × 106 sec?1.  相似文献   

18.
The Eu2+/Eu3+ mixed valence phosphor Ca2SiO2F2:Eu2+/Eu3+ was prepared using a solid‐state reaction synthesis method in a CO atmosphere, and the optical properties were investigated. The spectroscopic properties revealed that Ca2+ ions were occupied by both Eu2+ and Eu3+ ions in Ca2SiO2F2, and both ions were able to generate their characteristic emissions. A broad 5d → 4f Eu2+ band at ~470 nm and narrow 4f → 4f Eu3+ peaks upon excitation with n‐UV light were observed. The ratio between Eu2+ and Eu3+ emissions changed regularly, and the relative intensity of the red component from Eu3+ became systematically stronger with increasing overall Eu content. As a result, the emission color of these phosphors can be tunable from blue to pink under n‐UV light excitation.  相似文献   

19.
The CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor were prepared via combustion synthesis and studied by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), photoluminescence (PL) spectra and CIE coordinates. The phase formation of the obtained phosphor was analyzed by XRD and the result was confirmed by standard PDF Card No. 1539083. XRD data successfully indicated pure phase of CaAlBO4 phosphor. The crystal structure of CaAlBO4 phosphor is orthorhombic with space group Ccc2 (37). The SEM image of CaAlBO4 phosphor reveals an agglomerated morphology and non-uniform particle size. The EDS image provides evidence of the elements present and the chemical makeup of the materials. Under the 350 nm excitation, the emission spectrum of Dy3+ activated CaAlBO4 phosphor consists of two main groups of characteristic peaks located at 484 and 577 nm which are ascribed to 4F9/26H15/2 and 4F9/26H13/2 transition of Dy3+ respectively. The PL emission spectra of CaAlBO4:Eu3+ phosphor shows characteristics bands observed around 591 and 613 nm, which corresponds to 5D07F1 and 5D07F2 transition of Eu3+ respectively, upon 395 nm excitation wavelength. The emission spectra of Sm3+ activated CaAlBO4 phosphor shows three characteristic bands observed at 565, 601 and 648 nm which emits yellow, orange and red color. The prominent emission peak at the wavelength 601 nm, which is attributed to 4G5/26H7/2 transition, displays an orange emission. The CIE color coordinates of CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor are calculated to be (0.631, 0.368), (0.674, 0.325) and (0.073, 0.185). As per the obtained results, CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor may be applicable in eco-friendly lightning technology.  相似文献   

20.
《Luminescence》2017,32(3):334-340
A series of Eu2+‐activated barium orthosilicates (BaZnSiO4) were synthesized using a high‐temperature solid‐state reaction. A photoluminescence excitation study of Eu2+ shows a broad absorption band in the range of 270–450 nm, with multiple absorption peak maxima (310, 350 and 400 nm) due to 4f–5d electronic transition. The emission spectra of all the compositions show green color emission (in the spectral region 450–550 nm with a peak maximum at 502 nm and a shoulder at ~ 490 nm) with appropriate Comission Internationale de l'Eclairage (CIE) color coordinates. The two emission peaks are due to the presence of Eu2+ in two different Ba sites in the BaZnSiO4 host lattice. The energy transfers between the Eu2+ ions in BaZnSiO4 host are elucidated from the critical concentration quenching data based on the electronic multipolar interaction. All Eu2+‐activated BaZnSiO4 phosphor materials can be efficiently excited in the ultraviolet (UV) to near UV‐region (270–420 nm), making them attractive candidate as a green phosphor for solid state lighting–white light‐emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号