首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During postnatal ontogeny of vertebrates, allometric trends in certain morphological units or dimensions can shift drastically among isometry, positive allometry, and negative allometry. However, detailed patterns of allometric transitions in certain timings have not been explored well. Identifying the presence and nature of allometric shifts is essential for understanding the patterns of changes in relative size and shape and the proximal factors that are controlling these changes mechanistically. Allometric trends in 10 selected vertebrae (cervical 2–caudal 2) from hatchlings to very mature individuals of Alligator mississippiensis (Archosauria, Crocodylia) are reported in the present study. Allometric coefficients in 12 vertebral dimensions are calculated and compared relative to total body length, including centrum, neural spine, transverse process, zygapophysis, and neural pedicle. During the postnatal growth, positive allometry is the most common type of relative change (10 of the 12 dimensions), although the diameter of the neural canal shows a negative allometric trend. However, when using spurious breaks (i.e. allometric trends subdivided into growth stages using certain growth events, and key body sizes and/or ages), vertebral parts exhibit various pathways of allometric shifts. Based on allometric trends in three spurious breaks, separated by the end of endochondral ossification (body length: approximnately 0.9 m), sexual maturity (1.8 m), and the stoppage of body size increase (2.8 m), six types of ontogenetic allometric shifts are established. Allometric shifts exhibit a wide range from positive allometry restricted only in the early postnatal stage (Type I) to life‐long positive allometry (Type VI). This model of ontogenetic allometric shifts is then applied to interpret potential mechanisms (causes) of allometric changes, such as (1) growth itself (when allometric trend gradually decreases to isometric or negative allometric change: Type II–IV allometric shift); (2) developmental constraint (when positive allometry is limited only in the early growth stage: Type I allometric shift); and (3) functional or biomechanical drive (when positive allometry continues throughout ontogeny: Type VI allometric shift).  相似文献   

2.
Allometric relationships describe the proportional covariation between morphological, physiological, or life‐history traits and the size of the organisms. Evolutionary allometries estimated among species are expected to result from species differences in ontogenetic allometry, but it remains uncertain whether ontogenetic allometric parameters and particularly the ontogenetic slope can evolve. In bovids, the nonlinear evolutionary allometry between horn length and body mass in males suggests systematic changes in ontogenetic allometry with increasing species body mass. To test this hypothesis, we estimated ontogenetic allometry between horn length and body mass in males and females of 19 bovid species ranging from ca. 5 to 700 kg. Ontogenetic allometry changed systematically with species body mass from steep ontogenetic allometries over a short period of horn growth in small species to shallow allometry with the growth period of horns matching the period of body mass increase in the largest species. Intermediate species displayed steep allometry over long period of horn growth. Females tended to display shallower ontogenetic allometry with longer horn growth compared to males, but these differences were weak and highly variable. These findings show that ontogenetic allometric slope evolved across species possibly as a response to size‐related changes in the selection pressures acting on horn length and body mass.  相似文献   

3.
Analysis of ontogenetic development is crucial for understanding the emergence of phenotypic discrepancies between animal taxa. The study of allometric trajectories within a phylogenetic context is a feasible approach to assess the morphological change across different evolutionary lineages. Here, we report the disparity of multivariate ontogenetic allometry in the Echimyidae, a taxonomically diverse rodent family, as well as the effects of size on the evolution of skull ontogeny. The ontogenetic trajectories of 15 echimyid operational taxonomic unities (12 genera plus one genus with three species) belonging to all subfamilies and major clades, when plotted in allometric space, revealed strong and significant phylogenetic signals. Allometric trajectories were found to be constrained by phylogenetic ancestry, with changes approximately adjusting to a Brownian motion model of evolution. Moreover, the occupation of allometric space by echimyid taxa was significantly correlated with adult size rather than with shape, suggesting that the variation in adult size might result in critically intrinsic and structural constraints on allometric coefficients. These findings disagreed with the hypothesis that allometric disparities might be mainly adaptive with undetectable phylogenetic signals.  相似文献   

