共查询到20条相似文献,搜索用时 0 毫秒
1.
Forest degradation succession often leads to changes in forest ecosystem functioning. Exactly how the decomposition of leaf litter is affected in a disturbed forest remains unknown. Therefore, in our study, we selected a primary Korean pine forest (PK) and a secondary broad‐leaved forest (SF) affected by clear‐cutting degradation, both in Northeast China. The aim was to explore the response to changes in the leaf litter decomposition converting PK to SF. The mixed litters of PK and SF were decomposed in situ (1 year). The proportion of remaining litter mass, main chemistry, and soil biotic and abiotic factors were assessed during decomposition, and then, we made an in‐depth analysis of the changes in the leaf litter decomposition. According to our results, leaf litter decomposition rate was significantly higher in the PK than that in the SF. Overall, the remaining percent mass of leaf litter''s main chemical quality in SF was higher than in PK, indicating that leaf litter chemical turnover in PK was relatively faster. PK had a significantly higher amount of total phospholipid fatty acids (PLFAs) than SF during decomposition. Based on multivariate regression trees, the forest type influenced the soil habitat factors related to leaf litter decomposition more than decomposition time. Structural equation modeling revealed that litter N was strongly and positively affecting litter decomposition, and the changes in actinomycetes PLFA biomass played a more important role among all the functional groups. Selected soil abiotic factors were indirectly driving litter decomposition through coupling with actinomycetes. This study provides evidence for the complex interactions between leaf litter substrate and soil physical–chemical properties in affecting litter decomposition via soil microorganisms. 相似文献
2.
3.
4.
5.
We investigated soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) exchanges in an age‐sequence (4, 17, 32, 67 years old) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada, for the period of mid‐April to mid‐December in 2006 and 2007. For both CH4 and N2O, we observed uptake and emission ranging from ?160 to 245 μg CH4 m?2 h?1 and ?52 to 21 μg N2O m?2 h?1, respectively (negative values indicate uptake). Mean fluxes from mid‐April to mid‐December across the 4, 17, 32, 67 years old stands were similar for CO2 fluxes (259, 246, 220, and 250 mg CO2 m?2 h?1, respectively), without pattern for N2O fluxes (?3.7, 1.5, ?2.2, and ?7.6 μg N2O m?2 h?1, respectively), whereas the uptake rates of CH4 increased with stand age (6.4, ?7.9, ?10.8, and ?23.3 μg CH4 m?2 h?1, respectively). For the same period, the combined contribution of CH4 and N2O exchanges to the global warming potential (GWP) calculated from net ecosystem exchange of CO2 and aggregated soil exchanges of CH4 and N2O was on average 4%, <1%, <1%, and 2% for the 4, 17, 32, 67 years old stand, respectively. Soil CO2 fluxes correlated positively with soil temperature but had no relationship with soil moisture. We found no control of soil temperature or soil moisture on CH4 and N2O fluxes, but CH4 emission was observed following summer rainfall events. LFH layer removal reduced CO2 emissions by 43%, increased CH4 uptake during dry and warm soil conditions by more than twofold, but did not affect N2O flux. We suggest that significant alternating sink and source potentials for both CH4 and N2O may occur in N‐ and soil water‐limited forest ecosystems, which constitute a large portion of forest cover in temperate areas. 相似文献
6.
Luca Poggetti Steluta Raranciuc Cristina Chiab Massimo Vischi Pietro Zandigiacomo 《Journal of Applied Entomology》2019,143(5):527-534
The leaf miner Coptodisca lucifluella and the carpophagous Rhagoletis completa, of American origin, are two non‐native walnut (Juglans spp.) pests in Italy. For the Friuli Venezia Giulia region (FVG) (N‐E Italy), C. lucifluella is not yet listed, while R. completa has been present for over 25 years. During 2015, samples of leaves and fruits were collected from 219 single old common walnut trees (Juglans regia) placed at different altitudes (0–1,073 m a.s.l.) in FVG to detect the distribution and abundance of both pests. Samples of leaf miner larvae and their parasitoids were subjected to mitochondrial DNA analysis for identification. C. lucifluella has been found in 55 out of 219 sites. The species has been identified by typical leaf symptoms and by its DNA barcode. This is the first report of the species for FVG. The leaf miner distribution was negatively correlated with altitude. The species has not been observed at sites over 600 m a.s.l. Larvae were parasitized by native parasitoids identified as belonging to the genus Chrysocharis by morphological features and by DNA barcode. R. completa has been found in 89 out of 165 sites on walnut trees with fruits. The infestation level was very high in lowland localities. At sites over 700 m a.s.l., no infestation was found. Both species are widespread in the region, and their occurrence is significantly affected by altitude. Data suggest that walnut trees could be cultivated in some mountain areas without the need to control R. completa with insecticides. 相似文献
7.
