首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Noninvasive sampling methods provide a means for studying species such as large mammalian carnivores that are difficult to survey using traditional techniques. Focusing on bobcat (Lynx rufus), we compared the effectiveness of noninvasive hair and scat genetic sampling in terms of field sample collection, species identification, and individual identification. We describe a novel hair-snare design and sampling protocol that successfully sampled 4 sympatric carnivore species, bobcat, mountain lion (Felis concolor), coyote (Canis latrans), and gray fox (Urocyon cinereoargenteus), in 3 habitat blocks in coastal southern California, USA. Scat surveys were also successful at sampling bobcats and other carnivores in the area. Hair and scat sampling methods had similar species identification success (81% and 87%, respectively) using mitochondrial DNA amplification and restriction enzyme digestion patterns. Therefore, for studies focused on the distribution and activity of a suite of carnivore species, we recommend a combination of noninvasive methodologies, for example, targeting hair and scat surveys toward species and sites where they are most effective. Because of a higher success rate for scat (85%) than for hair samples (10%) when using 4 microsatellite loci and a multiple-tubes approach to verify individual genotypes, we suggest scat sampling is a better choice for studies that require individual identification of bobcats.  相似文献   

2.
The increasing consumption of natural products lead us to discover and study new plant materials, such as conifer seeds and cones, which could be easily available from the forest industry as a waste material, for their potential uses. The chemical composition of the essential oils of Picea pungens and Picea orientalis was fully characterized by GC and GC/MS methods. Seed and cone oils of both tree species were composed mainly of monoterpene hydrocarbons, among which limonene, α‐ and β‐pinene were the major, but in different proportions in the examined conifer essential oils. The levorotary form of chiral monoterpene molecules was predominant over the dextrorotary form. The composition of oils from Ppungens seeds and cones was similar, while the hydrodistilled oils of Porientalis seeds and cones differed from each other, mainly by a higher amount of oxygenated derivatives of monoterpenes and by other higher molar mass terpenes in seed oil. The essential oils showed mild antimicrobial action, however Porientalis cone oil exhibited stronger antimicrobial properties against tested bacterial species than those of Ppungens. Effects of the tested cone essential oils on human skin fibroblasts and microvascular endothelial cells (HMEC‐1) were similar: in a concentration of 0 – 0.075 μl/ml the oils were rather safe for human skin fibroblasts and 0 – 0.005 μl/ml for HMEC‐1 cells. IC50 value of Picea pungens oils was 0.115 μl/ml, while that of Picea orientalis was 0.105 μl/ml. The value of IC50 of both oils were 0.035 μl/ml for HMEC‐1 cells. The strongest effect on cell viability had the oil from Picea orientalis cones, while on DNA synthesis the oil from Picea pungens cones.  相似文献   

3.
Contemporary evolution through human‐induced hybridization occurs throughout the taxonomic range. Formerly allopatric species appear especially susceptible to hybridization. Consequently, hybridization is expected to be more common in regions with recent sympatry owing to human activity than in areas of historical range overlap. Coyotes ( Canis latrans) and gray wolves ( C. lupus) are historically sympatric in western North America. Following European settlement gray wolf range contracted, whereas coyote range expanded to include eastern North America. Furthermore, wolves with New World (NW) mitochondrial DNA (mtDNA) haplotypes now extend from Manitoba to Québec in Canada and hybridize with gray wolves and coyotes. Using mtDNA and 12 microsatellite markers, we evaluated levels of wolf‐coyote hybridization in regions where coyotes were present (the Canadian Prairies, n = 109 samples) and absent historically (Québec, n = 154). Wolves with NW mtDNA extended from central Saskatchewan (51°N, 69°W) to northeastern Québec (54°N, 108°W). On the Prairies, 6.3% of coyotes and 9.2% of wolves had genetic profiles suggesting wolf‐coyote hybridization. In contrast, 12.6% of coyotes and 37.4% of wolves in Québec had profiles indicating hybrid origin. Wolves with NW and Old World ( C. lupus) mtDNA appear to form integrated populations in both regions. Our results suggest that hybridization is more frequent in historically allopatric populations. Range shifts, now expected across taxa following climate change and other human influence on the environment, might therefore promote contemporary evolution by hybridization.  相似文献   

