首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance. In recent decades, the largest extensions of LOS have been reported at high northern latitudes, but further warming‐induced LOS extensions may be constrained by too short photoperiod or unfulfilled chilling requirements. Here, we studied subarctic grasslands, which cover a vast area and contain large C stocks, but for which LOS changes under further warming are highly uncertain. We measured LOS extensions of Icelandic subarctic grasslands along natural geothermal soil warming gradients of different age (short term, where the measurements started after 5 years of warming and long term, i.e., warmed since ≥50 years) using ground‐level measurements of normalized difference vegetation index. We found that LOS linearly extended with on average 2.1 days per °C soil warming up to the highest soil warming levels (ca. +10°C) and that LOS had the potential to extend at least 1 month. This indicates that the warming impact on LOS in these subarctic grasslands will likely not saturate in the near future. A similar response to short‐ and long‐term warming indicated a strong physiological control of the phenological response of the subarctic grasslands to warming and suggested that genetic adaptations and community changes were likely of minor importance. We conclude that the warming‐driven extension of the LOSs of these subarctic grasslands did not saturate up to +10°C warming, and hence that growing seasons of high‐latitude grasslands are likely to continue lengthening with future warming (unless genetic adaptations or species shifts do occur). This persistence of the warming‐induced extension of LOS has important implications for the C‐sink potential of subarctic grasslands under climate change.  相似文献   

2.
When vegetation trends over time are analysed from an appropriate long‐term perspective using palaeoecological records, the concept of potential natural vegetation (PNV) is unsupported because of continual vegetation changes driven by natural or anthropic forcings. However, some palaeoecological records show long‐lasting (i.e. millennial) vegetation stability at multidecadal to centennial time scales in the absence of natural and human drivers of change, which fits within the definition of PNV. A more detailed palaeoecological analysis of these records shows that they are an exception rather than a rule, and that they cannot be differentiated from other transient ecological states. Therefore, long records of vegetation stability cannot be considered to be valid evidence for PNV. From a palaeoecological perspective, the PNV concept is concluded to be unnecessary, even in cases of multidecadal to centennial vegetation stability in the absence of environmental disturbance.  相似文献   

3.
Fire regimes have a major influence on biodiversity in many ecosystems around the globe, yet our understanding of the longer‐term response of fauna is typically poor. We sampled bats with ultrasonic detectors in three different years in dry sclerophyll forests of south‐eastern Australia in a long‐term, management‐scale experiment. Frequent low‐intensity burning (every 2 or 4 years plus unburnt) and logging (with 33% retention of the original unlogged tree basal area) were manipulated to assess their effects on bats. We found that both the fire regime and regrowth after logging influenced the local bat community. The routine burning treatment (burnt every 4 years) in unlogged forest was consistently related to higher total bat activity (2–3 times) and species richness when compared to unburnt controls and logging treatments. Foraging activity was more variable, but it was typically lowest in Unlogged Unburnt Controls. These patterns were evident at both the detector site scale and the block scale and were probably due to a reduction in understorey stem density with burning, especially in unlogged forest. Bat activity was significantly lower across the entire study area (including controls) in 1 year, when sampling occurred within 6 months of burning. When pooled across burning treatments, unlogged forest supported higher bat activity (1.5 times) and species richness than logged forest (12‐ to 17‐year‐old regrowth), again most likely because of a negative association with high stem density in regrowth after logging. We conclude that low‐intensity burning had positive benefits for echolocating bats, most notably in unlogged forest. However, careful planning is required to generate heterogeneous vegetation patterns that are likely to be most suitable for a range of taxa.  相似文献   

4.
5.
6.
Creating, restoring, and sustaining forests in urban areas are complicated by habitat fragmentation, invasive species, and degraded soils. Although there is some research on the outcomes of urban reforestation plantings during the first 5 years, there is little research on longer term outcomes. Here, we compare the successional trajectories of restored and unrestored forest sites 20 years after initiating restoration. The sites are located within the Rodman's Neck area of Pelham Bay Park, in the northeast corner of the Bronx in New York City (NYC), U.S.A. Compared with unrestored sites, we saw improvements in species diversity, greater forest structure complexity, and evidence of the regeneration and retention of native tree species in restored sites. In addition, we found differences in restoration outcomes depending on the level of intervention: clearing exotic shrubs and vines and planting native trees and shrubs improved tree diversity and canopy closure to a greater extent than clearing exotics alone, and the mechanical removal of invasive plants after the native plantings further improved some measures of restoration, such as tree species diversity and native tree regeneration. The results of this study suggest that the goal of a sustainable forest ecosystem dominated by native trees and other plant species may not be achievable without continued human intervention on site. In addition, these results indicate that the restoration approach adopted by NYC's reforestation practitioners is moving the site toward a more desirable vegetative community dominated by native species.  相似文献   

