首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about the specific role of exotic species on measures of grassland plant diversity, including how this may vary with climatic conditions or large mammal herbivory. This study examined vegetation responses to long-term livestock grazing, including plant richness and diversity, as well as the contribution of exotic species to these metrics, across a network of 107 northern temperate grasslands in Alberta, Canada, spanning a broad aridity gradient. Exposure to grazing modestly increased plant richness, but did not alter Shannon’s diversity, Simpson’s diversity, or evenness, suggesting stability in floral diversity relative to grazing. However, grazing did increase grass cover while reducing shrub cover, the latter of which was only apparent in mesic grasslands. Unlike total plant diversity, exotic species richness and cover, together with exotic plant contributions to diversity, varied jointly with grazing and aridity. While long-term grazing increased exotic species, this response was most apparent in wetter areas, and non-grazed grasslands remained more resistant to the presence of exotics. Several exotic species were positive indicators of grazing in wetter grasslands, and coincided with lower native species cover, indicating grazing may be facilitating a shift from native to exotic vegetation under these conditions. Overall, our results indicate that while long-term grazing has altered the composition and cover of certain functional groups, including favoring exotics and minimizing woody vegetation in mesic areas, overall changes to plant diversity were limited. Additionally, these findings suggest that semi-arid northern temperate grasslands remain relatively resistant to grazing effects, including their susceptibility to exotic plant encroachment. These results improve our understanding of how ongoing grazing exposure may impact grassland diversity, including efforts to conserve native vegetation, as well as the important role of climate in altering fundamental grassland responses to grazing.  相似文献   

2.
We present the first scientific study of white-shouldered ibis Pseudibis davisoni habitat preferences in dry dipterocarp forest. Foraging sites included seasonal pools, forest understorey grasslands and fallow rice fields, with terrestrial sites used more following rainfall. Habitat and anthropogenic effects in logistic models of foraging site selection were examined by multimodel inference and model averaging. White-shouldered ibis preferred pools with greater cover of short vegetation (<25 cm) and less of the boundary enclosed, and forest sites with greater cover of bare substrate and lower people encounter rate. At forest sites, livestock density was positively related to bare substrate extent and thus may improve suitability for foraging ibis. At pools, livestock removed tall vegetation between the early and late dry season indicating their importance in opening up foraging habitats after wet season growth. However, by the late dry season, pools with greater livestock density had less short vegetation, the habitat favoured by ibis. Conservation strategies for white-shouldered ibis must consider a range of habitats, not just seasonal wetlands, and should incorporate extensive grazing and associated burning practises of local communities. Further understanding of the effects of these practices on vegetation, prey abundance and prey availability are therefore needed for effective conservation of this species. This will also develop our understanding of potentially beneficial anthropogenic influences in tropical environments.  相似文献   

3.
Persistence or disappearance of plants under grazing pressure has led to their categorisation as grazing increasers or decreasers. We aimed to extend this classical indicator concept in rangeland ecology by interpreting the shape of species responses and trait patterns modelled along continuous grazing gradients at different spatial scales.Taking transects of two different lengths, we recorded the cover of vascular plant species along grazing gradients in central Namibian rangelands. We used a hierarchical set of ecologically meaningful models with increasing complexity – the HOF (Huisman–Olff–Fresco) approach – to investigate species’ grazing responses, diversity parameters and pooled cover values for two traits: growth form and life cycle.Based on our modelling results, we classified species responses into eight types: no response, monotonic increasers/decreasers, threshold increasers/decreasers, symmetric unimodal responses, left skewed and right skewed unimodal responses.The most common category was that of no response (42% of the short and 79% of the long transect responses). At both scales, decreaser responses with higher grazing pressure were more frequent than increaser responses. Monotonic and threshold responses were more frequent along the short transects.Diversity parameters showed a slight but continuous decline towards higher grazing intensities. Responses of growth form and life cycle categories were mostly consistent at both scales. Trees, shrubs, dwarf shrubs, and perennials declined continuously. Woody forbs tended to show a symmetric unimodal distribution along the gradients, while herbaceous forbs and annuals showed skewed unimodal responses towards lower grazing intensities.The different grazing response types proposed in this study allow for a differentiated picture of niche patterns along grazing gradients and provide a basis to use species as indicators for a continuum of vegetation states altered by livestock impact. The general decline of plant diversity with increasing grazing intensities highlights the importance of reserves that are less impacted by grazing to support the resilience of the studied system.  相似文献   