4.
We used pairs of congeneric shrub species from contrasting habitats to test for repeated evolutionary divergence in leaf-stem allometry and shoot hydraulic architecture in response to water availability. Allometric relationships and mean ratios between leaf size (individual and total area and mass per shoot) and stem cross-sectional area were compared between habitats using six species pairs representing three genera (Arctostaphylos, Baccharis, Ceanothus). We measured correlations among evolutionary changes in allometric, morphological, and physiological traits using phylogenetic independent contrasts. Allometric analysis revealed habitat differences: slopes were homogeneous among species (=1.46), but the more mesic-adapted species generally supported more leaf area at a common stem cross-sectional area. Reducing bivariate allometry to a ratio obscured this pattern because ratios varied with stem size, which was unrelated to habitat. Mean individual leaf size also was not correlated with either water availability or leaf-stem allometry. Stem hydraulic conductivity was generally lower in the xeric-adapted species of each pair, and its evolution mirrored changes in shoot allometry. This study provides evidence for repeated evolutionary divergence in shoot allometry and hydraulic architecture associated with water availability and demonstrates the importance of shoot allometry to water relations, independent of leaf size.  相似文献   

5.
When males are the larger sex, a positive allometric relationship between male and female sizes is often found across populations of a single species (i.e. Rensch’s rule). This pattern is typically explained by a sexual selection pressure on males. Here, we report that the allometric relationship was negative across populations of a shell-brooding cichlid fish Lamprologus callipterus, although males are extremely larger than females. Male L. callipterus collect and defend empty snail shells in each of which a female breeds. We found that, across six populations, male and female sizes are positively correlated with not only sexual and fecundity selection indices, but also with shell sizes. Given their different reproductive behaviours, these correlations mean that males are required to be more powerful, and thus larger, to transport larger shells, while female bodies are reduced to the shell size to enable them to enter the shells. Among the three size selections (sexual selection, fecundity selection and shell size), shell size explained the allometry, suggesting that females are more strongly subject to size selection associated with shell size availability than males. However, the allometry was violated when considering an additional population where size-selection regimes of males differed from that of other populations. Therefore, sexual size allometry will be violated by body size divergence induced by multiple selection regimes.  相似文献   

6.
How selection pressures acting within species interact with developmental constraints to shape macro‐evolutionary patterns of species divergence is still poorly understood. In particular, whether or not sexual selection affects evolutionary allometry, the increase in trait size with body size across species, of secondary sexual characters, remains largely unknown. In this context, bovid horn size is an especially relevant trait to study because horns are present in both sexes, but the intensity of sexual selection acting on them is expected to vary both among species and between sexes. Using a unique data set of sex‐specific horn size and body mass including 91 species of bovids, we compared the evolutionary allometry between horn size and body mass between sexes while accounting for both the intensity of sexual selection and phylogenetic relationship among species. We found a nonlinear evolutionary allometry where the allometric slope decreased with increasing species body mass. This pattern, much more pronounced in males than in females, suggests either that horn size is limited by some constraints in the largest bovids or is no longer the direct target of sexual selection in very large species.  相似文献   

7.
Neoconocephalus Tettigoniidae are a model for the evolution of acoustic signals as male calls have diversified in temporal structure during the radiation of the genus. The call divergence and phylogeny in Neoconocephalus are established, but in tettigoniids in general, accompanying evolutionary changes in hearing organs are not studied. We investigated anatomical changes of the tympanal hearing organs during the evolutionary radiation and divergence of intraspecific acoustic signals. We compared the neuroanatomy of auditory sensilla (crista acustica) from nine Neoconocephalus species for the number of auditory sensilla and the crista acustica length. These parameters were correlated with differences in temporal call features, body size, life histories and different phylogenetic positions. By this, adaptive responses to shifting frequencies of male calls and changes in their temporal patterns can be evaluated against phylogenetic constraints and allometry. All species showed well‐developed auditory sensilla, on average 32–35 between species. Crista acustica length and sensillum numbers correlated with body size, but not with phylogenetic position or life history. Statistically significant correlations existed also with specific call patterns: a higher number of auditory sensilla occurred in species with continuous calls or slow pulse rates, and a longer crista acustica occurred in species with double pulses or slow pulse rates. The auditory sensilla show significant differences between species despite their recent radiation, and morphological and ecological similarities. This indicates the responses to natural and sexual selection, including divergence of temporal and spectral signal properties. Phylogenetic constraints are unlikely to limit these changes of the auditory systems.  相似文献   

8.
Developmental plasticity may promote divergence by exposing genetic variation to selection in novel ways in new environments. We tested for this effect in the static allometry (i.e. scaling on body size) of traits in advertisement signals, body and genitalia. We used a member of the Enchenopa binotata species complex of treehoppers – a clade of plant‐feeding insects in which speciation is associated with colonization of novel environments involving marked divergence in signals, subtle divergence in body size and shape, and no apparent divergence in genitalia. We found no change in mean allometric slopes across environments, but substantial genetic variation and genotype × environment interaction (G × E) in allometry. The allometry of signal traits showed the most genetic variation and G × E, and that of genitalia showed the weakest G × E. Our findings suggest that colonizing novel environments may have stronger diversifying consequences for signal allometry than for genitalia allometry. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 187–196.  相似文献   

