首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the influence of environmental variables, particularly temperature and rainfall, on the breeding behavior of amphibians is widely recognized, relatively few studies have addressed how the moon affects amphibian behavior. Yet, the lunar cycle provides several rhythmic temporal cues that animals could use to time important group events such as spawning, and the substantial changes in light levels associated with the different moon phases may also affect the behavior of nocturnal frogs. Using seven years of field observation data, we tested for lunar effects on the reproductive activity of male and female Eastern Gray Treefrogs (Hyla versicolor). We found that chorusing and breeding activity was statistically more likely to occur around the first quarter of the moon and during intermediately bright nights, but that reproductive activity also occurred during various other times during the lunar cycle. We discuss these findings in relation to the two main hypotheses of lunar effects on animals: predator avoidance and temporal synchronization of breeding.  相似文献   

2.
Nightjars and their allies represent the only major group of visually hunting aerial insectivores with a crepuscular and/or nocturnal lifestyle. Our purpose was to examine how both light regime and prey abundance in the tropics, where periods of twilight are extremely short, but nightjar diversity is high, affect activity across different temporal scales. We studied two nightjar species in West African bush savannah, standard‐winged nightjars Macrodipteryx longipennis Shaw and long‐tailed nightjars Caprimulgus climacurus Vieillot. We measured biomass of potential prey available using a vehicle mounted trap and found that it was highest at dusk and significantly lower at dawn and during the night. Based on direct observations, both nightjars exhibit the most intense foraging behaviour at dusk, less intense foraging at dawn and least at night, as predicted by both prey abundance and conditions for visual prey detection. Nocturnal foraging was positively correlated with lunar light levels and ceased below about 0.03 mW m?2. Over the course of a lunar cycle, nocturnal light availability varied markedly, while prey abundance remained constant at dusk and at night was slightly higher at full moon. Both species increased twilight foraging activity during new moon periods, compensating for the shorter nocturnal foraging window at that time. Seasonally, the pattern of nocturnal light availability was similar throughout the year, while prey availability peaked shortly after onset of the wet season and then slowly decreased over the following four months. The courtship and breeding phenology of both species was timed to coincide with the peak in aerial insect abundance, suggesting that prey availability rather than direct abiotic factors act as constraints, at least at the seasonal level. Our findings illustrate the peculiar constraints on visually orienting aerial nocturnal insectivores in general and tropical nightjars in particular and highlight the resulting nocturnal, lunar and seasonal allocation of activities.  相似文献   

3.
The position of the Moon in relation to the Earth and the Sun gives rise to several predictable cycles, and natural changes in nighttime light intensity are known to cause alterations to physiological processes and behaviors in many animals. The limited research undertaken to date on the physiological responses of animals to the lunar illumination has exclusively focused on the synodic lunar cycle (full moon to full moon, or moon phase) but the moon's orbit—its distance from the Earth—may also be relevant. Every month, the moon moves from apogee, its most distant point from Earth—and then to perigee, its closest point to Earth. Here, we studied wild barnacle geese (Branta leucopsis) to investigate the influence of multiple interacting lunar cycles on the physiology of diurnally active animals. Our study, which uses biologging technology to continually monitor body temperature and heart rate for an entire annual cycle, asks whether there is evidence for a physiological response to natural cycles in lunar brightness in wild birds, particularly “supermoon” phenomena, where perigee coincides with a full moon. There was a three‐way interaction between lunar phase, lunar distance, and cloud cover as predictors of nighttime mean body temperature, such that body temperature was highest on clear nights when the full moon coincided with perigee moon. Our study is the first to report the physiological responses of wild birds to “supermoon” events; the wild geese responded to the combination of two independent lunar cycles, by significantly increasing their body temperature at night. That wild birds respond to natural fluctuations in nighttime ambient light levels support the documented responses of many species to anthropogenic sources of artificial light, that birds seem unable to override. As most biological systems are arguably organized foremost by light, this suggests that any interactions between lunar cycles and local weather conditions could have significant impacts on the energy budgets of birds.  相似文献   

4.
5.
Abstract

The circadian rhythm in the flight activity of a tropical microchiropteran bat Taphozous melanopogon responds at all phases with delay phase shifts to single light‐on steps (DD/LL transfers). The circadian rhythm responds at all phases with advance phase shifts to single light‐off steps (LL/DD transfers). Phase shifts were measured from the delays or advances of the onsets of flight activity on days following DD/LL and LL/DD transfers relative to the temporal course of the onsets of activity in controls. The magnitude of the phase shifts was a function of the phases in which the transfers were made. The On‐PRC and Off‐PRC plotted from such data are mirror‐images in their time‐course and wave‐form.