4.
《农业工程》2020,40(6):425-431
Livestock grazing is one of the main factors of vegetation and soil degradation in arid and semi-arid rangelands of Iran and causes changes in diversity, vegetation, litter and soil characteristics. Therefore, this study has been conducted aimed to examine the effects of exclosure and livestock grazing on vegetation and soil. For this purpose, two grazing areas of medium and high grazing intensity and two exclosure areas (Non-grazing livestock) with duration of 8 and 11 years were selected for sampling. Then, we identified plant species, percentage of coverage of each species, measurement of diversity indices, species similarity and soil chemical properties including electrical conductivity (mho), acidity, organic matter(%), organic carbon (%), nitrogen (%), phosphorus (mg/L) and bulk density (gr/cm3) in each area and they were compared using variance analysis. The results showed that exclosure significantly at 5% level reduced organic matter percentage, electrical conductivity and organic carbon percentage, but it caused a significant increase in soil bulk density at 1% level. Similarity of plant species due to the reduction of livestock grazing intensity and increasing exclosure duration. The results also indicate Livestock grazing increased Coverage of plant family such as Poaceae, Zygophyllacea in the area due to the increase of plant species such as Peganum harmala and Poa bulbosa (non-pleasant species of class III). Based on the results, despite increasing the diversity of plant species in the area over time, increasing diversity does not increase dominant species of the area, as well as companion species increased in the composition of vegetation. It concluded that exclusion has a significant effect on vegetation improvement, vegetation cover percentage, diversity, palatability and litter percentage in the region.  相似文献   

5.
A study was made of the vegetation in southern Wello (Ethiopia) in relation to human impact and the environment. 65 sample plots were laid out and analysed with respect to the cover value of vascular plant species. Altitude, slope, aspect and estimates of grazing pressure for each plot were also recorded along with physical and chemical soil properties analysed for samples taken from each plot. The following environmental factors, isolated by forward selection, show correlation with the axes of Canonical Correspondence Analysis (CCA): altitude, grazing, pH, K, Ca, Mg, slope and aspect.
Through hierarchical and non-hierarchical clustering methods the vegetation was divided into eight types, from which one was secondary forest characterised by patch dominance of Juniperus procera and Olea europaea ssp. cuspidata. These forest patches are found at high altitude sites and because of their inaccessibility are usually characterised by low livestock density and consequently low grazing pressure. The presence of large boulders and stones in Podocarpus falcatus forest decreases accessibility and creates natural protection for the trees. The other vegetation types, most of which are found at lower altitude and associated with varying intensities of grazing, include grasslands (grazed and protected), regenerating sites dominated by Eu-clea racemosa and Dodonaea angustifolia, dense and open shrublands and Olea europaea ssp. cuspidata woodlands. Human interference has a major impact on the vegetation of the study area and its recovery will depend on the degree of participation of the local people.  相似文献   

6.
Question: How does grazing intensity affect plant density, cover and species richness in an Patagonian arid ecosystem? Location: Monte steppe ecoregion, SW Argentina. Methods: I analysed the effect of grazing on plant density, cover and species richness using a stocking rate gradient within the same habitat. Six paddocks were used with stocking rates ranging between 0.002 – 0.038 livestock/ha. Plant density, species richness, plant cover and percentage of grazed branches were determined by sampling plots within each paddock. The percentage of grazed branches was used as an independent measurement of grazing intensity. Results: Higher stocking rates were related to lower plant density, species richness and plant cover. The paddock with the lowest grazing intensity had 86% more plants per unit area, 63% more plant cover and 48% higher species richness. The percentage of grazed branches and the quantity of dung increased with stocking rate. Conclusions: Introduced livestock seriously affect native vegetation in the Patagonian Monte. The damage observed in this xerophytic plant community suggests that plant adaptations to aridity do not provide an advantage to tolerate or avoid grazing by vertebrate herbivores in this region. Plant degradation in this arid environment is comparable to the degradation found in more humid ecosystems.  相似文献   