9.
Julian Huxley showed that within‐species (static) allometric (power‐law) relations can arise from proportional growth regulation with the exponent in the power law equaling the factor of proportionality. Allometric exponents may therefore be hard to change and act as constraints on the independent evolution of traits. In apparent contradiction to this, many empirical studies have concluded that static allometries are evolvable. Many of these studies have been based, however, on a broad definition of allometry that includes any monotonic shape change with size, and do not falsify the hypothesis of constrained narrow‐sense allometry. Here, we present the first phylogenetic comparative study of narrow‐sense allometric exponents based on a reanalysis of data on eye span and body size in stalk‐eyed flies (Diopsidae). Consistent with a role in sexual selection, we found strong evidence that male slopes were tracking “optima” based on sexual dimorphism and relative male trait size. This tracking was slow, however, with estimated times of 2–3 million years for adaptation to exceed ancestral influence on the trait. Our results are therefore consistent with adaptive evolution on million‐year time scales, but cannot rule out that static allometry may act as a constraint on eye‐span adaptation at shorter time scales.  相似文献   

10.
Communication among birds constitutes the foundation of social interactions, and acoustic signals should evolve based on their efficiency to convey information. We examined the acoustic signals of an Amazonian bird assemblage by testing whether vocal allometry was the main driver in song evolution. We expected the acoustic parameters of the songs to follow general allometric rules, as the size of the vocal apparatus limits the vibration capacity of the syrinx. We tested whether smaller species use lower than expected frequencies due to environmental filtering by examining deviations from allometric relationships. Alternatively, small species could use higher than expected frequencies as a consequence of competitive processes that promote the use of vacant portions of the acoustic spectrum. We recorded birdsongs between 2013 and 2018 and measured three spectral parameters: the dominant frequency (FDOM), the minimum fundamental frequency (FFMIN) and the maximum fundamental frequency (FFMAX). We created an allometric model based on the acoustic pattern of the larger species and used it to predict the frequencies of the smaller species. We compared the frequency values expected by allometry with the observed parameters of the avian assemblage. We found that FDOM and FFMIN were higher than expected by allometry alone, supporting competition structuring in the acoustic ecology of the assemblage. The successful insertion of many species into the acoustic space is the result of long processes of natural selection, with our data highlighting the importance of competition in the vocal structuring of the community.  相似文献   

11.
The small size and apparent external morphological similarity of the minute salamanders of the genus Thorius have long hindered evolutionary studies of the group. We estimate gene and species trees within the genus using mitochondrial and nuclear DNA from nearly all named and many candidate species and find three main clades. We use this phylogenetic hypothesis to examine patterns of morphological evolution and species coexistence across central and southern Mexico and to test alternative hypotheses of lineage divergence with and without ecomorphological divergence. Sympatric species differ in body size more than expected after accounting for phylogenetic relationship, and morphological traits show no significant phylogenetic signal. Sympatric species tend to differ in a combination of body size, presence or absence of maxillary teeth, and relative limb or tail length, even when they are close relatives. Sister species of Thorius tend to occupy climatically similar environments, which suggests that divergence across climatic gradients does not drive species formation in the genus. Rather than being an example of cryptic species formation, Thorius more closely resembles an adaptive radiation, with ecomorphological divergence that is bounded by organism‐level constraints. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 622–643.  相似文献   

12.
Brain size is strongly associated with body size in all vertebrates. This relationship has been hypothesized to be an important constraint on adaptive brain size evolution. The essential assumption behind this idea is that static (i.e., within species) brain–body allometry has low ability to evolve. However, recent studies have reported mixed support for this view. Here, we examine brain–body static allometry in Lake Tanganyika cichlids using a phylogenetic comparative framework. We found considerable variation in the static allometric intercept, which explained the majority of variation in absolute and relative brain size. In contrast, the slope of the brain–body static allometry had relatively low variation, which explained less variation in absolute and relative brain size compared to the intercept and body size. Further examination of the tempo and mode of evolution of static allometric parameters confirmed these observations. Moreover, the estimated evolutionary parameters indicate that the limited observed variation in the static allometric slope could be a result of strong stabilizing selection. Overall, our findings suggest that the brain–body static allometric slope may represent an evolutionary constraint in Lake Tanganyika cichlids.  相似文献   

