首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pleistocene extinctions affected mainly large‐bodied animals, determining the loss or changes in numerous ecological functions. Evidence points to a central role of many extinct megafauna herbivores as seed dispersers. An important step in understanding the legacy of extinct mutualistic interactions is to evaluate the roles and effectiveness of megafauna herbivores in seed dispersal. Here we use morphological and ecophysiological allometries to estimate both quantitative and qualitative aspects of seed‐dispersal services likely provided by extinct megafauna. We developed a mechanistic model that encompasses four stages of seed dispersal – seed ingestion, gut retention, animal movement, and seed deposition. We estimate seed‐dispersal kernels through simulations to infer the role of Pleistocene megafauna in promoting long‐distance dispersal and examine how seed dispersal was affected by extinctions. Simulations suggest extinct large‐bodied frugivores would frequently disperse large seeds over a thousand meters, whereas smaller‐bodied frugivores are more likely to deposit the seeds over a few hundred meters. Moreover, events of long‐distance seed dispersal by the extinct megafauna would be up to ten times longer than long‐distance dispersal by smaller‐sized extant mammals. By estimating the combined distribution of seed dispersal distances considering all large‐bodied mammalian frugivores in specific South American Pleistocene assemblages we found that long‐distance dispersal contracted by at least two thirds after the megafauna died out. The disruption of long‐distance dispersal is expected to have consequences for recruitment, spatial and genetic structure of plant populations, population persistence and community composition. Promoting long‐distance seed dispersal was one among other salient features of extinct Pleistocene megafauna that reveal their influence on natural ecosystems. Modeling the consequences of megafaunal extinctions can offer quantitative predictions on the consequences of ongoing defaunation to plant populations and ecological communities.  相似文献   

2.
Seed dispersal is a fundamental process that is highly threatened by the rapid decline of large-bodied frugivores worldwide. The Brazilian Cerrado, the largest savanna in the world, represents an ideal site for investigating seed dispersal because of its biodiversity, environmental challenges, and knowledge shortfalls. We performed a systematic literature review to analyze the seed dispersal network in the Cerrado and the potential impacts of the defaunation of large-bodied frugivores on it. We considered network metrics, calculated the defaunation index of the frugivore assemblage, and compared traits among different fruit-sized plants and their respective dispersers in the network. We retrieved 1565 interactions involving 193 plant species and 270 animal species. Results show that the Cerrado seed dispersal network is slightly nested and considerably modular, dominated by small- to medium-sized generalist species, such as passerines, marsupials, and mesocarnivores. Nonetheless, large-bodied frugivores like the lowland tapir have a key role in the network due to their great foraging and network integration capacity. The Cerrado frugivore assemblage is moderately defaunated, with possible effects in its interactions with large-fruited plants. The Cerrado's defaunation and functional loss of large vertebrates deserve urgent attention to further understand the impacts on seed dispersal mechanisms and ecosystem functioning.  相似文献   

3.
Hunting in tropical forests decimates large mammals, and this may have direct and indirect effects on other trophic levels and lead to trophic cascades. We compared replicated sites of hunted and protected forests in southeastern Nigeria, with respect to community composition of primates, other mammals, birds, plant seedlings, and mature trees. We make predictions regarding the community composition at the different trophic levels. In forests where large primates are rare, we hypothesize that their ecological role will not be fully compensated for by small frugivores. We apply multivariate methods to assess changes in community composition of mammals, birds, and seedlings, controlling for any differences between sites in the other groups, including mature trees. Medium and large (4–180 kg) primates were much rarer in hunted sites, while porcupine and rock hyrax increased in abundance with hunting. In contrast, the community composition of birds was similar in both types of forests. Seedling communities were significantly related to the community composition of mammals, and thus strongly affected by hunting. In protected forests primate dispersed plant seedling species dominated, whereas in hunted forests the seedling community was shifted towards one dominated by abiotically dispersed species. This was probably both a consequence of reduced seed dispersal by primates, and increased seed predation by rodents and hyrax. Hence we found no evidence for buffering effects on tree regeneration through functional compensation by non‐hunted animals (such as birds). Our results highlight how seedling communities are changed by the complex plant–animal intera ctions, triggered by the loss of seed dispersers. The results predict a rarity of primate‐dispersed trees in future tropical forest canopies; a forest less diverse in timber and non‐timber resources.  相似文献   