Ester Gonzlez de Andrs Juan A. Blanco J. Bosco Imbert Biing T. Guan Yueh‐Hsin Lo Federico J. Castillo 《Global Change Biology》2019,25(9):3070-3090
Litterfall dynamics (production, seasonality and nutrient composition) are key factors influencing nutrient cycling. Leaf litter characteristics are modified by species composition, site conditions and water availability. However, significant evidence on how large‐scale, global circulation patterns affect ecophysiological processes at tree and ecosystem level remains scarce due to the difficulty in separating the combined influence of different factors on local climate and tree phenology. To fill this gap, we studied links between leaf litter dynamics with climate and other forest processes, such as tree‐ring width (TRW) and intrinsic water‐use efficiency (iWUE) in two mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) in the south‐western Pyrenees. Temporal series (18 years) of litterfall production and elemental chemical composition were decomposed following the ensemble empirical mode decomposition method and relationships with local climate, large‐scale climatic indices, TRW and Scots pine's iWUE were assessed. Temporal trends in N:P ratios indicated increasing P limitation of soil microbes, thus affecting nutrient availability, as the ecological succession from a pine‐dominated to a beech‐dominated forest took place. A significant influence of large‐scale patterns on tree‐level ecophysiology was explained through the impact of the North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on water availability. Positive NAO and negative ENSO were related to dry conditions and, consequently, to early needle shedding and increased N:P ratio of both species. Autumn storm activity appears to be related to premature leaf abscission of European beech. Significant cascading effects from large‐scale patterns on local weather influenced pine TRW and iWUE. These variables also responded to leaf stoichiometry fallen 3 years prior to tree‐ring formation. Our results provide evidence of the cascading effect that variability in global climate circulation patterns can have on ecophysiological processes and stand dynamics in mixed forests. 相似文献
8.
Marine management affects the invasion success of a non‐native species in a temperate reef system in California,USA 下载免费PDF全文
Despite promises that ‘healthy’ marine systems show increased resilience, the effects of ecosystem management strategies on invasion success in marine systems is still unclear. We show that resistance to the invasive alga, Sargassum horneri, in a temperate reef system occurs through alternate mechanisms in different ecosystem states. In an old marine protected area (MPA), invasion of S. horneri was suppressed, likely due to competitive pressure from native algae, resulting from protection of urchin predators. In a nearby fished urchin barren, invasion of S. horneri was also suppressed, due to herbivory by urchins whose predators are fished. Within newer MPAs with intermediate levels of interacting species, S. horneri was abundant. Here, neither competition from native algae nor herbivory was sufficient to prevent invasion. We confirm that invasion in marine systems is complex and show that multiple mechanisms in single systems must be considered when investigating biotic resistance hypotheses. 相似文献
9.