7.
We investigated the responses of the ground vegetation in a 17‐year‐old coastal dune forest plant community to four levels of experimentally applied livestock grazing (three grazing levels and one ungrazed control) from May 1994 to March 1996. The effects of grazing were apparently subordinate to site‐specific intrinsic vegetation change and there were some indications that rainfall interacted with grazing level. Grazing had some apparent but no significant effects on plant species composition, significantly affected plant species richness over time, and significantly increased the range of species richness and vegetation cover values as well as the relative abundance and numbers of plant species with erect growth forms. Vegetation cover changed significantly over time, independently of grazing. Our results point to two important, easily measured mechanisms for the conservation management of coastal dune forests – the interaction of disturbance type with plant growth form and the increase of variation in community structural variables under disturbance. These mechanisms, although they potentially have wide application and predictive power, have not been studied adequately.  相似文献   

8.
姚雪玲  李龙  王锋  刘书润  吴波  郭秀江 《生态学报》2020,40(5):1663-1671
浑善达克沙地榆树疏林是分布于草原地带的隐域植被类型,相较周边的典型草原区,其植被更加茂密,乔灌丛生,水草丰美,千百年来一直是牧民的优质冬季牧场。近半个世纪以来,因人类的过度开垦以及不合理的放牧管理,浑善达克沙地植被遭到空前的破坏,沙丘活化,载畜能力降低,生态价值和经济价值严重受损。近年来,随着国家草畜平衡以及禁牧政策的推广落实,放牧的牲畜总量得到一定程度的遏制,然而大面积草场还在继续退化。在牧民对生产生活的基本需求下,牲畜总量不可能无限制的压制。另外,适度的放牧对草原生态系统健康是有益的。因此,如何改良放牧方式,合理利用草场,在保持生态良好的基础上合理发挥草场的畜牧价值,是我们亟待探索的问题。以浑善达克沙地的典型天然植被榆树疏林为例,对不同放牧方式下的植被进行调查,基于沙地特殊的基质和植被特征,探讨适合沙地的放牧利用方式。研究表明,在相似的放牧强度下,把沙地作为冬营地,其榆树种群更新正常,植被覆盖度以及植物种类等均能保持良好,而把沙地作为夏季营地,榆树疏林植被退化严重,具体表现为:(1)榆树种群自然更新受阻;(2)灌木群落大量死亡或消失;(3)草本覆盖度显著降低,植物种类减少,多年生草本比例减少,一、二年生草本比例增加;(4)裸沙面积增加,沙丘趋于活化。本研究认为目前沙地植被的退化主要由不合理的放牧引起,并非气候因素所致。沙地适合于冬季放牧而不适合其他季节放牧。借鉴牧民的传统放牧方式,建议配合周边的典型草原区实行季节性倒场放牧,仅将沙地作为冬季营地使用,既能有效保护沙地植被又能充分发挥其畜牧价值。  相似文献   

9.
10.
Livestock grazing and associated habitat degradation are considered as major reasons for declining populations of wild ungulates. In the Himalaya, livestock grazing has been practiced for centuries. We studied the spatial and habitat use overlap between the Himalayan tahr (Hemitragus jemlahicus) and domestic migratory livestock (Capra aegagrus hircus and Ovis aries) in the subalpine and alpine areas of the Kedarnath Wildlife Sanctuary, Uttarakhand, India, from April 2003 to March 2004 to investigate if there was an impact of livestock grazing on the habitat use of tahr in this area. Habitat parameters such as altitude, aspect, slope, and vegetation cover used by the tahr and livestock were quantified and compared. Minimal spatial overlap was observed. Tahr demonstrated preference for higher altitude and steeper terrain and occupied rocky terrain with comparatively less grass, shrub, and tree cover, while livestock occupied lower slope categories with low rock cover and more shrub and tree cover. Livestock used altitude, slope, and aspect categories in proportion to their availability. However, the difference in use of altitude and slope was not significant, and an increase in the population of the tahr over the years in the study area was concomitant to the decrease in the livestock use of the area, which raises doubts as to whether this minimal habitat overlap is an outcome of spatial displacement or exclusion of the tahr from certain habitats.  相似文献   