4.
Noninvasive genetic sampling, or noninvasive DNA sampling (NDS), can be an effective monitoring approach for elusive, wide‐ranging species at low densities. However, few studies have attempted to maximize sampling efficiency. We present a model for combining sample accumulation and DNA degradation to identify the most efficient (i.e. minimal cost per successful sample) NDS temporal design for capture–recapture analyses. We use scat accumulation and faecal DNA degradation rates for two sympatric carnivores, kit fox (Vulpes macrotis) and coyote (Canis latrans) across two seasons (summer and winter) in Utah, USA, to demonstrate implementation of this approach. We estimated scat accumulation rates by clearing and surveying transects for scats. We evaluated mitochondrial (mtDNA) and nuclear (nDNA) DNA amplification success for faecal DNA samples under natural field conditions for 20 fresh scats/species/season from <1–112 days. Mean accumulation rates were nearly three times greater for coyotes (0.076 scats/km/day) than foxes (0.029 scats/km/day) across seasons. Across species and seasons, mtDNA amplification success was ≥95% through day 21. Fox nDNA amplification success was ≥70% through day 21 across seasons. Coyote nDNA success was ≥70% through day 21 in winter, but declined to <50% by day 7 in summer. We identified a common temporal sampling frame of approximately 14 days that allowed species to be monitored simultaneously, further reducing time, survey effort and costs. Our results suggest that when conducting repeated surveys for capture–recapture analyses, overall cost‐efficiency for NDS may be improved with a temporal design that balances field and laboratory costs along with deposition and degradation rates.  相似文献   

5.
Recent empirical work on cloud forest‐adapted species supports the role of both old divergences across major geographical areas and more recent divergences attributed to Pleistocene climate changes. The shrub Moussonia deppeana is distributed in northern Mesoamerica, with geographically disjunct populations. Based on sampling throughout the species range and employing plastid and nuclear markers, we (i) test whether the fragmented distribution is correlated with main evolutionary lineages, (ii) reconstruct its phylogeographical history to infer the history of cloud forest in northern Mesoamerica and (iii) evaluate a set of refugia/vicariance scenarios for the region and demographic patterns of the populations whose ranges expanded and tracked cloud forest conditions during the Last Glacial Maximum. We found a deep evolutionary split in M. deppeana about 6–3 Ma, which could be consistent with a Pliocene divergence. Comparison of variation in plastid and nuclear markers revealed several lineages mostly congruent with their isolated geographical distribution and restricted gene flow among groups. Results of species distribution modelling and coalescent simulations fit a model of multiple refugia diverging during interglacial cycles. The demographic history of M. deppeana is not consistent with an expanding–contracting cloud forest archipelago model during the Last Glacial Maximum. Instead, our data suggest that populations persisted across the geographical range throughout the glacial cycles, and experienced isolation and divergence during interglacial periods.  相似文献   

6.
The seed dispersal mechanisms and regeneration of various forest ecosystems can benefit from the actions of carnivores via endozoochory. This study was aimed to evaluate the role of carnivores in endozoochory and diploendozoochory, as well as their effect on seed viability, scarification, and germination in two forest ecosystems: temperate and tropical dry forest. We collected carnivore scat in the Protected Natural Area of Sierra Fría in Aguascalientes, Mexico, for 2 years to determine the abundance and richness of seeds dispersed by each carnivore species, through scat analysis. We assessed seed viability through optical densitometry using X‐rays, analyzed seed scarification by measuring seed coat thickness using a scanning electron microscope, and evaluated seed germination in an experiment as the percentage of seeds germinated per carnivore disperser, plant species, and forest type. In the temperate forest, four plant species (but mainly Arctostaphylos pungens) were dispersed by four mammal species. The gray fox dispersed the highest average number of seeds per scat (66.8 seeds). Bobcat dispersed seeds through diploendozoochory, which was inferred from rabbit (Sylvilagus floridanus) hair detected in their scats. The tropical dry forest presented higher abundance of seeds and richness of dispersed plant species (four species) than in the temperate forest, and the coati dispersed the highest number of seeds (8,639 seeds). Endozoochory and diploendozoochory did not affect viability in thick‐testa seeds (1,480 µm) in temperate forest and thin‐testa seeds (281 µm) in tropical dry forest. Endozoochory improved the selective germination of seeds. Nine plant species were dispersed by endozoochory, but only one species (Juniperus sp.) by diploendozoochory. These results suggest that carnivores can perform an important ecological function by dispersing a great abundance of seeds, scarifying these seeds causing the formation of holes and cracks in the testas without affecting viability, and promoting the selective germination of seeds.  相似文献   

