共查询到11条相似文献,搜索用时 0 毫秒
1.
Thomas Vanneste Sanne Van Den Berge Jrg Brunet Per-Ola Hedwall Kris Verheyen Pieter De Frenne 《Annals of botany》2021,128(3):315
Background and AimsHedgerows have been shown to improve forest connectivity, leading to an increased probability of species tracking the shifting bioclimatic envelopes. However, it is still unknown how species in hedgerows respond to temperature changes, and whether effects differ compared with those in nearby forests. We aimed to elucidate how ongoing changes in the climate system will affect the efficiency of hedgerows in supporting forest plant persistence and migration in agricultural landscapes.MethodsHere we report results from the first warming experiment in hedgerows. We combined reciprocal transplantation of plants along an 860-km latitudinal transect with experimental warming to assess the effects of temperature on vegetative growth and reproduction of two common forest herbs (Anemone nemorosa and Geum urbanum) in hedgerows versus forests.Key ResultsBoth species grew taller and produced more biomass in forests than in hedgerows, most likely due to higher competition with ruderals and graminoids in hedgerows. Adult plant performance of both species generally benefitted from experimental warming, despite lower survival of A. nemorosa in heated plots. Transplantation affected the species differently: A. nemorosa plants grew taller, produced more biomass and showed higher survival when transplanted at their home site, indicating local adaptation, while individuals of G. urbanum showed greater height, biomass, reproductive output and survival when transplanted northwards, likely owing to the higher light availability associated with increasing photoperiod during the growing season.ConclusionsThese findings demonstrate that some forest herbs can show phenotypic plasticity to warming temperatures, potentially increasing their ability to benefit from hedgerows as ecological corridors. Our study thus provides novel insights into the impacts of climate change on understorey plant community dynamics in hedgerows, and how rising temperature can influence the efficiency of these corridors to assist forest species’ persistence and colonization within and beyond their current distribution range. 相似文献
2.
Pieter Sanczuk Sanne Govaert Camille Meeussen Karen De Pauw Thomas Vanneste Leen Depauw Xoaquín Moreira Jonas Schoelynck Marthe De Boevre Sarah De Saeger Kurt Bollmann Jrg Brunet Sara A. O. Cousins Jan Plue Martin Diekmann Bente J. Graae Per‐Ola Hedwall Giovanni Iacopetti Jonathan Lenoir Anna Orczewska Quentin Ponette Federico Selvi Fabien Spicher Pieter Vermeir Kim Calders Hans Verbeeck Kris Verheyen Pieter Vangansbeke Pieter De Frenne 《Global Ecology and Biogeography》2021,30(1):205-219
3.
Aim To relate variation in the migration capacity and colonization ability of island communities to island geography and species island occupancy. Location Islands off mainland Britain and Ireland. Methods Mean migration (transfer) capacity and colonization (establishment) ability (ecological indices), indexed from 12 ecological variables for 56 butterfly species living on 103 islands, were related to species nestedness, island and mainland source geography and indices using linear regression models, RLQ analysis and fourth‐corner analysis. Random creation of faunas from source species, rank correlation and rank regression were used to examine differences between island and source ecological indices, and relationships to island geography. Results Island butterfly faunas are highly nested. The two ecological indices related closely to island occupancy, nestedness rank of species, island richness and geography. The key variables related to migration capacity were island area and isolation; for colonization ability they were area, isolation and longitude. Compared with colonization ability, migration capacity was found to correlate more strongly with island species occupancy and species richness. For island faunas, the means for both ecological indices decreased, and variation increased, with increasing island species richness. Mean colonization ability and migration capacity values were significantly higher for island faunas than for mainland source faunas, but these differences decreased with island latitude. Main conclusions The nested pattern of butterfly species on islands off mainland Britain and Ireland relates strongly to colonization ability but especially to migration capacity. Differences in colonization ability among species are most obvious for large, topographically varied islands. Generalists with abundant multiple resources and greater migration capacity are found on all islands, whereas specialists are restricted to large islands with varied and long‐lived biotopes, and islands close to shore. The inference is that source–sink dynamics dominate butterfly distributions on British and Irish islands; species are capable of dispersing to new areas, but, with the exception of large and northern islands, facilities (resources) for permanent colonization are limited. The pattern of colonization ability and migration capacity is likely to be repeated for mainland areas, where such indices should provide useful independent measures for assessing the conservation status of faunas within spatial units. 相似文献
4.