7.
This paper documents changes in the floristic composition of Eucalyptus marginata Donn (jarrah) woodlands over 7 years of recovery from continual, intensive livestock grazing. In remnants of native woodland left after agricultural clearing, which have been subjected to livestock grazing, comparisons were made between the floristics of fenced exclosure plots and open plots that continued to be grazed. The vegetation in nearby remnants, which had not been subjected to livestock grazing, was also surveyed. An initial increase in annual exotic pasture species after grazing relief was only temporary and highly influenced by fluctuations in annual climatic patterns, particularly rainfall distribution and abundance. Subsequent years saw a decrease in exotic annuals in exclosure plots and an increase in native perennials, in a trend towards becoming more floristically similar to the ungrazed sites. Germination of overstorey species was observed in the exclosure plots, however, development of seedlings and saplings was sparse. Results indicate that for jarrah woodland in southwestern Australia, natural regeneration is possible after the removal of livestock, with the return (within 6 years) of native species richness to levels similar to those found in ungrazed vegetation. Re‐establishment of cover, however, appears to take longer. The floristic dynamics are described in terms of a nonequilibrium model. Two vegetation states exist, degraded remnants with an understorey dominated by annual species, and ungrazed vegetation with an understorey dominated by perennial shrubs and herbs. The former state is maintained by continual heavy grazing by livestock. Upon relief from grazing, the vegetation undergoes a transition towards floristic similarity to ungrazed vegetation. After 6 years, vegetation change in the exclosure plots appears to be continuing and therefore it is still in transition.  相似文献   

8.
9.
10.
We used a long‐term fire experiment in south‐east Queensland, Australia, to determine the effects of frequent prescribed burning and fire exclusion on understorey vegetation (<7.5 m) richness and density in Eucalyptus pilularis forest. Our study provided a point in time assessment of the standing vegetation and soil‐stored vegetation at two experimental sites with treatments of biennial burning, quadrennial burning since 1971–1972 and no burning since 1969. Vegetation composition, density and richness of certain plant groups in the standing and soil‐stored vegetation were influenced by fire treatments. The density of resprouting plants <3 m in height was higher in the biennially burnt treatment than in the unburnt treatment, but resprouters 3–7.5 m in height were absent from the biennial burning treatment. Obligate seeder richness and density in the standing vegetation was not significantly influenced by the fire treatments, but richness of this plant group in the seed bank was higher in the quadrennial treatment at one site and in the long unburnt treatment at the other site. Long unburnt treatments had an understorey of rainforest species, while biennial burning at one site and quadrennial burning at the other site were associated with greater standing grass density relative to the unburnt treatment. This difference in vegetation composition due to fire regime potentially influences the flammability of the standing understorey vegetation. Significant interactions between fire regime and site, apparent in the standing and soil‐stored vegetation, demonstrate the high degree of natural variability in vegetation community responses to fire regimes.  相似文献   

11.
12.
Land managers frequently apply vegetation removal and seeding treatments to restore ecosystem function following woody plant encroachment, invasive species spread, and wildfire. However, the long‐term outcome of these treatments is unclear due to a lack of widespread monitoring. We quantified how vegetation removal (via wildfire or management) with or without seeding and environmental conditions related to plant community composition change over time in 491 sites across the intermountain western United States. Most community metrics took over 10 years to reach baseline conditions posttreatment, with the slowest recovery observed for native perennial cover. Total cover was initially higher in sites with seeding after vegetation removal than sites with vegetation removal alone, but increased faster in sites with vegetation removal only. Seeding after vegetation removal was associated with rapidly increasing non‐native perennial cover and decreasing non‐native annual cover. Native perennial cover increased in vegetation removal sites irrespective of seeding and was suppressed by increasing non‐native perennial cover. Seeding was associated with higher non‐native richness across the monitoring period as well as initially higher, then declining, total and native species richness. Several cover and richness recovery metrics were positively associated with mean annual precipitation and negatively associated with mean annual temperature, whereas relationships with weather extremes depended on the lag time and season. Our results suggest that key plant groups, such as native perennials and non‐native annuals, respond to restoration treatments at divergent timescales and with different sensitivities to climate and weather variation.  相似文献   

13.
14.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

15.
Deserts shrubs are well known to facilitate vegetation aggregation, mostly through seed trapping, and stress amelioration during and after plant establishment. Because vegetation aggregation effects are a by‐product of shrub presence, beneficiary species may not only be native, but also exotic. However, despite the high risk that exotic invasive species pose to ecosystem services, little is known of the role of desert shrubs on plant invasions. We assessed the influence of two shrub species on the non‐dormant soil seed bank (i.e. the number of seeds that readily germinate with sufficient water availability) of an invasive annual grass (Schismus barbatus) and of coexisting native species in a central‐northern Monte Desert (Argentina). Soil samples were collected beneath the canopies of two dominant shrub species (Bulnesia retama and Larrea divaricata) and in open spaces (i.e. intercanopies) in May 2001. Overall, the density of germinated seedlings of Schismus and that of the native species were negatively associated across microsite types. Schismus density was similar to that of all native species pooled together (mostly annuals), and was highest in Larrea samples (with no significant differences between Bulnesia and intercanopies). On the contrary, the density of all native species pooled together was highest in Bulnesia samples. Our results suggest that shrubs may contribute to plant invasions in our study system but, most importantly, they further illustrate that this influence can be species specific. Further research is needed to assess the relative importance of in situ seed production (and survival) and seed redistribution on soil seed bank spatial patterns.  相似文献   