7.
A comprehensive and contemporary understanding of habitat and resource requirements has been critical to the conservation of multiple taxa and ecosystems globally. Until recently, much of the ecological knowledge that contributes to conservation priorities and strategies for the Critically Endangered western ringtail possum (Pseudocheirus occidentalis) was largely derived from decades‐old observations in peppermint (Agonis flexuosa) and marri‐jarrah (Corymbia calophylla and Eucalyptus marginanta) woodlands in the northern parts of the species range. These observations do not account for more recent evidence of their flexible use of habitat resources in other regions of its range. This may represent a significant conservation opportunity for the species through the identification of additional habitats that warrant protection. In a region where knowledge of their ecology is scarce, we used scat analysis and quantitative spotlighting to determine the diet and density of western ringtail possums in three vegetation types: peppermint, sheoak (Allocasuarina fraseriana) and marri‐eucalypt (C. calophylla, E. marginanta and Eucalyptus staerii) woodlands. Given the species’ reported dependence on peppermint woodlands and dominant canopy species for food sources, we hypothesised that western ringtail possums would be most abundant in this habitat type and that their diet would comprise the foliage of few (≤2 species) canopy species. We found western ringtail possums consumed a higher diversity of plant species than expected (8–14), exhibited dietary preference for non‐dominant canopy species and were present in all sampled vegetation types at substantially higher densities than previously recorded for the region (as high as 17 possums ha?1). Our results confirm (i) the western ringtail possum is flexible in its use of habitat resources and (ii) the significant conservation value of sheoak and marri‐eucalypt woodlands in the southernmost portion of its distribution.  相似文献   

8.
Syringomycin E (SRE) is a cyclic lipodepsinonapeptide with potent antifungal activity and is produced by certain strains of Pseudomonas syringae pv. syringae. In this study, its potential as an organic‐compatible agrofungicide and vegetable seed treatment against the soilborne pathogen Pythium ultimum var. ultimum was examined. A variant of P. syringae pv. syringae strain B301D with enhanced SRE‐producing capabilities was isolated and grown in a bioreactor with SRE yields averaging 50 mg/l in 40 h. SRE was extracted and purified through a large‐scale chromatography system using organic‐compatible processes and reagents. The minimum concentrations of the purified product required to inhibit 50 and 90% of P. ultimum oospore germination were determined as 31.3 and 250 μg/ml, respectively. Drench treatment of cucumber seeds in P. ultimum‐infested potting medium (500 oospores/g) with 50 μg/ml SRE or water with no SRE resulted in 90.2 ± 4.5% and 65.7 ± 4.6% germination rates, respectively. Seed coating with 0.03% (w/w) SRE allowed 65.7 ± 4.6% seedlings to germinate on naturally infested soil while 100.0 ± 0.0% of non‐coated seeds were unable to germinate due to Pythium infection. Organic‐compatible and scalably produced SRE is potentially a novel organic fungicide seed protectant.  相似文献   

