首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
With its vast territory and complex natural environment, China boasts rich cattle genetic resources. To gain the further insight into the genetic diversity and paternal origins of Chinese cattle, we analyzed the polymorphism of Y‐SNPs (UTY19 and ZFY10) and Y‐STRs (INRA189 and BM861) in 34 Chinese cattle breeds/populations, including 606 males representative of 24 cattle breeds/populations collected in this study as well as previously published data for 302 bulls. Combined genotypic data identified 14 Y‐chromosome haplotypes that represented three haplogroups. Y2‐104‐158 and Y2‐102‐158 were the most common taurine haplotypes detected mainly in northern and central China, whereas the indicine haplotype Y3‐88‐156 predominates in southern China. Haplotypes Y2‐108‐158, Y2‐110‐158, Y2‐112‐158 and Y3‐92‐156 were private to Chinese cattle. The population structure revealed by multidimensional scaling analysis differentiated Tibetan cattle from the other three groups of cattle. Analysis of molecular variance showed that the majority of the genetic variation was explained by the genetic differences among groups. Overall, our study indicates that Chinese cattle retain high paternal diversity (= 0.607 ± 0.016) and probably much of the original lineages that derived from the domestication center in the Near East without strong admixture from commercial cattle carrying Y1 haplotypes.  相似文献   

2.
Loci considered to be under selection are generally avoided in attempts to infer past demographic processes as they do not fit neutral model assumptions. However, opportunities to better reconstruct some aspects of past demography might thus be missed. Here we examined genetic differentiation between two sympatric European oak species with contrasting ecological dynamics (Quercus robur and Quercus petraea) with both outlier (i.e. loci possibly affected by divergent selection between species or by hitchhiking effects with genomic regions under selection) and nonoutlier loci. We sampled 855 individuals in six mixed forests in France and genotyped them with a set of 262 SNPs enriched with markers showing high interspecific differentiation, resulting in accurate species delimitation. We identified between 13 and 74 interspecific outlier loci, depending on the coalescent simulation models and parameters used. Greater genetic diversity was predicted in Q. petraea (a late‐successional species) than in Q. robur (an early successional species) as introgression should theoretically occur predominantly from the resident species to the invading species. Remarkably, this prediction was verified with outlier loci but not with nonoutlier loci. We suggest that the lower effective interspecific gene flow at loci showing high interspecific divergence has better preserved the signal of past asymmetric introgression towards Q. petraea caused by the species' contrasting dynamics. Using markers under selection to reconstruct past demographic processes could therefore have broader potential than generally recognized.  相似文献   

3.
Aphid species within the genus Tuberculatus Mordvilko (Hemiptera: Aphididae) exhibit a variety of interactions with ants, ranging from close associations to non‐attendance. A previous study indicated that despite wing possession, ant‐attended Tuberculatus species exhibited low dispersal rates compared with non‐attended species. This study examined if presence or absence of mutualistic interactions and habitat continuity of host plants affected intraspecific genetic diversity and genetic differentiation in mitochondrial DNA cytochrome oxidase I (COI) sequences. Sympatric ant‐attended Tuberculatus quercicola (Matsumura) (Hemiptera: Aphididae) and non‐attended Tuberculatus paiki Hille Ris Lambers (Hemiptera: Aphididae) were collected from the daimyo oak Quercus dentata Thunberg (Fagales: Fagaceae) in Japan and examined for haplotype variability. Seventeen haplotypes were identified in 568 T. quercicola individuals representing 23 populations and seven haplotypes in 425 T. paiki representing 19 populations. Haplotype diversity, which indicates the mean number of differences between all pairs of haplotypes in the sample, and nucleotide diversity were higher in T. quercicola than T. paiki. Analysis of molecular variance (AMOVA) showed higher genetic differentiation among populations within groups of T. quercicola (39.8%) than T. paiki (22.6%). The effects of attendant ant species on genetic differentiation in T. quercicola were not distinguishable from geographic factors. Despite low dispersal rates, host plant habitat continuity might facilitate widespread dispersal of a T. quercicola haplotype in Hokkaido. These results suggested that following T. quercicola colonization, gene flow among populations was limited, resulting in genetic drift within populations. However, frequent T. paiki dispersal is clearly evident by low genetic differentiation among populations within groups, resulting in lower haplotype diversity.  相似文献   