4.
Forest fragmentation and local disturbance are prevailing threats to tropical forest ecosystems and affect frugivore communities and animal seed dispersal in different ways. However, very little is known about the effects of anthropogenic forest edges and of local disturbance on the structure and robustness of plant–frugivore networks. We carried out focal tree observations to record the frugivore species feeding on eight canopy tree species in the forest interior and at forest–farmland edges in a little and a highly disturbed part of a Kenyan rain forest. For each frugivore species, we recorded its body mass and its forest dependence. We examined how forest edge and local disturbance affected the abundance, the richness and the composition of the frugivore community and tested whether forest edge and local disturbance affected plant frugivore networks. Abundance and species richness of frugivores were higher at edges than in the forest interior. Forest visitors and small‐bodied frugivores increased, while forest specialists decreased in abundance at forest edges. The changes in frugivore community composition resulted in plant–frugivore networks that were more connected, more nested and more robust against species extinctions at forest–farmland edges than in the forest interior. Network specialization was lower at forest edges than in the forest interior because at the edges plant specialization on frugivores was very low in small‐fruited species. In contrast, small‐fruited plants were more specialized than large‐fruited plants in the forest interior. Our findings suggest that forest‐visiting birds may stabilize seed‐dispersal services for small‐fruited plant species at rain forest margins, while seed‐dispersal services for large‐fruited plant species may be disrupted at forest edges due to the decrease of large‐bodied frugviores. To assess the ultimate consequences of bird movements from farmland to forest edges for ecosystem functioning, future studies are required to investigate the seed‐dispersal qualities provided by forest‐visiting bird species in the tropics.  相似文献   

5.
We investigated habitat preference in the community of ungulates in the Calakmul Forest of Southern Mexico through systematically counting the tracks of six species in randomly placed transects. Tracks were associated with one of four major forest types according to Pennington and Sarukhan (1998) . Forest type availability was estimated through 393 independent points on the same transects. We surveyed 90 transects in three hunted areas and one large nonhunted area, with a total of 206 km walked. A total of 1672 tracks of the six species were found. Brocket deer (Mazama americana and Mazama pandora) preferred low‐dry forest in the nonhunted area and low‐flooded forest in the hunted areas. Collared peccary (Pecari tajacu) was a generalist species in the nonhunted area, whereas in the hunted areas, it preferred the subperennial forest. White‐lipped peccary (Tayassu pecari) was found only in subperennial forest in the nonhunted area and favored low‐flooded forest in the hunted areas. White‐tailed deer (Odocoileus virginianus) preferred low‐flooded forest in the hunted areas, while it was a generalist in the nonhunted area. Tapir (Tapirus bairdii) preferred low‐flooded forest in the hunted areas. The most evident habitat difference among hunted and nonhunted areas was a major use of low‐flooded forest in the hunted areas for the species. Conservation of ungulate species in the Calakmul region requires protection of all major habitat types in hunted and nonhunted areas.  相似文献   