The phase shifts of the circadian rhythm in either direction were accompanied by changes in period (for the duration of our recordings after die transfer). The period lengthened following a delay shift and it shortened following an advance shift. The phase shifts are abrupt and discernible in the first cycle after perturbation. There are no transients.  相似文献   

6.
Abstract

The endogenous activity cycle of the nocturnal bannertail kangaroo rat was investigated. Although bannertail activity is a function of the lunar day as well as the solar day, all ten subjects exhibited free‐running activity periods of solar‐day length; there was no evidence of an endogenous lunar‐day cycle. Animals were provided with a burrow system and a small pseudo‐desert, a laboratory facility in which animal activity data closely resembled measurements taken in the field. Several analytical techniques for quantifying the data were utilized, and one, the mean interval of activity, is recommended to other investigators.  相似文献   

7.
It is assumed that the response of the regulatory system of mammal activity depends on the changes in light intensity throughout the 24-h cycle. The aim of this study was to determine whether the moon luminosity cycle exerts an effect on the locomotor activity of the Mexican wolf (C. lupus baileyi). Data collection was carried out with the actimetry, of 11 individuals were analyzed using ANOVA to determine the effect of the lunar cycle. Significant differences were encountered between moon phases (p = 0.001), with a decrement of activity during new and full moon. However, effects were dependent also on the age of the individuals and the daylight period. On the other hand, it is a possible regulation of the activity pattern by the effect of lunar periodicity. This periodicity needs a more detailed examination to determine its adaptive function.  相似文献   

8.
Cyclicity in behaviours, including reproduction, in relation to the lunar cycle is widely documented in some phyla, but weak or unknown in Class Mammalia. In this paper we present long-term video surveillance data of wild Eurasian badgers Meles meles, which reveal a strong correlation between reproductive behaviour and the lunar cycle. Squat marking and raised-leg urination, which increase in frequency at times of reproductive activity, showed maxima around day 22 of the lunar cycle (i.e. new moon). These findings were supported by observations of matings, together with published records, which showed significantly higher occurrence in the lunar dark phase (last quarter to first quarter). We propose that the lunar cycle has the potential to act as a regulator of the reproductive cycle in the badger.  相似文献   

9.
Living in the tidal zones of the sea requires synchronization with the dominant environmental influences of tidal, solar, and lunar periodicity. Endogenous clocks anticipate those geoclimatic changes and control the respective rhythms of vital functions. But the underlying mechanisms are only partly understood. While the circadian clocks in animals are investigated employing neurobiological, molecular, and genetic approaches, clocks with a lunar periodicity have been studied with reference to development and behavior only. Sites of their pacemakers, zeitgeber receptors, and coupled endocrine components are unknown. Here, a lunar‐rhythmic change of shielding pigment transparency in the larval ocelli of the intertidal midge Clunio marinus is demonstrated for the first time as a possible access to the neurobiology of lunar timing mechanisms. We studied third instar larvae (Vigo strain) throughout the lunar cycle by light‐ and electron-microscopy as well as by x‐ray fluorescence analysis for the identification of the pigment. Moonlight detection is a prerequisite for photic synchronization of the lunar clock. The larval ocelli of Clunio putatively may function as moonlight receptors and are also controlled by the circalunar clock itself, hence being primary candidates for tracing input and output pathways of the lunar pacemaker. Additionally, the demonstration of a reversible optical change of shielding pigment transparency in Clunio is a novel finding, not reported so far in any other animal species, and reveals a mechanism to enhance photosensitivity under the condition of very dim light. It represents a remarkable change of a sense organ from an imaging device to a radiometer. Its restriction to the developmental stage susceptible to lunar timing elucidates a unique sensory strategy evolved at the level of sensory input. It also raises basic questions about the biochemistry of optically active pigments, like melanin, and their intracellular control.  相似文献   