4.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

5.
To examine the processes that maintain genetic diversity among closely related taxa, we investigated the dynamics of introgression across a contact zone between two lineages of California voles (Microtus californicus). We tested the prediction that introgression of nuclear loci would be greater than that for mitochondrial loci, assuming ongoing gene flow across the contact zone. We also predicted that genomic markers would show a mosaic pattern of differentiation across this zone, consistent with genomes that are semi‐permeable. Using mitochondrial cytochrome b sequences and genome‐wide loci developed via ddRAD‐seq, we analyzed genetic variation for 10 vole populations distributed along the central California coast; this transect included populations from within the distributions of both parental lineages as well as the putative contact zone. Our analyses revealed that (1) the two lineages examined are relatively young, having diverged ca. 8.5–54 kya, (2) voles from the contact zone in Santa Barbara County did not include F1 or early generation backcrossed individuals, and (3) there appeared to be little to no recurrent gene flow across the contact zone. Introgression patterns for mitochondrial and nuclear markers were not concordant; only mitochondrial markers revealed evidence of introgression, putatively due to historical hybridization. These differences in genetic signatures are intriguing given that the contact zone occurs in a region of continuous vole habitat, with no evidence of past or present physical barriers. Future studies that examine specific isolating mechanisms, such as microhabitat use and mate choice, will facilitate our understanding of how genetic boundaries are maintained in this system.  相似文献   

6.
Genetic structure and major climate factors may contribute to the distribution of genetic diversity of a highly valued oil tree species Xanthoceras sorbifolium (yellowhorn). Long‐term over utilization along with climate change is affecting the viability of yellowhorn wild populations. To preserve the species known and unknown valuable gene pools, the identification of genetic diversity “hotspots” is a prerequisite for their consideration as in situ conservation high priority. Chloroplast DNA (cpDNA) diversity was high among 38 natural populations (Hd = 0.717, K = 4.616, Tajmas’ D = ?0.22) and characterized by high genetic divergence (FST = 0.765) and relatively low gene flow (Nm = 0.03), indicating populations isolation reflecting the species’ habitat fragmentation and inbreeding depression. Six out of the studied 38 populations are defined as genetic diversity “hotspots.” The number and geographic direction of cpDNA mutation steps supported the species southwest to northeast migration history. Climatic factors such as extreme minimum temperature over 30 years indicated that the identified genetic “hotspots” are expected to experience 5°C temperature increase in next following 50 years. The results identified vulnerable genetic diversity “hotspots” and provided fundamental information for the species’ future conservation and breeding activities under the anticipated climate change. More specifically, the role of breeding as a component of a gene resource management strategy aimed at fulfilling both utilization and conservation goals.  相似文献   

7.
8.
Crop wild relatives (CWR) provide an important source of allelic diversity for any given crop plant species for counteracting the erosion of genetic diversity caused by domestication and elite breeding bottlenecks. Hordeum bulbosum L. is representing the secondary gene pool of the genus Hordeum. It has been used as a source of genetic introgressions for improving elite barley germplasm (Hordeum vulgare L.). However, genetic introgressions from Hbulbosum have yet not been broadly applied, due to a lack of suitable molecular tools for locating, characterizing, and decreasing by recombination and marker‐assisted backcrossing the size of introgressed segments. We applied next‐generation sequencing (NGS) based strategies for unlocking genetic diversity of three diploid introgression lines of cultivated barley containing chromosomal segments of its close relative H. bulbosum. Firstly, exome capture‐based (re)‐sequencing revealed large numbers of single nucleotide polymorphisms (SNPs) enabling the precise allocation of H. bulbosum introgressions. This SNP resource was further exploited by designing a custom multiplex SNP genotyping assay. Secondly, two‐enzyme‐based genotyping‐by‐sequencing (GBS) was employed to allocate the introgressed H. bulbosum segments and to genotype a mapping population. Both methods provided fast and reliable detection and mapping of the introgressed segments and enabled the identification of recombinant plants. Thus, the utilization of H. bulbosum as a resource of natural genetic diversity in barley crop improvement will be greatly facilitated by these tools in the future.  相似文献   