6.
Many of the mammals undergoing drastic declines in tropical forests worldwide are important seed dispersers and seed predators, and thus changes in mammal communities due to hunting will affect plant recruitment. It has been hypothesized that larger-seeded species will suffer greater reductions in seed removal and thus greater increases in predispersal seed predation than smaller-seeded species. We compared primary and secondary seed removal and predispersal seed predation of two tree species between hunted and nonhunted sites in Central Panama. Seeds of Oenocarpus mapora (Arecaceae) are 16-times greater in size than those of Cordia bicolor (Boraginaceae). We quantified primary seed removal and predispersal seed predation using seed traps, and we assessed secondary seed removal using seed removal plots. Primary removal of C. bicolor was 43 percent lower in the hunted sites, while primary removal of O. mapora was not significantly different. Secondary removal of unprotected O. mapora seeds on the ground was 59 percent lower in hunted sites, while secondary removal of C. bicolor was not significantly different. Predispersal seed predation of O. mapora by mammals was significantly lower in hunted sites, while predispersal seed predation by insects was not significantly different in either species. In combination with other studies, our results suggest that seed size is not a reliable predictor of the impacts of hunting. Mammal defaunation differentially affects stages and modes of seed dispersal and seed predation of different plant species, suggesting that these influences are complex and related to multiple plant traits.  相似文献   

7.
Mammal populations are increasingly hunted, yet the consequences of their disappearance from tropical forests have only recently been explored. Here, we summarize current research on the role of mammals in seed dispersal and postdispersal processes, such as seed predation and secondary dispersal, in different tropical regions. We evaluate how mammal features influence seedshadows and ultimately forest regeneration. Finally, we discuss the potential effect of changes in seedshadows caused by the elimination of many medium- and large-sized mammals. The complex role that mammals play in creating and modifying seedshadows in tropical forests cannot be easily quantified, and in this review we emphasize the variation that exists both within and among mammal taxa and across continents. To bridge this gap in information, we suggest that more studies should evaluate the relative importance of the disappearance of both seed dispersers and seed predators for particular plant species so that we may begin to understand the balance between these two influences. We also suggest that future studies identify ecological redundancy in nonhunted vertebrates within any particular community to evaluate compensatory behavior that may help ameliorate some of the negative effects of hunting of large and medium mammals.  相似文献   

8.
Throughout the tropics, mammalian seed dispersers are being driven to local extinction by intense hunting pressure, generating concern not only about the loss of these species, but also about the consequences for the plants they disperse. We compared two rain forest sites in Cameroon—one with heavy hunting pressure and one protected from hunting—to appraise the loss of mammalian seed dispersers and to assess the impact of this loss on seed removal and seed dispersal of Antrocaryon klaineanum (Anacardiaceae), a mammal-dispersed tree. Surveys of arboreal frugivores indicate that three of the five monkey species, as well as chimpanzee and gorilla, have been extirpated from the hunted forest. Diaspore counts underneath A. klaineanum adults (six trees per site) indicate that seed removal is severely reduced in the hunted forest. Finally, genetic maternity exclusion analysis (using 3–7 nuclear microsatellite loci) of maternally inherited endocarp tissue from diaspores collected under the canopies of 12 fruiting "mother" trees (six trees per site) revealed that seed dispersal in the hunted forest is also greatly reduced. In the hunted forest with reduced mammal dispersal agents, only 1 of the 53 assayed endocarps (2%) did not match the mother and was determined to be from a dispersed diaspore. By contrast, in the protected forest, 20 of the 48 assayed endocarps (42%) were from dispersed diaspores. This study provides strong evidence that loss of dispersal agents can lead to reduced seed removal and loss of seed dispersal, disrupting the seed dispersal cycle.  相似文献   

9.
Anthropogenic disturbances have resulted in declines of seed-dispersing primate frugivores in tropical forests. Previous work has suggested that loss of seed dispersal by large frugivores may have a negative impact on ecosystem carbon storage by reducing tree biomass. However, we know little about the potential impacts of losing frugivores in Madagascar’s diverse rainforest ecosystem. Understanding the effects of frugivore extinction on carbon loss is relevant in Madagascar, where threatened lemur taxa are the only dispersers of many large-seeded plant species. Using a dataset of tree species composition and traits from the southeastern rainforests of Ranomafana National Park, we examined whether seed size and lemur-dependent dispersal are positively associated with above-ground tree biomass. We then simulated different scenarios of population declines of large-seeded trees (>10 mm seed length) dependent on lemur-mediated seed dispersal, to examine potential directional changes in carbon storage capacity of Malagasy forests under lemur loss. Lemur-dispersed tree species, which have large seeds, had higher above-ground biomass than other species. Our simulations showed that the loss of large frugivorous primates in Madagascar may decrease the forest’s potential to store carbon. These results demonstrate the importance of primate conservation for maintaining functioning ecosystems and forest carbon stocks in one of the world’s hottest hotspots of biodiversity.  相似文献   