11.
Abstract. Models of semiarid vegetation dynamics were evaluated to explain changes in the grassland of interior South Island, New Zealand. Annual records were taken for six years of plant species height frequency and percentage ground cover in five plots established in 1986. One subplot at each site was fenced to exclude sheep, one to exclude rabbits and sheep, and one remained unfenced as a control. Records from 1986–1992 were analysed by ordination. The overall pattern of vegetation change shows considerable year-to-year variation. At some sites, variation in vegetation composition between years was as great as, or greater than, that between grazed and ungrazed subplots. Such variation is particularly evident in grazed vegetation, perhaps because it is under greater stress than ungrazed vegetation. At one site changes in vegetation total cover and species composition could be statistically related to rainfall during the first half of the growing season. The only general trends following cessation of grazing were for perennials to increase in frequency, and for year-to-year changes to become smaller with time. Total vegetation cover values seldom changed as a result of cessation of grazing, but tended to follow year-to-year changes in species frequency. The results do not in general support switch/state-and-transition models of semi-arid vegetation dynamics. Vegetation change follows changes in grazing and climate with little lag. This most closely conforms with the Pulse-phase dynamic model.  相似文献   

12.
Continuous livestock grazing can have negative effects on biodiversity and landscape function in arid and semi‐arid rangelands. Alternative grazing management practices, such as rotational grazing, may be a viable option for broad‐scale biodiversity conservation and sustainable pastoral management. This study compared ground cover, plant species composition and floristic and functional diversity along gradients of grazing intensity between a pastoral property rotationally grazed by goats and an adjacent nature reserve (ungrazed by commercial livestock) in semi‐arid south‐eastern Australia. Understorey plant species composition differed significantly between the rotationally grazed property and the nature reserve, with a greater proportion and frequency of palatable species recorded in the nature reserve. Understorey plant species richness, diversity, functional biodiversity measures and ground cover declined with increasing grazing pressure close to water points under commercial rotational grazing management. However, at a whole‐paddock scale, there were few differences in plant biodiversity and ground cover between the rotationally grazed property and the nature reserve, despite differences in overall plant species composition. Flexible, adaptive, rotational grazing should be investigated further for its potential to achieve both socio‐economic and biodiversity conservation outcomes in semi‐arid rangelands to complement existing conservation reserves.  相似文献   

13.
Precipitation and land use in terms of livestock grazing have been identified as two of the most important drivers structuring the vegetation composition of semi-arid and arid savannas. Savanna research on the impact of these drivers has widely applied the so-called plant functional type (PFT) approach, grouping the vegetation into two or three broad types (here called meta-PFTs): woody plants and grasses, which are sometimes divided into perennial and annual grasses. However, little is known about the response of functional traits within these coarse types towards water availability or livestock grazing. In this study, we extended an existing eco-hydrological savanna vegetation model to capture trait diversity within the three broad meta-PFTs to assess the effects of both grazing and mean annual precipitation (MAP) on trait composition along a gradient of both drivers. Our results show a complex pattern of trait responses to grazing and aridity. The response differs for the three meta-PFTs. From our findings, we derive that trait responses to grazing and aridity for perennial grasses are similar, as suggested by the convergence model for grazing and aridity. However, we also see that this only holds for simulations below a MAP of 500 mm. This combined with the finding that trait response differs between the three meta-PFTs leads to the conclusion that there is no single, universal trait or set of traits determining the response to grazing and aridity. We finally discuss how simulation models including trait variability within meta-PFTs are necessary to understand ecosystem responses to environmental drivers, both locally and globally and how this perspective will help to extend conceptual frameworks of other ecosystems to savanna research.  相似文献   

14.
Temperate humid grasslands are known to be particularly vulnerable to invasion by alien plant species when grazed by domestic livestock. The Flooding Pampa grasslands in eastern Argentina represent a well-documented case of a regional flora that has been extensively modified by anthropogenic disturbances and massive invasions over recent centuries. Here, we synthesise evidence from region-wide vegetation surveys and long-term exclosure experiments in the Flooding Pampa to examine the response of exotic and native plant richness to environmental heterogeneity, and to evaluate grazing effects on species composition and diversity at landscape and local community scales. Total plant richness showed a unimodal distribution along a composite stress/fertility gradient ranging several plant community types. On average, more exotic species occurred in intermediate fertility habitats that also contained the highest richness of resident native plants. Exotic plant richness was thus positively correlated with native species richness across a broad range of flood-prone grasslands. The notion that native plant diversity decreases invasibility was supported only for a limited range of species-rich communities in habitats where soil salinity stress and flooding were unimportant. We found that grazing promoted exotic plant invasions and generally enhanced community richness, whereas it reduced the compositional and functional heterogeneity of vegetation at the landscape scale. Hence, grazing effects on plant heterogeneity were scale-dependent. In addition, our results show that environmental fluctuations and physical disturbances such as large floods in the pampas may constrain, rather than encourage, exotic species in grazed grasslands.  相似文献   