9.
Southwest China is an important biodiversity hotspot. The interactions among the complex topography, climate change, and ecological factors in the dry‐hot valley areas in southwest China may have profoundly affected the genetic structure of plant species in this region. In this study, we determined the effects of the Tanaka Line on genetic variation in the wild Bombax ceiba tree in southwest China. We sampled 224 individuals from 17 populations throughout the dry‐hot valley regions. Six polymorphic expressed sequence tag–simple sequence repeat primers were employed to sequence the PCR products using the first‐generation Sanger technique. The analysis based on population genetics suggested that B. ceiba exhibited a high level of gene diversity (HE: 0.2377–0.4775; I: 0.3997–0.7848). The 17 populations were divided into two groups by cluster analysis, which corresponded to geographic characters on each side of the Tanaka Line. In addition, a Mantel test indicated that the phylogeographic structure among the populations could be fitted to the isolation‐by‐distance model (r2 = .2553, < .001). A barrier test indicated that there were obstacles among populations and between the two groups due to complex terrain isolation and geographic heterogeneity. We inferred that the Tanaka Line might have promoted the intraspecific phylogeographic subdivision and divergence of B. ceiba. These results provide new insights into the effects of the Tanaka Line on genetic isolation and population differentiation of plant species in southwest China.  相似文献   

10.
Geography influences the evolutionary trajectory of species by mediating opportunities for hybridization, gene flow, demographic shifts and adaptation. We sought to understand how geography and introgression can generate species‐specific patterns of genetic diversity by examining phylogeographical relationships in the North American skink species Plestiodon multivirgatus and P. tetragrammus (Squamata: Scincidae). Using a multilocus dataset (three mitochondrial genes, four nuclear genes; a total of 3455 bp) we discovered mito‐nuclear discordance, consistent with mtDNA introgression. We further tested for evidence of species‐wide mtDNA introgression by using comparisons of genetic diversity, selection tests and extended Bayesian skyline analyses. Our findings suggest that P. multivirgatus acquired its mitochondrial genome from P. tetragrammus after their initial divergence. This putative species‐wide mitochondrial capture was further evidenced by statistically indistinguishable substitution rates between mtDNA and nDNA in P. multivirgatus. This rate discrepancy was observed in P. multivirgatus but not P. tetragrammus, which has important implications for studies that combine mtDNA and nDNA sequences when inferring time since divergence between taxa. Our findings suggest that by facilitating opportunities for interspecific introgression, geography can alter the course of molecular evolution between recently diverged lineages.  相似文献   

11.
The level of genetic diversity in a population can affect ecological processes and plant responses to disturbance. In turn, disturbance can alter population genetic diversity and structure. Populations in fragmented and logged habitats often show reduced genetic diversity and increased inbreeding and differentiation. Long‐term harvesting of wild plants (for foliage, bark, and roots), can affect population genetic diversity by altering individual fitness and genetic contribution. Our understanding of these changes in genetic diversity due to the harvesting of plant organs is still limited. We used nine microsatellite markers to study the effect of long‐term bark and foliage harvest by Fulani people on the genetic diversity and structure of 12 populations of African mahogany (Khaya senegalensis) in Benin. We sampled 20 individuals in each population to test the effect of harvesting. For each population, we divided the samples equally between seedling and adults to test if the effects are stronger in seedlings. We found moderate genetic diversity (H= 0.53 ± 0.04) and weak but significant differentiation among local populations (FST = 0.043, < 0.001). There was no significant effect of harvest on genetic diversity or structure, although previous work found significant negative effects of harvest on the reproduction of adults, offspring density, and population fitness. Our results suggest that demographic responses to disturbance precede a detectable genetic response. Future studies should focus on using parentage analysis to test if genotypes of harvested parents are directly represented in the offspring populations.  相似文献   

12.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

13.
We analyzed the global genetic variation pattern of Capsella bursa‐pastoris (Brassicaceae) as expressed in allozymic (within‐locus) diversity and isozymic (between‐locus) diversity. Results are based on a global sampling of more than 20,000 C. bursa‐pastoris individuals randomly taken from 1,469 natural provenances in the native and introduced range, covering a broad spectrum of the species’ geographic distribution. We evaluated data for population genetic parameters and F‐statistics, and Mantel tests and AMOVA were performed. Geographical distribution patterns of alleles and multilocus genotypes are shown in maps and tables. Genetic diversity of introduced populations is only moderately reduced in comparison with native populations. Global population structure was analyzed with structure, and the obtained cluster affiliation was tested independently with classification approaches and macroclimatic data using species distribution modeling. Analyses revealed two main clusters: one distributed predominantly in warm arid to semiarid climate regions and the other predominantly in more temperate humid to semihumid climate regions. We observed admixture between the two lineages predominantly in regions with intermediate humidity in both the native and non‐native ranges. The genetically derived clusters are strongly supported in macroclimatic data space. The worldwide distribution patterns of genetic variation in the range of C. bursa‐pastoris can be explained by intensive intra‐ and intercontinental migration, but environmental filtering due to climate preadaption seems also involved. Multiple independent introductions of genotypes from different source regions are obvious. “Endemic” genotypes might be the outcome of admixture or of de novo mutation. We conclude that today's successfully established Capsella genotypes were preadapted and found matching niche conditions in the colonized range parts.  相似文献   