10.
Global change and human expansion have resulted in many species extinctions worldwide, but the geographic variation and determinants of extinction risk in particular guilds still remain little explored. Here, we quantified insular extinctions of frugivorous vertebrates (including birds, mammals and reptiles) across 74 tropical and subtropical oceanic islands within 20 archipelagos worldwide and investigated extinction in relation to island characteristics (island area, isolation, elevation and climate) and species’ functional traits (body mass, diet and ability to fly). Out of the 74 islands, 33 islands (45%) have records of frugivore extinctions, with one third (mean: 34%, range: 2–100%) of the pre‐extinction frugivore community being lost. Geographic areas with more than 50% loss of pre‐extinction species richness include islands in the Pacific (within Hawaii, Cook Islands and Tonga Islands) and the Indian Ocean (Mascarenes, Seychelles). The proportion of species richness lost from original pre‐extinction communities is highest on small and isolated islands, increases with island elevation, but is unrelated to temperature or precipitation. Large and flightless species had higher extinction probability than small or volant species. Across islands with extinction events, a pronounced downsizing of the frugivore community is observed, with a strong extinction‐driven reduction of mean body mass (mean: 37%, range: –18–100%) and maximum body mass (mean: 51%, range: 0–100%). The results document a substantial trophic downgrading of frugivore communities on oceanic islands worldwide, with a non‐random pattern in relation to geography, island characteristics and species’ functional traits. This implies severe consequences for ecosystem processes that depend on mutualistic plant–animal interactions, including ecosystem dynamics that result from the dispersal of large‐seeded plants by large‐bodied frugivores. We suggest that targeted conservation and rewilding efforts on islands are needed to halt the defaunation of large and non‐volant seed dispersers and to restore frugivore communities and key ecological interactions.  相似文献   

11.
Seed dispersal systems in degraded areas can be compromised following the decline of large-bodied frugivore populations responsible for their dispersal. In this context we examined the seed dispersal ecology of a large fruited deciduous tree (Dillenia pentagyna) along a forest degradation gradient in India. We examined the effect of structural components of vegetation and frugivore foraging behavior on D. pentagyna seed dispersal. Depauperate mammalian community and declined large avian frugivores e.g. hornbills in our study site make this system a specialized one and currently dependent on only two large bodied avian frugivores. Seed dispersal followed an overall leptokurtic pattern and the seed dispersal kernels were best explained by an inverse power function. Seed dispersal kernels in dense forest indicated longer dispersal distances than moderately dense forest and degraded forest. In degraded areas, no dispersal away from the crown was recorded for D. pentagyna and it occurred at low density. Canopy foliage abundance of the surrounding vegetation of the focal trees was best explained by quantity of seed dispersal by large avian frugivores. The number of avian frugivore species those are effective disperser of D. pentagyna decreased along the degradation gradient. Avian frugivore behavior in terms of visitation and seed swallowed is a determining factor that controls quantity of seed dispersal. Our study underscores deleterious impact of forest degradation on avian disperser community which in turn would affect regeneration capacity of degraded forest.  相似文献   