《Global Ecology and Biogeography》2018,27(7):814-827
Aim
Invasive species are of increasing global concern. Nevertheless, the mechanisms driving further distribution after the initial establishment of non‐native species remain largely unresolved, especially in marine systems. Ocean currents can be a major driver governing range occupancy, but this has not been accounted for in most invasion ecology studies so far. We investigate how well initial establishment areas are interconnected to later occupancy regions to test for the potential role of ocean currents driving secondary spread dynamics in order to infer invasion corridors and the source–sink dynamics of a non‐native holoplanktonic biological probe species on a continental scale.Location
Western Eurasia.Time period
1980s–2016.Major taxa studied
‘Comb jelly’ Mnemiopsis leidyi.Methods
Based on 12,400 geo‐referenced occurrence data, we reconstruct the invasion history of M. leidyi in western Eurasia. We model ocean currents and calculate their stability to match the temporal and spatial spread dynamics with large‐scale connectivity patterns via ocean currents. Additionally, genetic markers are used to test the predicted connectivity between subpopulations.Results
Ocean currents can explain secondary spread dynamics, matching observed range expansions and the timing of first occurrence of our holoplanktonic non‐native biological probe species, leading to invasion corridors in western Eurasia. In northern Europe, regional extinctions after cold winters were followed by rapid recolonizations at a speed of up to 2,000 km per season. Source areas hosting year‐round populations in highly interconnected regions can re‐seed genotypes over large distances after local extinctions.Main conclusions
Although the release of ballast water from container ships may contribute to the dispersal of non‐native species, our results highlight the importance of ocean currents driving secondary spread dynamics. Highly interconnected areas hosting invasive species are crucial for secondary spread dynamics on a continental scale. Invasion risk assessments should consider large‐scale connectivity patterns and the potential source regions of non‐native marine species.5.
6.
Björn Reu Raphaël Proulx Kristin Bohn James G. Dyke Axel Kleidon Ryan Pavlick Sebastian Schmidtlein 《Global Ecology and Biogeography》2011,20(4):570-581
Aim Two of the oldest observations in plant geography are the increase in plant diversity from the poles towards the tropics and the global geographic distribution of vegetation physiognomy (biomes). The objective of this paper is to use a process‐based vegetation model to evaluate the relationship between modelled and observed global patterns of plant diversity and the geographic distribution of biomes. Location The global terrestrial biosphere. Methods We implemented and tested a novel vegetation model aimed at identifying strategies that enable plants to grow and reproduce within particular climatic conditions across the globe. Our model simulates plant survival according to the fundamental ecophysiological processes of water uptake, photosynthesis, reproduction and phenology. We evaluated the survival of an ensemble of 10,000 plant growth strategies across the range of global climatic conditions. For the simulated regional plant assemblages we quantified functional richness, functional diversity and functional identity. Results A strong relationship was found (correlation coefficient of 0.75) between the modelled and the observed plant diversity. Our approach demonstrates that plant functional dissimilarity increases and then saturates with increasing plant diversity. Six of the major Earth biomes were reproduced by clustering grid cells according to their functional identity (mean functional traits of a regional plant assemblage). These biome clusters were in fair agreement with two other global vegetation schemes: a satellite image classification and a biogeography model (kappa statistics around 0.4). Main conclusions Our model reproduces the observed global patterns of plant diversity and vegetation physiognomy from the number and identity of simulated plant growth strategies. These plant growth strategies emerge from the first principles of climatic constraints and plant functional trade‐offs. Our study makes important contributions to furthering the understanding of how climate affects patterns of plant diversity and vegetation physiognomy from a process‐based rather than a phenomenological perspective. 相似文献
7.
8.
9.
Kamila Reczyńska;Krzysztof Świerkosz; 《植被学杂志》2024,35(3):e13263
Changes caused by climate warming and nitrogen pollution are observed in forest, grassland and alpine ecosystems worldwide. However, still little is known about the impact of these globally influencing factors on natural rocky plant communities. Has species composition of natural rocky communities changed over time? What is the role of large-scale and fine-scale environmental factors in shaping the compositional, functional and habitat patterns in studied plant communities over time? 相似文献
10.
11.
Paula María Montoya‐Pfeiffer Ricardo Ribeiro Rodrigues Jean Paul Metzger Claudia Inês da Silva Oswaldo Santos Baquero Isabel Alves dos Santos 《应用植被学》2018,21(1):156-163