Leaf functional traits are widely used to detect and explain adaptations that enable plants to live under various environmental conditions. This study aims to determine the difference in leaf functional traits among four forest types of Pinus massoniana coniferous and broad‐leaved mixed forests by leaf morphological, nutrients, and stoichiometric traits in the subtropical mountain, Southeastern China. Our study indicated that the evergreen conifer species of P. massoniana had higher leaf dry matter content (LDMC), leaf C content, C/N and C/P ratios, while the three deciduous broad‐leaved species of L. formosana, Q. tissima, and P. strobilacea had higher specific leaf area (SLA), leaf N, leaf P nutrient contents, and N/P ratio in the three mixed forest types. The results showed that the species of P. massoniana has adapted to the nutrient‐poor environment by increasing their leaf dry matter for higher construction costs thereby reducing water loss and reflects a resource conservation strategy. In contrast, the three species of L. formosana, Q. tissima, and P. strobilacea exhibited an optimized resource acquisition strategy rather than resource conservation strategy in the subtropical mountain of southeastern China. Regarding the four forest types, the three mixed forest types displayed increased plant leaf nutrient contents when compared to the pure P. massoniana forest, especially the P. massoniana–L. formosana mixed forest type (PLM). Overall, variation in leaf functional traits among different forest types may play an adaptive role in the successful survival of plants under diverse environments because leaf functional traits can lead to significant effects on leaf function, especially for their acquisition of nutrients and use of light. The results of this study are beneficial to reveal the changes in plant leaf functional traits at the regional scale, which will provide a foundation for predicting changes in leaf traits and adaptation in the future environment. 相似文献
10.
11.
Performance of the herb Verbascum thapsus along environmental gradients in its native and non‐native ranges 下载免费PDF全文
Tim Seipel Jake M. Alexander Curtis C. Daehler Lisa J. Rew Peter J. Edwards Pervaiz A. Dar Keith McDougall Bridgett Naylor Catherine Parks Fredric W. Pollnac Zafar A. Reshi Mel Schroder Christoph Kueffer 《Journal of Biogeography》2015,42(1):132-143
12.
Jari Kouki Harri Lappalainen Petri Martikainen Maarit Similä 《Diversity & distributions》2012,18(4):348-355
Aim Restoration of habitats may be used as a conservation tool when ecosystems have lost their natural structure, dynamics or functioning over large areas. Controlled and planned use of fire could be an effective way to restore habitats of many threatened species in boreal forests where fire suppression has been effective. We asked whether the large‐scale landscape context affects the occurrence of rare and threatened species in forest habitats that have been burned to restore their fire‐related structures. Location Boreal forests in southern Finland. Methods We designed a large‐scale field experiment that included nine Pinus sylvestris forests (5–10 ha each) in southern Finland. Sites were located in two regions: (1) in eastern region with shorter management history and (2) in western region where intensive forestry has continued longer. We evaluated whether restoration of dead/burned wood is beneficial for rare and conservation‐dependent species and measured the recovery of pyrophilous and red‐listed insects (beetles and flatbugs) in burned forests, using standardized sampling effort. Altogether, 956 individuals of 29 red‐listed and pyrophilous species were sampled. Results Rare species colonized areas quickly, but there was a clear difference in species richness between the regions. The eastern forests harboured higher species richness after restoration. In these sites, the average species richness was 13.7 species per site, whereas in western forests it was 5.0 species per site. Similar pattern was also observed in subgroups: the corresponding numbers for pyrophilous species were 9.7 vs. 3.8, for red‐listed 8.7 vs. 2.3 and for red‐listed pyrophiles 4.7 vs. 1.2. Main conclusions Introducing fire back to boreal forests can aid in the recovery of rare species, but the landscape context considerably affects the success of restoring species. If restored habitats are located in landscapes that have lost their natural properties long ago, the success of restoration seems to be more challenging than in landscapes where habitats have been modified more recently. 相似文献
13.
A substantial proportion of the existing tree plantations has been established following clearing of native forests. This form of conversion has become widely unaccepted, and there are increasing demands to reverse it through ecological restoration. Yet, there is a lack of integrated knowledge on how best to restore. Here, we reviewed 68 studies to identify the main factors determining establishment success of regeneration of native woody species when restoring natural forests from plantation forests using active and passive approaches, beneath existing canopies, and following their removal. According to the evidence collected, herbivory, within‐gap position, soil properties, and ground cover type and structure had limited influence on regeneration, showing significant effects in less than 26% of cases in which their influence was tested. In contrast, spatial landscape configuration, overstorey structure, ground vegetation structure, overstorey composition, and climate and geomorphology had significant effects in 67, 47, 47, 52, and 63% of cases, respectively. Regeneration diversity and abundance increased with proximity to natural vegetation remnants and seed sources. Lower canopy and understorey stocking levels positively influenced regeneration, as did interventions to reduce them. Canopy cover reduction proved especially effective in warmer regions, in stands of broadleaved species, younger ages (<30 years), higher densities (>1,000 trees/ha), and taller canopies (>20 m). Restoration of native forests can be optimized by adopting interventions that prove most effective, and prioritizing more responsive stand types. However, the specific stand attributes and environmental factors described should be further studied to understand the mechanisms underlying their influence on regeneration. 相似文献
14.