12.
Seed dispersal by frugivores in tropical rain forests is important for maintaining viable tree populations. Over the years, vertebrate assemblages in tropical forests have been altered by anthropogenic disturbances, leading to concerns about the ability of remnant vertebrates to substitute for the lost or declining vertebrate populations. We compared vertebrate composition and frugivore visitation rates as an indirect measure of rate of seed dispersal in three tropical rain forests in Uganda, namely Mabira, Budongo and Kibale Forests. Mabira is highly disturbed, Kibale is little and Budongo is intermediate. The aim was to determine whether vertebrate assemblages in differentially disturbed forests had comparable abilities to disperse seeds and whether tree species were equally vulnerable to loss of seed dispersers. Assemblages of forest generalist species were similar in all forests, but specialists were less abundant in the heavily disturbed forest. Remnant frugivores in the heavily disturbed forest were mainly small-bodied species that spat seeds beneath fruiting trees compared to large-bodied species observed in the less disturbed forests that ingested and carried away the seeds. We postulate that the quantity of seeds dispersed in heavily disturbed forests is much reduced due to low visitation rates of frugivores and the absence of large frugivores that consume large quantities of fruit. The quality of seed dispersal is affected as well by the distance over which seeds are moved. Assessment of vulnerability of trees shows no evidence for disperser substitution for trees producing large fruits. Fruit trees with low nutritional contents and digestibility were least visited in frugivore-impoverished forests. The loss of large specialist frugivores is likely to affect recruitment of many trees, especially of species that cannot establish beneath adult conspecifics.  相似文献   

13.
The traits of animals and plants influence their interaction networks, but the significance of species' traits for the resulting ecosystem functions is poorly understood. A crucial ecosystem function in the tropics is seed dispersal by animals. While the importance of species' traits for structuring plant–frugivore networks is supported by a number of studies, no study has so far identified the functional traits determining the subsequent processes of fruit removal and seedling recruitment. Here, we conducted a comprehensive field study on fruit removal by frugivorous birds and seedling recruitment along an elevational gradient in the Colombian Andes. We measured morphological traits of birds (body mass, bill width, Kipp's index) and plants (plant height, crop mass, fruit width and seed mass) which we expected to be related to fruit removal and seedling recruitment. We tested 1) which bird and plant traits influence fruit removal, and 2) whether network metrics at plant species level, functional identities of frugivores (community‐based mean trait values) and/or plant traits were the main determinants of seedling recruitment. We found that large‐bodied bird species contributed more to fruit removal than small‐bodied bird species and that small‐sized fruits were more frequently removed than large‐sized fruits. Small plant species and plants with heavy seeds recruited more seedlings than did large plants and plants with light seeds. Network metrics and functional identities of seed dispersers were unrelated to seedling recruitment. Our findings have two important implications. First, large birds are functionally more important than small birds in tropical seed‐removal networks. Second, the detected tradeoff between fruit size and seed mass in subsequent recruitment processes suggests that the adaptability of forest plant communities to a loss of large frugivores is limited by life‐history constraints. Hence, the protection of large‐bodied frugivores is of primary importance for the maintenance of diverse tropical plant communities.  相似文献   

14.
Anthropogenic habitat disturbance has potential consequences for ant communities. However, there is limited information on the effects of ant responses on associated ecological processes such as seed dispersal. We investigated the effect of disturbance on the abundance, richness, and composition of ant communities and the resulting seed‐dispersal services for a herbaceous myrmecochore, Corydalis giraldii (Papaveraceae), in an undisturbed habitat (forest understory), moderately disturbed habitat (abandoned arable field), and highly disturbed habitat (road verge) on Qinling Mountains, China. In total, we recorded 13 ant species, and five out of these were observed to transport seeds. The community composition of dispersers was significantly different amongst habitats. The richness of the dispersers did not differ among the habitats, but their total abundance varied significantly across habitats and was 21% lower in the road verge than in the abandoned arable fields. The major seed‐dispersing ant species in both the forest understory and the abandoned arable field were large‐bodied (Myrmica sp. and Formica fusca, respectively), whereas the major seed‐dispersing ants found in the road verge were the small‐bodied Lasius alienus. This difference resulted in lower seed removal rates and dispersal distances in the road verge than in the other two habitats. The different dispersal patterns were attributed primarily to differences in dispersing ant abundance and identity, most likely in response to habitats with different degree of anthropogenic disturbance. The possible influence of disturbance on the ecological specialization of ant‐seed dispersal interaction is also discussed.  相似文献   