13.
Long‐distance acoustic signals are widely used in animal communication systems and, in many cases, are essential for reproduction. The acoustic adaptation hypothesis (AAH) implies that acoustic signals should be selected for further transmission and better content integrity under the acoustic constraints of the habitat in which they are produced. In this study, we test predictions derived from the AAH in frogs. Specifically, we focus on the difference between torrent frogs and frogs calling in less noisy habitats. Torrents produce sounds that can mask frog vocalizations and constitute a major acoustic constraint on call evolution. We combine data collected in the field, material from scientific collections and the literature for a total of 79 primarily Asian species, of the families Ranidae, Rhacophoridae, Dicroglossidae and Microhylidae. Using phylogenetic comparative methods and including morphological and environmental potential confounding factors, we investigate putatively adaptive call features in torrent frogs. We use broad habitat categories as well as fine‐scale habitat measurements and test their correlation with six call characteristics. We find mixed support for the AAH. Spectral features of torrent frog calls are different from those of frogs calling in other habitats and are related to ambient noise levels, as predicted by the AAH. However, temporal call features do not seem to be shaped by the frogs’ calling habitats. Our results underline both the complexity of call evolution and the need to consider multiple factors when investigating this issue.  相似文献   

14.
Ontogenetic allometry, how species change with size through their lives, and heterochony, a decoupling between shape, size, and age, are major contributors to biological diversity. However, macroevolutionary allometric and heterochronic trends remain poorly understood because previous studies have focused on small groups of closely related species. Here, we focus on testing hypotheses about the evolution of allometry and how allometry and heterochrony drive morphological diversification at the level of an entire species‐rich and diverse clade. Pythons are a useful system due to their remarkably diverse and well‐adapted phenotypes and extreme size disparity. We collected detailed phenotype data on 40 of the 44 species of python from 1191 specimens. We used a suite of analyses to test for shifts in allometric trajectories that modify morphological diversity. Heterochrony is the main driver of initial divergence within python clades, and shifts in the slopes of allometric trajectories make exploration of novel phenotypes possible later in divergence history. We found that allometric coefficients are highly evolvable and there is an association between ontogenetic allometry and ecology, suggesting that allometry is both labile and adaptive rather than a constraint on possible phenotypes.  相似文献   

15.
Allometric relationships between sexually selected traits and body size have been extensively studied in recent decades. While sexually selected traits generally display positive allometry, a few recent reports have suggested that allometric relationships are not always linear. In male cervids, having both long antlers and large size provides benefits in terms of increased mating success. However, such attributes are costly to grow and maintain, and these costs might constrain antler length from increasing at the same rate as body mass in larger species if the quantity of energy that males can extract from their environment is limiting. We tested for possible nonlinearity in the relationship between antler size and body mass (on a log–log scale) among 31 cervids and found clear deviation from linearity in the allometry of antler length. Antler length increased linearly until a male body mass threshold at approximately 110 kg. Beyond this threshold, antler length did not change with increasing mass. We discuss this evidence of nonlinear allometry in the light of life-history theory and stress the importance of testing for nonlinearity when studying allometric relationships.  相似文献   

16.
Allometric trends in the degree of sexual dimorphism with body size have long fascinated evolutionary biologists. Many male-biased clades display more prominent sexual dimorphism in larger taxa (Rensch's rule), with most examples documenting this pattern for body size dimorphism. Although sexual dimorphism in traits other than body size is equally functionally relevant, characterizing allometric patterns of sexual dimorphism in such traits is hampered by lack of an analytical framework that can accommodate multivariate phenotypes. In this article, we derive a multivariate equivalency for investigating trends in sexual dimorphism—relative to overall body size—across taxa and provide a generalized test to determine whether such allometric patterns correspond with Rensch's rule. For univariate linear traits such as body size, our approach yields equivalent results to those from standard procedures, but our test is also capable of detecting trends in multivariate datasets such as shape. Computer simulations reveal that the method displays appropriate statistical properties, and an empirical example in Mediterranean lizards provides the first demonstration of Rensch's rule in a multivariate phenotype (head shape). Our generalized procedure substantially extends the analytical toolkit for investigating macroevolutionary patterns of sexual dimorphism and seeking a better understanding of the processes that underlie them.  相似文献   