10.
Visual traps like yellow sticky card traps are used for monitoring and control of the greenhouse whitefly (Trialeurodes vaporariorum). However, reflected intensity (brightness) and hence, attractiveness depend on the ambient light conditions, and the colour (wavelength) might not fit with the sensitivity of whitefly photoreceptors. The use of light emitting diodes (LEDs) is a promising approach to increase the attractiveness, specificity and adaptability of visual traps. We constructed LED‐based visual traps equipped with blue and green high‐power LEDs and ultraviolet (UV) standard LEDs according to the putative spectral sensitivities of the insects' photoreceptors. In a series of small‐scale choice and no‐choice recapture experiments, the factors time of day as well as light intensity and light quality (colour) of LED traps were studied in terms of attractiveness compared to yellow traps without LEDs. Green LED traps (517 nm peak wavelength) were comparably attractive in no‐choice experiments but clearly preferred over yellow traps in all choice experiments. The time of day had a clear effect on the flight activity of the whiteflies and thereby on the trapping success. Blue LEDs (474 nm) suppressed the attractiveness of the light traps when combined with green LEDs suggesting that a yet undetected photoreceptor, sensitive for blue light, and an inhibiting interaction with the green receptor, might exist in T. vaporariorum. In choice experiments between LED traps emitting green light only or in combination with UV (368 nm), the green‐UV combination was preferred. In no‐choice night‐time experiments, UV LEDs considerably increased whitefly flight activity and efficacy of trapping. Most likely, the reason for the modifying effect of UV is the stimulating influence on flight activity. In conclusion, it seems that the use of green LEDs alone or in combination with UV LEDs could be an innovative option for improving attractiveness of visual traps.  相似文献   

11.
Activity levels of bats and katydids in relation to the lunar cycle   总被引:2,自引:0,他引:2  
Animals are exposed to many conflicting ecological pressures, and the effect of one may often obscure that of another. A likely example of this is the so-called “lunar phobia” or reduced activity of bats during full moon. The main reason for lunar phobia was thought to be that bats adjust their activity to avoid predators. However, bats can be prey, but many are carnivorous and therefore predators themselves. Thus, they are likely to be influenced by prey availability as well as predation risk. We investigated the activity patterns of the perch-hunting Lophostoma silvicolum and one of its main types of prey, katydids, to assess the influence of the former during different phases of the lunar cycle on a gleaning insectivorous bat. To avoid sampling bias, we used sound recordings and two different capture methods for the katydids, as well as video monitoring and radio-telemetry for the bats. Both, bats and katydids were significantly more active during the dark periods associated with new moon compared to bright periods around the full moon. We conclude that foraging activity of L. silvicolum is probably influenced by prey availability to a large extent and argue that generally the causes of lunar phobia are species-specific.  相似文献   

12.
ABSTRACT

Objective: Findings on the effect of the lunar cycle on mental illness are conflicting. We investigated the association between the lunar cycle and a number of psychiatric presentations of schizophrenia and determined which subtypes were susceptible to lunar phases.

Methods: We evaluated 13,067 patients admitted to Zhumadian Psychiatric Hospital between January 1, 2012, and December 31, 2017 (73 lunar cycles). Patients were retrospectively assigned to lunar phase based on their admission date: new moon +/? 1 day, first quarter +/? 1 day, full moon +/? 1 day, and third quarter +/? 1 day. The International Statistical Classification of Diseases, 10th revision (ICD-10), was used for diagnosis. We used a Chi-squared goodness of fit test to evaluate the distribution of admissions across the lunar phase and R*C Chi-squared tests to compare age, sex, birth season, and clinical subtype distributions by phase. We used multiple logistic regression to further identify the relationship between clinical subtype and lunar phase.