15.
The loss of largest-bodied individuals within species of frugivorous animals is one of the major consequences of defaunation. The gradual disappearance of large-bodied frugivores is expected to entail a parallel deterioration in seed dispersal functionality if the remaining smaller-sized individuals are not so effective as seed dispersers. While the multiple impacts of the extinction of large bodied species have been relatively well studied, the impact of intraspecific downsizing (i.e. the extinction of large individuals within species) on seed dispersal has rarely been evaluated. Here we experimentally assessed the impact of body-size reduction in the frugivorous lizard Gallotia galloti (Lacertidae), an endemic species of the Canary Islands, on the seed germination patterns of two fleshy-fruited plant species (Rubia fruticosa and Withania aristata). Seed germination curves and the proportions of germinated seeds were compared for both plant species after being defecated by large-sized individuals and small-sized individuals. The data show that seeds of W. aristata defecated by larger-sized lizards germinated faster and in a higher percentage than those defecated by small-sized lizards, while no differences were found for R. fruticosa seeds. Our results suggest that disappearance of the largest individuals of frugivorous species may impair recruitment of some plant species by worsening seed germination. They also warn us of a potential cryptic loss of seed dispersal functionality on defaunated ecosystems, even when frugivorous species remain abundant.  相似文献   

16.
Following defaunation, the loss of interactions with mutualists such as pollinators or seed dispersers may be compensated through increased interactions with remaining mutualists, ameliorating the negative cascading impacts on biodiversity. Alternatively, remaining mutualists may respond to altered competition by reducing the breadth or intensity of their interactions, exacerbating negative impacts on biodiversity. Despite the importance of these responses for our understanding of the dynamics of mutualistic networks and their response to global change, the mechanism and magnitude of interaction compensation within real mutualistic networks remains largely unknown. We examined differences in mutualistic interactions between frugivores and fruiting plants in two island ecosystems possessing an intact or disrupted seed dispersal network. We determined how changes in the abundance and behavior of remaining seed dispersers either increased mutualistic interactions (contributing to “interaction compensation”) or decreased interactions (causing an “interaction deficit”) in the disrupted network. We found a “rich‐get‐richer” response in the disrupted network, where remaining frugivores favored the plant species with highest interaction frequency, a dynamic that worsened the interaction deficit among plant species with low interaction frequency. Only one of five plant species experienced compensation and the other four had significant interaction deficits, with interaction frequencies 56–95% lower in the disrupted network. These results do not provide support for the strong compensating mechanisms assumed in theoretical network models, suggesting that existing network models underestimate the prevalence of cascading mutualism disruption after defaunation. This work supports a mutualist biodiversity‐ecosystem functioning relationship, highlighting the importance of mutualist diversity for sustaining diverse and resilient ecosystems.  相似文献   

17.
Large fish are often the most effective seed dispersers, but they are also the preferred target for fisheries. We recently started to comprehend the detrimental impacts of the extirpation of large frugivorous fish species on natural forest regeneration, but we lack a general understanding of how intraspecific size‐selective harvest affects fish–fruit mutualism. Our literature review demonstrated that large individuals within populations positively affect diverse aspects of seed dispersal, from consuming a higher diversity of seeds to enhancing germination. Furthermore, we filled a research gap by studying how individual size variations within two small frugivorous fish species (<16 cm) affect seed dispersal in flooded savannas. Even within small‐bodied species, large individuals swallow a higher number of intact seeds, but not necessarily a higher proportion. Overall, our results demonstrate the disproportional role of large‐bodied individuals as key seed dispersers in flooded habitats. Consequently, fishing‐down within both large‐ and small‐bodied species can negatively affect seed dispersal and natural regeneration in overfished wetlands.  相似文献   

18.