9.
There is a great need to develop efficient, noninvasive genetic sampling methods to study wild populations of multiple, co‐occurring, threatened felids. This is especially important for molecular scatology studies occurring in challenging tropical environments where DNA degrades quickly and the quality of faecal samples varies greatly. We optimized 14 polymorphic microsatellite loci for jaguars (Panthera onca), pumas (Puma concolor) and ocelots (Leopardus pardalis) and assessed their utility for cross‐species amplification. Additionally, we tested their reliability for species and individual identification using DNA from faeces of wild felids detected by a scat detector dog across Belize in Central America. All microsatellite loci were successfully amplified in the three target species, were polymorphic with average expected heterozygosities of HE = 0.60 ± 0.18 (SD) for jaguars, HE = 0.65 ± 0.21 (SD) for pumas and HE = 0.70 ± 0.13 (SD) for ocelots and had an overall PCR amplification success of 61%. We used this nuclear DNA primer set to successfully identify species and individuals from 49% of 1053 field‐collected scat samples. This set of optimized microsatellite multiplexes represents a powerful tool for future efforts to conduct noninvasive studies on multiple, wild Neotropical felids.  相似文献   

10.
We have investigated the chemical composition and the antibacterial activity of the essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants (Chenopodiaceae) (DA‐EO) against a representative panel of cariogenic bacteria. We have also assessed the in vitro schistosomicidal effects of DA‐EO on Schistosoma mansoni and its cytotoxicity to GM07492‐A cells in vitro. Gas chromatography (GC) and gas chromatography‐mass spectrometry (GC/MS) revealed that the monoterpenes cis‐piperitone oxide (35.2%), p‐cymene (14.5%), isoascaridole (14.1%), and α‐terpinene (11.6%) were identified by as the major constituents of DA‐EO. DA‐EO displayed weak activity against Streptococcus sobrinus and Enterococcus faecalis (minimum inhibitory concentration (MIC) = 1000 μg/ml). On the other hand, DA‐EO at 25 and 12.5 μg/ml presented remarkable schistosomicidal action in vitro and killed 100% of adult worm pairs within 24 and 72 h, respectively. The LC50 values of DA‐EO were 6.50 ± 0.38, 3.66 ± 1.06, and 3.65 ± 0.76 μg/ml at 24, 48, and 72 h, respectively. However, DA‐EO at concentrations higher than 312.5 μg/ml significantly reduced the viability of GM07492‐A cells (IC50 = 207.1 ± 4.4 μg/ml). The selectivity index showed that DA‐EO was 31.8 times more toxic to the adult S. mansoni worms than GM07492‐A cells. Taken together, these results demonstrate the promising schistosomicidal potential of the essential oil of Dysphania ambrosioides.  相似文献   

11.
Three clades of Pseudo‐nitzschia pungens, determined by the internal transcribed space (ITS) region, are distributed throughout the world. We studied 15 P. pungens clones from various geographical locations and confirmed the existence of the three clades within P. pungens, based on ITS sequencing and described the three subgroups (IIIaa, IIIab, and IIIb) of clade III. Clade III (clade IIIaa) populations were reported for the first time in Korean coastal waters and the East China Sea. In morphometric analysis, we found the ultrastructural differences in the number of fibulae, striae, and poroids that separate the three clades. We carried out physiological tests on nine clones belonging to the three clades growing under various culture conditions. In temperature tests, only clade III clones could not grow at lower temperatures (10°C and 15°C), although clade I and II clones grew well. The estimated optimal growth range of clade I clones was wider than that of clades II and III. Clade II clones were considered to be adapted to lower temperatures and clade III to higher temperatures. In salinity tests, clade II and III clones did not grow well at a salinity of 40. Clade I clones were regarded as euryhaline and clade II and III clones were stenohaline. This supports the hypothesis that P. pungens clades have different ecophysiological characteristics based on their habitats. Our data show that physiological and morphological features are correlated with genetic intraspecific differentiation in P. pungens.  相似文献   

12.
Elaeagnus pungens leaf was documented to be very effective to treat asthma and chronic bronchitis both as traditional Chinese medicine and minority traditional medicine; yet the actual effective components still remain unknown. This work is to investigate the anti‐inflammatory, antalgic and antitussive activities of Epungens leaf, quercetin and kaempferol, and their contents in Epungens leaf. Pharmacological experiments showed that they could considerably reduce ear‐swelling of mouse and relieve writhing reaction of mouse; they could also prevent mouse from coughing significantly. These findings suggested that quercetin and kaempferol are major effective components treating asthma and chronic bronchitis. Quantitative analysis results indicated that the levels of quercetin, kaempferol and isorhamnetin varied greatly in different species of Elaeagnus and in different plant parts: Epungens leaf is more similar to Elaeagnus umbellate leaf chemically; quercetin level is exceptionally high in Elaeagnus oldhami leaf; Epungens leaf is a better medical part for treating asthma and chronic bronchitis in comparison with other parts.  相似文献   