Results: Psychiatric admissions for schizophrenia varied significantly across the lunar cycle (χ2 = 36.400, p< .0001), peaking in the first quarter, followed by the full moon, and lowest at the new moon. Using unspecified schizophrenia (F20.9) as reference, people with paranoid schizophrenia (F20.0) were more likely to be admitted in the full moon than in other phases (odds ratio: 1.157, 95% confidence interval: 1.040–1.286) (p < .05); other subtypes showed no admission differences during the four lunar phases (p > .05).

Conclusions: Psychiatric admissions for schizophrenia show lunar periodicities. People with schizophrenia tend to be stable in the new moon, but their condition is easily aggravated during the first quarter and full moon. Patients with paranoid schizophrenia are more susceptible to deterioration at the full moon, so merit more attention and care from communities, families, and hospitals.  相似文献   

13.
1. Daily changes in the flight activity of aquatic insects have been investigated in only a few water beetles and bugs. The diel flight periodicity of aquatic insects and the environmental factors governing it are poorly understood. 2. We found that primary aquatic insects belonging to 99 taxa (78 Coleoptera, 21 Heteroptera) fly predominantly in mid‐morning, and/or around noon and/or at nightfall. There appears to be at least four different types of diurnal flight activity rhythm in aquatic insects, characterised by peak(s): (i) in mid‐morning; (ii) in the evening; (iii) both in mid‐morning and the evening; (iv) around noon and again in the evening. These activity maxima are quite general and cannot be explained exclusively by daily fluctuations of air temperature, humidity, wind speed and risks of predation, which are all somewhat stochastic. 3. We found experimental evidence that the proportion (%) P(θ) of reflecting surfaces detectable polarotactically as ‘water’ is always maximal at the lowest (dawn and dusk) and highest (noon) angles of solar elevation (θ) for dark reflectors while P(θ) is maximal at dawn and dusk (low solar elevations) for bright reflectors under clear or partly cloudy skies. 4. From the temporal coincidence between peaks in the diel flight activity of primary aquatic insects and the polarotactic detectability P(θ) of water surfaces we conclude that the optimal times of day for aquatic insects to disperse are the periods of low and high solar elevations θ. The θ‐dependent reflection–polarisation patterns, combined with an appropriate air temperature, clearly explain why polarotactic aquatic insects disperse to new habitats in mid‐morning, and/or around noon and/or at dusk. We call this phenomenon the ‘polarisation sun‐dial’ of dispersing aquatic insects.  相似文献   

14.
15.
Flight activities of three Spodoptera species were measured by the aid of flight actograph: S. litura and S. exuiga being regarded as long‐distance migratory insects, and S. depravata being non‐migratory and diapause‐inducible species. In all species tested, flight activities were observed only in scotophase, males showed far higher activities than females, being several times higher at the time of maximum flight activity, which was observed within 2 days after adult eclosion. Total flight activity in males was highest in S. litura, some being flyable even 12 days after eclosion, followed by S. exigua being one‐third compared to the former species, while in S. depravata flight activity was nearly half of that of the second species and most ceased to fly within a week after eclosion. There occurred species‐specific daily rhythms in flight activity during respective scotophase. In S. litura, both females and males exhibited a peak of flight activity shortly after light‐off and exhibited the second flight activity in late scotophase, the females slightly but the males more actively compared to early scotophase. In S. exigua, both sexes did not respond to light‐off, did not show a peak of flight activity in early scotophase, whereas males, but not females prominently increased activity toward the end of scotophase. In S. depravata, both sexes exhibited a peak of flight activity in early scotophase, and the males revived flight activity, being maximum shortly before light‐on, but the females did not show a clear rhythm in flight activity. These features observed in flight activity were discussed in relation with migratory capability.  相似文献   

16.
17.
Synopsis The reproductive behavior of yellowtail damselfish,Microspathodon chrysurus, was studied off the Caribbean coast of Panama to determine if there is a lunar spawning cycle. Male damselfish prepare nest sites on dead coral surfaces within their permanent feeding territories. Spawning occurs at sunrise and lasts for approximately one hour. Males defend the eggs until hatching, which occurs before the morning of the sixth day of incubation. Males spawn only once a day, but may spawn many times within each reproductive phase. Reproductive activity is highest in the time periods from full to new moon. The timing of this lunar cycle differs from those reported for other marine fishes. The spawning pattern is not consistent with common explanations for lunar periodicity that are based on the role of tides or moonlight. Some implications of these results for the organization of tropical reef communities are discussed.  相似文献   