14.
The effect of glaciation on the levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly, complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (Nobliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE = 0.502–0.662) and slight, but significant, genetic structure (RST = 8.7–16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well‐defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis.  相似文献   

15.
To assess the effects of altitude on the level and structure of genetic diversity, a genetic survey was conducted in 12 populations of sessile oak (Quercus petraea) located between 130 and 1660 m in two parallel valleys on the northern side of the Pyrenees Mountains. Genetic diversity was monitored at 16 nuclear microsatellite loci and 5 chloroplast DNA (cpDNA) markers. The cpDNA survey suggested that extant populations in both valleys shared the same source populations from the plain. There was no visible trend of nuclear genetic diversity along altitude, even if indirect estimates of effective population sizes revealed a consistent reduction at higher altitudes. Population differentiation, although low, was mostly present among populations of the same valleys and reached similar levels than differentiation across the range of distribution of sessile oak. Contribution to the overall differentiation in the valleys was mostly due to the genetic divergence of the highest populations and the altitudinal variation of allelic frequencies at a few loci. Bayesian inference of migration between groups of populations showed that gene flow is preferentially unidirectional from lower altitudes in one valley to other groups of populations. Finally, we found evidence of clonal reproduction in high altitude populations. The introgression of Quercus robur and Quercus pubescens was also more frequent at the altitudinal margin suggesting that this mechanism may have contributed to the present migration and adaptation of Q. petraea and may also facilitate its future upslope shift in the context of climate change.  相似文献   

16.
Invasive species pose a major threat to biological diversity. Although introduced populations often experience population bottlenecks, some invasive species are thought to be originated from hybridization between multiple populations or species, which can contribute to the maintenance of high genetic diversity. Recent advances in genome sequencing enable us to trace the evolutionary history of invasive species even at whole‐genome level and may help to identify the history of past hybridization that may be overlooked by traditional marker‐based analysis. Here, we conducted whole‐genome sequencing of eight threespine stickleback (Gasterosteus aculeatus) individuals, four from a recently introduced crater lake population and four of the putative source population. We found that both populations have several small genomic regions with high genetic diversity, which resulted from introgression from a closely related species (Gasterosteus nipponicus). The sizes of the regions were too small to be detected with traditional marker‐based analysis or even some reduced‐representation sequencing methods. Further amplicon sequencing revealed linkage disequilibrium around an introgression site, which suggests the possibility of selective sweep at the introgression site. Thus, interspecies introgression might predate introduction and increase genetic variation in the source population. Whole‐genome sequencing of even a small number of individuals can therefore provide higher resolution inference of history of introduced populations.  相似文献   

17.
Conservation of the local genetic variation and evolutionary integrity of economically and ecologically important trees is a key aspect of studies involving forest genetics, and a population demographic history of the target species provides valuable information for this purpose. Here, the genetic structure of 48 populations of Betula maximowicziana was assessed using 12 expressed sequence tag–simple sequence repeat (EST‐SSR) markers. Genetic diversity was lower in northern populations than southern ones and structure analysis revealed three groups: northern and southern clusters and an admixed group. Eleven more genomic‐SSR loci were added and the demographic history of these three groups was inferred by approximate Bayesian computation (ABC). The ABC revealed that a simple split scenario was much more likely than isolation with admixture, suggesting that the admixture‐like structure detected in this species was due to ancestral polymorphisms. The ABC analysis suggested that the population growth and divergence of the three groups occurred 96 800 (95% CI, 20 500–599 000) and 28 300 (95% CI, 8700–98 400) years ago, respectively. We need to be aware of several sources of uncertainty in the inference such as assumptions about the generation time, overlapping of generations, confidence intervals of the estimated parameters and the assumed model in the ABC. However, the results of the ABC together with the model‐based maps of reconstructed past species distribution and palaeoecological data suggested that the modern genetic structure of B. maximowicziana originated prior to the last glacial maximum (LGM) and that some populations survived in the northern range even during the LGM.  相似文献   