13.
We examined the relative roles of dominance in agonistic interactions and energetic constraints related to body size in determining local abundances of coyotes (Canis latrans, 8-20 kg), gray foxes (Urocyon cinereoargenteus, 3-5 kg) and bobcats (Felis rufus, 5-15 kg) at three study sites (hereafter referred to as NP, CP, and SP) in the Santa Monica Mountains of California. We hypothesized that the largest and behaviorally dominant species, the coyote, would exploit a wider range of resources (i.e., a higher number of habitat and/or food types) and, consequently, would occur in higher density than the other two carnivores. We evaluated our hypotheses by quantifying their diets, food overlap, habitat-specific abundances, as well as their overall relative abundance at the three study sites. We identified behavioral dominance of coyotes over foxes and bobcats in Santa Monica because 7 of 12 recorded gray fox deaths and 2 of 5 recorded bobcat deaths were due to coyote predation, and no coyotes died as a result of their interactions with bobcats or foxes. Coyotes and bobcats were present in a variety of habitats types (8 out of 9), including both open and brushy habitats, whereas gray foxes were chiefly restricted to brushy habitats. There was a negative relationship between the abundances of coyotes and gray foxes (P=0.020) across habitats, suggesting that foxes avoided habitats of high coyote predation risk. Coyote abundance was low in NP, high in CP, and intermediate in SP. Bobcat abundance changed little across study sites, and gray foxes were very abundant in NP, absent in CP, and scarce in SP; this suggests a negative relationship between coyote and fox abundances across study sites, as well. Bobcats were solely carnivorous, relying on small mammals (lagomorphs and rodents) throughout the year and at all three sites. Coyotes and gray foxes also relied on small mammals year-round at all sites, though they also ate significant amounts of fruit. Though there were strong overall interspecific differences in food habits of carnivores (P<0.0001), average seasonal food overlaps were high due to the importance of small mammals in all carnivore diets [bobcat-gray fox: 0.79ǂ.09 (SD), n=4; bobcat-coyote: 0.69ǂ.16, n=6; coyote-gray fox: 0.52ǂ.05, n=4]. As hypothesized, coyotes used more food types and more habitat types than did bobcats and gray foxes and, overall, coyotes were the most abundant of the three species and ranged more widely than did gray foxes. We propose that coyotes limit the number and distribution of gray foxes in Santa Monica Mountains, and that those two carnivores exemplified a case in which the relationship between their body size and local abundance is governed by competitive dominance of the largest species rather than by energetic equivalences. However, in the case of the intermediate-sized bobcat no such a pattern emerged, likely due to rarity or inconsistency of agonistic interactions and/or behavioral avoidance of encounters by subordinate species.  相似文献   

14.
Terrestrial net primary productivity (NPP) is an important metric of ecosystem functioning; however, there are little empirical data on the NPP of human‐modified ecosystems, particularly smallholder, perennial crops like cocoa (Theobroma cacao), which are extensive across the tropics. Human‐appropriated NPP (HANPP) is a measure of the proportion of a natural system's NPP that has either been reduced through land‐use change or harvested directly and, previously, has been calculated to estimate the scale of the human impact on the biosphere. Additionally, human modification can create shifts in NPP allocation and decomposition, with concomitant impacts on the carbon cycle. This study presents the results of 3 years of intensive monitoring of forest and smallholder cocoa farms across disturbance, management intensity, distance from forest and farm age gradients. We measured among the highest reported NPP values in tropical forest, 17.57 ± 2.1 and 17.7 ± 1.6 Mg C ha?1 year?1 for intact and logged forest, respectively; however, the average NPP of cocoa farms was still higher, 18.8 ± 2.5 Mg C ha?1 year?1, which we found was driven by cocoa pod production. We found a dramatic shift in litterfall residence times, where cocoa leaves decomposed more slowly than forest leaves and shade tree litterfall decomposed considerably faster, indicating significant changes in rates of nutrient cycling. The average HANPP value for all cocoa farms was 2.1 ± 1.1 Mg C ha?1 year?1; however, depending on the density of shade trees, it ranged from ?4.6 to 5.2 Mg C ha?1 year?1. Therefore, rather than being related to cocoa yield, HANPP was reduced by maintaining higher shade levels. Across our monitored farms, 18.9% of farm NPP was harvested (i.e., whole cocoa pods) and only 1.1% (i.e., cocoa beans) was removed from the system, suggesting that the scale of HANPP in smallholder cocoa agroforestry systems is relatively small.  相似文献   