18.
Adults of the predatory fly Coenosia attenuata Stein (Diptera: Muscidae) catch their prey while in flight. I investigated this activity over two seasons in a tomato greenhouse naturally infested with Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). The flight of C. attenuata individuals was affected by environmental factors and was increased in response to increases in temperature, the number of prey flights, and conspecific density. Predator and prey flights were distributed throughout the day, but there was a regular daily trend, each with two partially overlapping activity peaks. The possibility of predation was limited by differences in daily flight‐activity times. Predatory flights comprised a small percentage (ca. 6%) of the total flights, with a predation success rate of 61%. Overall, the predatory activity of C. attenuata depended on the selection of hunting sites with good visibility to ensure a clear view before take‐off and allow the capture of prey in flight. Similar numbers of overall flights were made by both sexes, but C. attenuata females performed more predation flights and territorial defense activities than males. The ecological role of C. attenuata and its limited adaptability to greenhouses is discussed in light of its possible use in biological control of whiteflies.  相似文献   

19.
We describe a method and device (< 1.2 g) for recording, processing and storing data about activity and location of individuals of free‐living songbirds throughout the annual cycle. Activity level was determined every five minutes from five 100 ms samples of accelerometer data with 5 s between the sampling events. Activity levels were stored on an hourly basis throughout the annual cycle, allowing periods of resting/sleep, continuous flight and intermediate activity (foraging, breeding) to be distinguished. Measurements from a light sensor were stored from preprogrammed key stationary periods during the year to provide control information about geographic location. Successful results, including annual actogram, were obtained for a red‐backed shrike Lanius collurio carrying out its annual loop migration between northern Europe and southern Africa. The shrike completed its annual migration by performing > 66 (max. 73) nocturnal migratory flights (29 flights in autumn and > 37, max. 44, in spring) adding up to a total of > 434 (max. 495) flight hours. Migratory flights lasted on average 6.6 h with maximum 15.9 h. These flights were aggregated into eight travel episodes (periods of 4–11 nights when flights took place on the majority of nights). Daytime resting levels were much higher during the winter period compared to breeding and final part of spring migration. Daytime resting showed peaks during days between successive nocturnal flights across Sahara, continental Africa and the Arabian Peninsula, indicating that the bird was mostly sleeping between these long migratory flights. Annual activity and flight data for free‐living songbirds will open up many new research possibilities. Main topics that can be addressed are e.g. migratory flight performance (total flight investment, numbers and characteristics of flights), timing of stationary periods, activity patterns (resting/sleep, activity level) in different phases of the annual cycle and variability in the annual activity patterns between and within individuals.  相似文献   

20.

Subterranean Sericesthis geminata (Boisduval) beetles emerge from the soil daily during the flight season. Emergence and flight are initiated within 15 min after sunset. The beetles are active above the soil surface as the intensity of illumination decreases from 240 lux to 0.7 lux.

If young adult beetles still in their pupal cells in the soil are placed under constant, low‐intensity illumination, they first emerge at any time of day, showing no cyclical diurnal activity pattern. When such beetles are exposed to diurnal fluctuations in illuminance, the first emergence and flight occur at dusk. These beetles subsequently show a diurnal rhythm in their activity, even when exposed to constant environmental conditions. This endogenous activity cycle has a period of about 22 h, and is synchronised with diurnal fluctuations in light intensity. It is reset in response to a change in the photoperiod.

The data suggest that, after initial emergence from the soil, daily crepuscular activity is initiated by an endogenously controlled activity rhythm which causes the beetles to burrow to the soil surface shortly before dusk. At the soil surface they are exposed to fluctuations in the duration and intensity of illumination which may reset the endogenous rhythm, affecting the time of subsequent emergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号