Overhunting is a leading contemporary driver of tropical forest wildlife loss. The absence or extremely low densities of large-bodied vertebrates disrupts plant-animal mutualisms and consequently degrades key ecosystem services. Understanding patterns of defaunation is therefore crucial given that most tropical forests worldwide are now “half-empty”. Here we investigate changes in vertebrate community composition and size structure along a gradient of marked anthropogenic hunting pressure in the Médio Juruá region of western Brazilian Amazonia. Using a novel camera trapping grid design deployed both in the understorey and the forest canopy, we estimated the aggregate biomass of several functional groups of terrestrial and arboreal species at 28 sites along the hunting gradient. Generalized linear models (GLMs) identified hunting pressure as the most important driver of aggregate biomass for game, terrestrial, and arboreal species, as well as nocturnal rodents, frugivores, and granivores. Local hunting pressure affected vertebrate community structure as shown by both GLM and ordination analyses. The size structure of vertebrate fauna changed in heavily hunted areas due to population declines in large-bodied species and apparent compensatory increases in nocturnal rodents. Our study shows markedly altered vertebrate community structure even in remote but heavily settled areas of continuous primary forest. Depletion of frugivore and granivore populations, and concomitant density-compensation by seed predators, likely affect forest regeneration in persistently overhunted tropical forests. These findings contribute to a better understanding of how cascading effects induced by historical defaunation operate, informing wildlife management policy in tropical peri-urban, rural and wilderness areas.

  相似文献   

19.
The interaction between granivorous scatterhoarding mammals and plants is a conditional mutualism: scatterhoarders consume seeds (acting as predators), but the movement of seed by scatterhoarders may contribute to dispersal (acting as mutualists). Understanding the ecological factors that shape this relationship is highly relevant in anthropogenically disturbed tropical forests where large‐bodied frugivores are extirpated. In such forests, large‐seeded trees that once depended on these frugivores for dispersal may now only have scatterhoarders as prospective dispersers. We studied Carapa oreophila (Meliaceae) in an Afromontane forest, to test the hypotheses that the proportion of seeds immediately consumed or hoarded (dispersed) would vary over a disturbance gradient. Temporal replication also afforded exploration of how habitat effects might vary with food availability. Using a Bayesian framework, we demonstrate that seeds were more likely to be hoarded in less disturbed forest, irrespective of temporal variation in food abundance. In contrast, forest disturbance only appeared to increase seed predation in temporal replicates that coincided with sustained food availability. These results highlight the potential variability in the dynamics between plants and scatterhoarders over fine temporal scales, elucidating possible ecological scenarios where scatterhoarders might act as mutualists (contributing positively to plant recruitment). Our study also fills important knowledge gaps about the importance of scatterhoarders as dispersers in tropical forests depleted of large‐bodied frugivores, particularly in Africa where scatterhoarding mutualisms have not been extensively studied.  相似文献   

20.
Factors influencing the interaction between fruiting trees and their frugivorous seed dispersers in fragmented Afrotropical landscapes are poorly known. With the use of Mantel statistics we analysed assemblages of frugivorous birds on 58 individual trees belonging to 11 species growing in seven Kenyan cloud forest fragments. Overall, frugivores showed little specialization on particular trees. Fruit size explained a substantial amount of the variation in frugivore assemblages among different tree species at the same site. In addition, frugivore assemblages on conspecific trees were significantly more similar when the trees occurred at the same site. This location effect was attributable to the different sites and forest fragments (of different sizes and disturbance levels) varying in the densities and composition of their avian frugivores, vegetation composition and tree fruiting phenologies. It was consolidated further by the low mobility of most of these avian frugivores, particularly their reluctance to cross between forest fragments. Habitat disturbance and fragmentation may therefore have affected fruit selection, with implications for both seed dispersal and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号