15.
The ability to detect the incursion of an invasive species or destroy the last individuals during an eradication program are some of the most difficult aspects of invasive species management. The presence of foxes in Tasmania is a contentious issue with recent structured monitoring efforts, involving collection of carnivore scats and testing for fox DNA, failing to detect any evidence of foxes. Understanding the likelihood that monitoring efforts would detect fox presence, given at least one is present, is therefore critical for understanding the role of scat monitoring for informing the response to an incursion. We undertook trials to estimate the probability of fox scat detection through monitoring by scat‐detector dogs and person searches and used this information to critically evaluate the power of scat monitoring efforts for detecting foxes in the Tasmanian landscape. The probability of detecting a single scat present in a 1‐km2 survey unit was highest for scat‐detector dogs searches (0.053) compared with person searches () for each 10 km of search effort. Simulation of the power of recent scat monitoring efforts undertaken in Tasmania from 2011 to 2015 suggested that single foxes would have to be present in at least 20 different locations or fox breeding groups present in at least six different locations, in order to be detected with a high level of confidence (>0.80). We have shown that highly structured detection trials can provide managers with the quantitative tools needed to make judgments about the power of large‐scale scat monitoring programs. Results suggest that a fox population, if present in Tasmania, could remain undetected by a large‐scale, structured scat monitoring program. Therefore, it is likely that other forms of surveillance, in conjunction with scat monitoring, will be necessary to demonstrate that foxes are absent from Tasmania with high confidence.  相似文献   

16.
Considerable areas dominated by bracken Pteridium aquilinum (L.) Kuhn occur worldwide and are associated with arrested forest recovery. How forest recovery is impeded in these areas remains poorly understood, especially in the African highlands. The component processes that can lead to recruitment limitation—including low seed arrival, availability and persistence—are important determinants of plant communities and offer a potential explanation for bracken persistence. We investigated key processes that can contribute to recruitment limitation in bracken‐dominated clearings in the Bwindi Impenetrable National Park, Uganda. We examined if differences in seed rain (dispersal limitation), soil seed bank, or seed removal (seed viability and persistence) can, individually or in combination, explain the differences in tree regeneration found between bracken‐dominated areas and the neighboring forest. These processes were assessed along ten 50‐m transects crossing the forest–bracken boundary. When compared to the neighboring forest, bracken clearings had fewer seedlings (bracken 11,557 ± 5482 vs. forest 34,515 ± 6066 seedlings/ha), lower seed rain (949 ± 582 vs. 1605 ± 335 tree seeds m?2 year?1), comparable but sparse soil seed bank (304 ± 236 vs. 264 ± 99 viable tree seeds/m2), higher seed removal (70.1% ± 2.4% vs. 40.6% ± 2.4% over a 3‐day interval), and markedly higher rodent densities (25.7 ± 5.4 vs. 5.0 ± 1.6 rodents per 100 trapping sessions). Camera traps revealed that rodents were the dominant animals visiting the seeds in our seed removal study. Synthesis: Recruitment limitation contributes to both the slow recovery of forest in bracken‐dominated areas, and to the composition of the tree species that occur. Low seed arrival and low persistence of unburied seeds can both explain the reduced density of seedlings found in bracken versus neighboring forest. Seed removal, likely due to rodents, in particular appears sufficient to constrain forest recovery and impacts some species more severely than others.  相似文献   