Effects of low‐density Pinus elliottii (Slash pine) afforestation on environmental conditions and native plant diversity,in the mountains of central Argentina 下载免费PDF全文
Santiago Ignacio Fiandino Jose Omar Plevich Juan Carlos Tarico Cesar Nuñez Veronica Rusch Javier Enrique Gyenge 《应用植被学》2018,21(3):442-450
15.
16.
17.
18.
19.
Marion Javal Eric Lombaert Tetyana Tsykun Claudine Courtin Carole Kerdelhu Simone Prospero Alain Roques Graldine Roux 《Molecular ecology》2019,28(5):951-967
Retracing introduction routes is crucial for understanding the evolutionary processes involved in an invasion, as well as for highlighting the invasion history of a species at the global scale. The Asian long‐horned beetle (ALB) Anoplophora glabripennis is a xylophagous pest native to Asia and invasive in North America and Europe. It is responsible for severe losses of urban trees, in both its native and invaded ranges. Based on historical and genetic data, several hypotheses have been formulated concerning its invasion history, including the possibility of multiple introductions from the native zone and secondary dispersal within the invaded areas, but none have been formally tested. In this study, we characterized the genetic structure of ALB in both its native and invaded ranges using microsatellites. In order to test different invasion scenarios, we used an approximate Bayesian “random forest” algorithm together with traditional population genetics approaches. The strong population differentiation observed in the native area was not geographically structured, suggesting complex migration events that were probably human‐mediated. Both native and invasive populations had low genetic diversity, but this characteristic did not prevent the success of the ALB invasions. Our results highlight the complexity of invasion pathways for insect pests. Specifically, our findings indicate that invasive species might be repeatedly introduced from their native range, and they emphasize the importance of multiple, human‐mediated introductions in successful invasions. Finally, our results demonstrate that invasive species can spread across continents following a bridgehead path, in which an invasive population may have acted as a source for another invasion. 相似文献
20.
Bin Li Huan Luo Dandan Xu Yongming Wang Chongyou Xie Zhijian Wang Xiaoqin Xiong Min Tao 《Zeitschrift fur angewandte Ichthyologie》2019,35(5):1119-1128
Trophic niche overlap in native and alien fish species can lead to competitive interactions whereby non‐native fishes outcompete indigenous individuals and eventually affect the viability of natural populations. The species Erythroculter mongolicus and Erythroculter ilishaeformis (belonging to the Culterinae), which are two commercially important fish species in the backwater bay of the Pengxi River in the Three Gorges Reservoir (TGR), were threatened by competition from the non‐native Coilia ectenes (lake anchovy). The latter is an alien species introduced into the lower reaches of the Yangtze River in China and now widespread in the TGR. The trophic consequences of non‐native lake anchovy invasion for E. mongolicus and E. ilishaeformis were assessed using stable isotope analysis (δ13C and δ15N) and associated metrics including the isotopic niche, measured as the standard ellipse area. The trophic niche of native E. mongolicus had little overlap (<15%) with the alien fish species and was significantly reduced in size after invasion by lake anchovy. This suggests that E. mongolicus shifted to a more specialized diet after invasion by lake anchovy. In contrast, the trophic niche overlap of native fish E. ilishaeformis with the alien fish species was larger (>50%) and the niche was obviously increased, implying that fish in this species exploited a wider dietary base to maintain their energetic requirements. Thus, marked changes for the native E. mongolicus and E. ilishaeformis were detected as the trophic consequences of invasion of non‐native lake anchovy. 相似文献