15.
Thomas J. Smith  III 《Ecography》1983,6(2):204-210
A notable omission from wetlands ecology has been the study of the influence of herbivores on vegetation. Reported here are the effects of grazing by snow geese Anser caerulescens altantica on the vegetation of salt marshes along the mid-Atlantic coast of the United States, Exclosures were used to compare total and species percent cover between grazed and ungrazed areas in three marshes (Salt Flats, South Pond, and Bodie Island) with differing vegetation communities from 1978 to 1980.
Spartina alterniflora was reduced by ⅔ in grazed versus ungrazed areas of Salt Flats, S. S. patens was reduced by ½ in grazed portions of South Pond but recovered when grazing ceased. In grazed portions of Bodie Island total plant cover was reduced by 16%. Scirpus robustus and S. patens reacted in opposite ways to grazing pressure with S. robustus increasing and S. patens decreasing, Elocharis was found only in grazed areas of Bodie Island. Echinochloa crusgali appeared in grazed portions of this marsh in 1978 but decreased in abundance during subsequent years. Scirpus americanus was unaffected by grazing, maintaining a nearly constant percent cover in grazed and ungrazed areas at Bodie Island.
Differences in responses to grazing are discussed in terms of each species' growth and reproductive strategies as tempered by the physical and biological environment within each marsh.  相似文献   

16.
Six management regimes were tested during 5 years in 18 abandoned ricefields in the Rh^one delta, France: two artificial floodings for 6 months (winter and summer flooding, 10 cm deep) and a control only flooded by rain, each flooding treatment either with or without grazing by cattle and horses. In the absence of artificial flooding and in presence of grazing by domestic herbivores (i.e., maintaining the initial management since the abandonment) no significant change in plant communities was recorded after 5 years. The vegetation was mainly composed of halophytes (Salicornia fruticosa and Inula crithmoides). The removal of grazing led to the dominance of a salt tolerant grass: Aeluropus littoralis. Flooding favoured the dominance of clonal plants and led to a decrease in the number of species. In the ungrazed fields, changes in plant communities were related to the height of species with Bolboschoenus maritimus and Phragmites australis becoming dominant. When grazing was combined with summer flooding, B. maritimus dominated the first two years of the experiment, but with a low cover, and was replaced in the 3rd year by Typha angustifolia. When grazing was combined with winter and early spring flooding the competitive exclusion of B. maritimus by Juncus gerardii slowed the establishment of the former. The management of former ricefields led to the establishment and dominance of emergent species common to Mediterranean wetlands. Although it is subordinate to the maintenance of artificial flooding, the project may be considered a restoration (or a rehabilitation) of seasonally flooded marshes as original functions existing before the land was put under cultivation are re-established.  相似文献   

17.
Grazing by livestock can influence ecosystems in various ways, including altering plant communities, influencing woody plant encroachment, and determining livestock productivity. Evaluating long term effects of grazing on plant composition is valuable not only to understand herbivory on rangelands but to be able to address the primary factors that can threaten long term livestock productivity. We examined plant species composition and woody plant encroachment 45 years after the initiation of differing grazing treatments within a semiarid savanna of the southern Great Plains, USA. Grazing treatments varied in herbivore type (domestic cattle, sheep, and goats vs. goats only) and grazing intensity (heavy, moderate, and no-herbivory). All individual trees of Juniperus ashei Buchholz, the encroaching woody plant of the area, were removed prior to treatment initiation. Moderate and heavy grazing by a combination of species resulted in similar plant communities, while a history of heavy browsing by goats only and no-herbivory resulted in more distinct communities. Cover of J. ashei did not differ between mixed grazing and no-herbivory treatments, indicating that grazing was not responsible for woody plant encroachment. J. ashei cover within the browsed treatment was a third less compared to other treatments; compositional differences within this treatment are possibly due to reduced cover of woody vegetation. Declines in livestock productivity of the area are likely related to compositional changes resulting from increased woody plants. Livestock production within this semi-arid rangeland is likely unsustainable without management of woody plant encroachment, as communities tend to a closed canopy woodland.  相似文献   