17.
Habitat loss and invasive predators increasingly threaten global biodiversity. Here we use a landscape‐scale experimental approach to explore the individual and synergistic effects of logging and an invasive predator, the red fox Vulpes vulpes on two common native arboreal vertebrates (a predator and prey species) in south‐eastern Australia. We used site occupancy methods to evaluate different models evaluating the effects of site specific forest logging disturbance, lethal fox baiting and forest structural elements for explaining variation in site occupancy of a large monitor lizard Varanus varius, and a marsupial prey, the common ringtail possum Pseudocheirus peregrinus across a complex forest landscape. Site occupancy of ringtail possum was influenced by habitat resources and the structural complexity of forest, which indirectly mediated predation risk. Presence of fox baiting had no direct effect on the ringtail site occupancy. In contrast, access to prey resources and fox baiting appeared to best explain site occupancy variation in monitor lizards across the landscape. While these species are affected primarily by separate disturbances, synergistic interactions between the processes may intensify their effects. Our results demonstrate that species susceptibility to disturbance processes are highly idiosyncratic. This approach makes efficient use of integrated modelling to aid conservation management at both local and landscape levels.  相似文献   

18.
Postharvest anthracnose of banana caused by Colletotrichum musae is one of the major diseases resulting in huge economic losses worldwide. To control this disease using biocontrol agents, two antagonistic strains SD7 and NB20 with significant inhibitory effects on mycelial growth and conidial germination of C. musae were identified and evaluated in this study. The inhibitory effects of cell‐free culture filtrates of SD7 and NB20 on conidial germination of C. musae were both 100%, and those on mycelial growth of C. musae were 97.7 ± 0.9% and 95.0 ± 0.6%, respectively. The antifungal activities of cell‐free culture filtrates of both strains were still stable after they were stored at 4°C for 6 months. The control efficacies of cell‐free culture filtrates of SD7 and NB20 on postharvest anthracnose of banana were 55.9 ± 4.1% and 33.2 ± 3.9%, respectively. The disease severity (mean scale value) in banana fruit fingers was significantly lower after the treatment with a cultural suspension of the bacterial strain SD7 (1.4 ± 0.49) or actinomycete strain NB20 (2.0 ± 0.63), compared to that in the control (4.8 ± 0.40). After subculturing for 10 generations, the antifungal efficiency of NB20 remained stable, whereas that of strain SD7 declined obviously. Lastly, based on the morphological, physio‐biochemical and molecular characteristics, the bacterial strain SD7 was identified as Burkholderia cepacia, while the actinomycete strain NB20 was identified as Streptomyces katrae. The results from this study will provide the basis for developing an effective and novel biofungicide to control banana anthracnose disease.  相似文献   

19.
The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long‐term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3‐PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960–2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 ± 0.006 Mg C ha?1 year?1 km?1 for P. abies and 0.93 ± 0.010 Mg C ha?1 year?1 km?1 for F. sylvatica). During warm–dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm‐dry extremes. Importantly, cold–dry extremes had negative impacts on regional forest NPP comparable to warm–dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.  相似文献   

20.
The essential oil from the leaves of Peperomia borbonensis from Réunion Island was obtained by hydrodistillation and characterized using GC‐FID, GC/MS and NMR. The main components were myristicin (39.5%) and elemicin (26.6%). The essential oil (EO) of Peperomia borbonensis and its major compounds (myristicin and elemicin), pure or in a mixture, were evaluated for their insecticidal activity against Bactrocera cucurbitae (Diptera: Tephritidae) using a filter paper impregnated bioassay. The concentrations necessary to kill 50% (LC50) and 90% (LC90) of the flies in three hours were determined. The LC50 value was 0.23 ± 0.009 mg/cm2 and the LC90 value was 0.34 ± 0.015 mg/cm2 for the EO. The median lethal time (LT50) was determined to compare the toxicity of EO and the major constituents. The EO was the most potent insecticide (LT50 = 98 ± 2 min), followed by the mixture of myristicin and elemicin (1.4:1) (LT50 = 127 ± 2 min) indicating that the efficiency of the EO is potentiated by minor compounds and emphasizing one of the major assets of EOs against pure molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号