17.
Frogs are a representative taxon that use advertisement calls to aid in reproduction. In most frog species, calls vary with body size, and allometric constraints between body size and call frequency have been widely reported among anuran species. Although this variation is an important driver of sexual selection in frogs, male advertisement call strategies may also vary according to body size. In this study, we conducted playback experiments on the male forest green tree frog (Zhangixalus arboreus) to determine whether male advertisement call characteristics and strategies vary according to body size and the amplitude of intraspecific chorus noise. The results indicated that the calls of larger individuals are louder and lower than those of smaller ones, who call more frequently; moreover, the calls become lower, and the number of calls decreases, as noise levels increase. These findings suggest that forest green tree frog emits lower calls or refrains from calling when chorus noise increases, and that intraspecific variation in advertisement call characteristics can induce different strategies in response to chorus noise. Because advertisement call variation with body size is common among frog species, intraspecific variation in male advertisement call strategies may also be a common phenomenon.  相似文献   

18.
Static adult craniometric allometry was evaluated in a sample of 66Otolemur crassicaudatus skulls (34 males, 32 females). Although cranial measures were equally well correlated to skull length in males and females, there were noteworthy differences in the exponential values between the sexes. These results underlined the need for caution when allometric analyses are based on pooled data. From the cranial allometric analyses it is concluded that the longer the skull, the shorter and the narrower the maxilla, and the broader the bizygomatic distance. Although cranial length increased proportionately to the increase in skull length, the cranial width in females was positively allometric whilst in males it was negatively allometric. Allometric analyses of mandibular dimensions suggest that larger animals will have proportionately longer mandibulae, which will, in turn, be relatively wider across the gonia, yet shallower behind the first molars. It is postulated that the disproportionate widening of the zygomata might be related to the widening across the gonia.  相似文献   

19.
Giraffes have remarkably long and slender limb bones, but it is unknown how they grow with regard to body mass, sex, and neck length. In this study, we measured the length, mediolateral (ML) diameter, craniocaudal (CC) diameter and circumference of the humerus, radius, metacarpus, femur, tibia, and metatarsus in 10 fetuses, 21 females, and 23 males of known body masses. Allometric exponents were determined and compared. We found the average bone length increased from 340 ± 50 mm at birth to 700 ± 120 mm at maturity, while average diameters increased from 30 ± 3 to 70 ± 11 mm. Fetal bones increased with positive allometry in length (relative to body mass) and in diameter (relative to body mass and length). In postnatal giraffes bone lengths and diameters increased iso‐ or negatively allometric relative to increases in body mass, except for the humerus CC diameter which increased with positive allometry. Humerus circumference also increased with positive allometry, that of the radius and tibia isometrically and the femur and metapodials with negative allometry. Relative to increases in bone length, both the humerus and femur widened with positive allometry. In the distal limb bones, ML diameters increased isometrically (radius, metacarpus) or positively allometric (tibia, metatarsus) while the corresponding CC widths increased with negative allometry and isometrically, respectively. Except for the humerus and femur, exponents were not significantly different between corresponding front and hind limb segments. We concluded that the patterns of bone growth in males and females are identical. In fetuses, the growth of the appendicular skeleton is faster than it is after birth which is a pattern opposite to that reported for the neck. Allometric exponents seemed unremarkable compared to the few species described previously, and pointed to the importance of neck elongation rather than leg elongation during evolution. Nevertheless, the front limb bones and especially the humerus may show adaptation to behaviors such as drinking posture. J. Morphol. 276:503–516, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Evolutionary theory predicts that divergent selection pressures across elevational gradients could cause adaptive divergence and reproductive isolation in the process of ecological speciation. Although there is substantial evidence for adaptive divergence across elevation, there is less evidence that this restricts gene flow. Previous work in the boreal chorus frog (Pseudacris maculata) has demonstrated adaptive divergence in morphological, life history and physiological traits across an elevational gradient from approximately 1500–3000 m in the Colorado Front Range, USA. We tested whether this adaptive divergence is associated with restricted gene flow across elevation – as would be expected if incipient speciation were occurring – and, if so, whether behavioural isolation contributes to reproductive isolation. Our analysis of 12 microsatellite loci in 797 frogs from 53 populations revealed restricted gene flow across elevation, even after controlling for geographic distance and topography. Calls also varied significantly across elevation in dominant frequency, pulse number and pulse duration, which was partly, but not entirely, due to variation in body size and temperature across elevation. However, call variation did not result in strong behavioural isolation: in phonotaxis experiments, low‐elevation females tended to prefer an average low‐elevation call over a high‐elevation call, and vice versa for high‐elevation females, but this trend was not statistically significant. In summary, our results show that adaptive divergence across elevation restricts gene flow in P. maculata, but the mechanisms for this potential incipient speciation remain open.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号