18.
丘陵地区地形梯度上植被格局的分异研究概述   总被引:9,自引:0,他引:9       下载免费PDF全文
植物群落的本质特征之一是群落中的植物和环境之间存在一定的相互关系。湿润的丘陵地区是由水侵蚀而形成的包含各种干扰频率的生境复合体,作为中尺度的地形单位,可以通过侵蚀前线划分为上部坡面和下部坡面两个小尺度的地形单位,而上部坡面可以进一步划分为顶坡、上部边坡、谷头凹地等微地形单元,下部坡面可以进一步划分为下部边坡、麓坡、泛滥性阶地及谷床等微地形单元。上部坡面发育的是气候顶极群落,沿顶坡向谷头凹地,群落发生逐渐、连续的变化,下部坡面发育的为地形群落,其物种组成、结构以及其它生态特征与上部坡面具有显著的差异,而其微地形单元之间植被的变化不明显。干扰作用是不同地形植被分异的控制因子,也是地形植被维持和更新的关键因子。下部坡面以相对积极的土壤侵蚀、滑坡和崩塌等过程为特征,其植被更新依赖于频繁的地面干扰,而上部坡面长期稳定,其植被更新依赖于林窗动态。地形是影响植被格局的最重要的也是最基本的生境因子,其引起的生境生态位分化为物种的共存提供了条件,导致了小尺度空间内高生物多样性的形成和维持。  相似文献   

19.
Water‐limited ecosystems have undergone rapid change as a consequence of changing land use and climate. The consequences of these changes on soil quality and vegetation dynamics have been documented in different regions of the world. In contrast, their effects on soil water, the most limiting resource in these environments, have received less attention, although in recent years increasing efforts have been made to relate grazing, soil water and vegetation functioning. In this paper, we present the results of field observations of plant phenology and soil water content carried out during two successive years at four sites along a degradation gradient caused by grazing in the Patagonian Monte, Argentina. We also developed a simplified soil water balance model to evaluate how changes in plant cover could affect water balance. Our field observations showed that the soil water content in the soil layer where roots of grasses are abundant (0–25 cm) was higher and the growing cycles were longer in degraded than in preserved sites. Similarly, our modelling approach showed that the deep soil (depth > 10 cm) was wetter in the degraded than in the preserved situation. Simulation also suggested a switch from transpiration to a direct evaporation dominance of water losses with degradation. Although reductions in plant cover related to grazing degradation were associated with a decrease in annual transpiration, the simulated soil water loss by transpiration was higher during summer in the degraded than in the well preserved situation. Thus, our field observations seem to be a consequence of ecohydrological changes causing an accumulation of water in the soil profile during the cold season and its transpiration during summer. In conclusion, our results showed that changes in plant cover caused by grazing disturbance can alter the soil water balance, which in turn can affect vegetation function.  相似文献   

20.
Climate change and alien species have affected the vegetation of subantarctic islands. Long-term monitoring of vegetation change on the steep coastal slopes of subantarctic Macquarie Island has allowed responses of plant species to various disturbance regimes to be well documented, although, until recently, the confounding effect of feral herbivore disturbance obscured any responses that might be attributed to climate change. The uncoupling of climate change from variation in feral rabbit numbers allowed us to test whether any plant species were increasing or decreasing on the coastal slopes of the island between 1980 and 2009, independent of rabbit grazing pressure. We used analysis of variance to test for differences in species cover classes between four measurement times on each of 101 quadrats in each of 1980/1981, 1995, 2003 and 2009. We had 54 quadrats on landslips and 47 elsewhere. Approximately two-thirds of the species with significant temporal change exhibited changes that could be expected from variation in rabbit grazing pressure. However, approximately one-third of the species increased in cover irrespective of grazing pressure. On landslips, variation in the cover of these increaser species was largely related to time in a linear mixed model, whereas elsewhere altitude and time were both important. The increase in both atmospheric dryness and episodic soil water-logging that has been described for the island since 1980 may best explain the increaser species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号