18.
Insights into the genetic characteristics of a species provide important information for wildlife conservation programs. Here, we used the OvineSNP50 BeadChip developed for domestic sheep to examine population structure and evaluate genetic diversity of snow sheep (Ovis nivicola) inhabiting Verkhoyansk Range and Momsky Ridge. A total of 1,121 polymorphic SNPs were used to test 80 specimens representing five populations, including four populations of the Verkhoyansk Mountain chain: Kharaulakh Ridge–Tiksi Bay (TIK,= 22), Orulgan Ridge (ORU,= 22), the central part of Verkhoyansk Range (VER,= 15), Suntar‐Khayata Ridge (SKH,= 13), and Momsky Ridge (MOM,= 8). We showed that the studied populations were genetically structured according to a geographic pattern. Pairwise FST values ranged from 0.044 to 0.205. Admixture analysis identified = 2 as the most likely number of ancestral populations. A Neighbor‐Net tree showed that TIK was an isolated group related to the main network through ORU. TreeMix analysis revealed that TIK and MOM originated from two different ancestral populations and detected gene flow from MOM to ORU. This was supported by the f3 statistic, which showed that ORU is an admixed population with TIK and MOM/SKH heritage. Genetic diversity in the studied groups was increasing southward. Minimum values of observed (Ho) and expected (He) heterozygosity and allelic richness (Ar) were observed in the most northern population—TIK, and maximum values were observed in the most southern population—SKH. Thus, our results revealed clear genetic structure in the studied populations of snow sheep and showed that TIK has a different origin from MOM, SKH, and VER even though they are conventionally considered a single subspecies known as Yakut snow sheep (Ovis nivicola lydekkeri). Most likely, TIK was an isolated group during the Late Pleistocene glaciations of Verkhoyansk Range.  相似文献   

19.
Social structure can have a significant impact on divergence and evolution within species, especially in the marine environment, which has few environmental boundaries to dispersal. On the other hand, genetic structure can affect social structure in many species, through an individual preference towards associating with relatives. One social species, the short‐finned pilot whale (Globicephala macrorhynchus), has been shown to live in stable social groups for periods of at least a decade. Using mitochondrial control sequences from 242 individuals and single nucleotide polymorphisms from 106 individuals, we examine population structure among geographic and social groups of short‐finned pilot whales in the Hawaiian Islands, and test for links between social and genetic structure. Our results show that there are at least two geographic populations in the Hawaiian Islands: a Main Hawaiian Islands (MHI) population and a Northwestern Hawaiian Islands/Pelagic population (FST and ΦST < .001), as well as an eastern MHI community and a western MHI community (FST = .009). We find genetically driven social structure, or high relatedness among social units and clusters (< .001), and a positive relationship between relatedness and association between individuals (< .0001). Further, socially organized clusters are genetically distinct, indicating that social structure drives genetic divergence within the population, likely through restricted mate selection (FST = .05). This genetic divergence among social groups can make the species less resilient to anthropogenic or ecological disturbance. Conservation of this species therefore depends on understanding links among social structure, genetic structure and ecological variability within the species.  相似文献   

20.
By constraining gene flow, group living and natal philopatry can result in fine‐scale genetic structure. Although the genetic structure of some group‐living lizards has been characterised, studies are few compared with those for group‐living bird and mammal species. The Egerniinae group of lizards exhibits a high diversity of social structures, making it a useful group for comparative studies of genetic structure across a broader range of social taxa. A well‐studied member of Egerniinae is Egernia stokesii, a lizard that forms long‐term pair bonds and stable social groups and exhibits natal philopatry and limited dispersal. Evidence exists for consistent E. stokesii social structure across seven close but disconnected rocky outcrops within a 40 × 10 km area. We used summary statistics, analysis of molecular variance, Bayesian clustering, and discriminant analysis of principal components to assess if E. stokesii exhibit a consistent pattern of fine‐scale genetic structure across the same seven outcrops. Due to E. stokesii social structure and constrained dispersal, we predicted significant genetic structuring – based on microsatellite markers – among outcrops. We found significant fine‐scale genetic structuring and evidence for two genetic clusters. We discuss features of E. stokesii biology and ecology that may explain our findings. Some rocky outcrops, and some social groups, contained lizards from both genetic clusters. An examination of the composition of mixed cluster social groups did not detect any notable patterns. Therefore, further work is necessary to identify how the observed patterns may have arisen. Future investigations in E. stokesii and other group‐living lizard species are likely to contribute greatly to our understanding of the genetic consequences of group living.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号