16.
Wind speed is one of the most important factors for seed wind dispersal. A wind speed reduction region, which could be influenced by vegetation arrangement, will form in the lee of vegetation and therefore affects the seed dispersal. Here, by taking shrub as an example, quantitative differences in seed dispersals of low vegetation between single element and windbreak‐like clumps are numerically investigated. The local variation of stream‐wise wind speed is focused. Empirically parameterized functions of leeward wind distributions are employed. It reveals that the accumulative probability of dispersed seeds from a point source with considering leeward wind reduction could be well fitted by a logistic function. For a fixed release height or vegetation porosity, accumulative probabilities for single element and those for windbreak‐like clumps would intersect at a leeward location. This intersection location decreases linearly with release height but exponentially with porosity. The fitting parameter r0 (the center of logistic function) for single element increases as the same manner for windbreak‐like clumps, with regard to the increase of release height, porosity, and height. But, the increasing rates for single element are higher than those for windbreak‐like clumps. The fitting parameter p (the power index of logistic function) for single element is generally larger than that for windbreak‐like clumps. With the increase of release height, p decreases at first but increases then for single element, while it shows opposite trend for windbreak‐like clumps. p decreases with porosity for both single element and windbreak‐like clumps. But, the decreasing rate for single element is lower than that for windbreak‐like clumps. p increases exponentially with height for windbreak‐like clumps, while it almost keeps constant for single element. These results suggest the potential importance of vegetation arrangement on seed dispersal and therefore possibly provide additional reason for the disagreement among observed dispersal kernels.  相似文献   

17.
Understanding how organisms adapt to environmental variation is a key challenge of biology. Central to this are bet‐hedging strategies that maximize geometric mean fitness across generations, either by being conservative or diversifying phenotypes. Theoretical models have identified environmental variation across generations with multiplicative fitness effects as driving the evolution of bet‐hedging. However, behavioral ecology has revealed adaptive responses to additive fitness effects of environmental variation within lifetimes, either through insurance or risk‐sensitive strategies. Here, we explore whether the effects of adaptive insurance interact with the evolution of bet‐hedging by varying the position and skew of both arithmetic and geometric mean fitness functions. We find that insurance causes the optimal phenotype to shift from the peak to down the less steeply decreasing side of the fitness function, and that conservative bet‐hedging produces an additional shift on top of this, which decreases as adaptive phenotypic variation from diversifying bet‐hedging increases. When diversifying bet‐hedging is not an option, environmental canalization to reduce phenotypic variation is almost always favored, except where the tails of the fitness function are steeply convex and produce a novel risk‐sensitive increase in phenotypic variance akin to diversifying bet‐hedging. Importantly, using skewed fitness functions, we provide the first model that explicitly addresses how conservative and diversifying bet‐hedging strategies might coexist.  相似文献   

18.
19.
Experimental evolution is becoming a popular approach to study the genomic selection response of evolving populations. Computer simulation studies suggest that the accuracy of the signature increases with the duration of the experiment. Since some assumptions of the computer simulations may be violated, it is important to scrutinize the influence of the experimental duration with real data. Here, we use a highly replicated Evolve and Resequence study in Drosophila simulans to compare the selection targets inferred at different time points. At each time point, approximately the same number of SNPs deviates from neutral expectations, but only 10% of the selected haplotype blocks identified from the full data set can be detected after 20 generations. Those haplotype blocks that emerge already after 20 generations differ from the others by being strongly selected at the beginning of the experiment and display a more parallel selection response. Consistent with previous computer simulations, our results demonstrate that only Evolve and Resequence experiments with a sufficient number of generations can characterize complex adaptive architectures.  相似文献   

20.
Abstract. 1. A sequence of population estimates for two now-extinct populations of Euphydryas editha bayensis is presented. After removing biased sampling days, estimates of demographic parameters from the long-term data were used to test five hypotheses built from studies of shorter duration. Such tests of short-term conclusions are rare.
2. The long-term demographic parameters include sex ratio, mortality, dispersal, mean flight date, and duration of flight season. The two populations differed with respect to sex ratio and mean flight date, and sexes differed with respect to mortality and dispersal.
3. Three of the five hypotheses were supported directly or indirectly by patterns in the parameters. These hypotheses predict that dynamics are asynchronous over the long term, that larval mortality, not adult abundance and mortality, is the primary determinant of changes in population size, and that topography mediates larval mortality.
4. Two hypotheses were not supported or supported only in part. Flight phenology differed between the study populations as predicted, but flight order was opposite that expected from the topographic composition of each habitat. Variability in sex ratio and the occurrence of female-biased ratios in the habitat of one of the populations also suggest that previous observations of sex ratio are not generalisable.
5. Populations were extremely volatile over the study period. Removal of biased sampling days did not change basic trends or fluctuations in the data. This volatility suggests that E. editha populations residing in similar habitats may risk immediate extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号