首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

Leaf traits are central to plant function, and key variables in ecosystem models. However recently published global trait maps, made by applying statistical or machine-learning techniques to large compilations of trait and environmental data, differ substantially from one another. This paper aims to demonstrate the potential of an alternative approach, based on eco-evolutionary optimality theory, to yield predictions of spatio-temporal patterns in leaf traits that can be independently evaluated.

Innovation

Global patterns of community-mean specific leaf area (SLA) and photosynthetic capacity (Vcmax) are predicted from climate via existing optimality models. Then leaf nitrogen per unit area (Narea) and mass (Nmass) are inferred using their (previously derived) empirical relationships to SLA and Vcmax. Trait data are thus reserved for testing model predictions across sites. Temporal trends can also be predicted, as consequences of environmental change, and compared to those inferred from leaf-level measurements and/or remote-sensing methods, which are an increasingly important source of information on spatio-temporal variation in plant traits.

Main conclusions

Model predictions evaluated against site-mean trait data from > 2,000 sites in the Plant Trait database yielded R2 = 73% for SLA, 38% for Nmass and 28% for Narea. Declining species-level Nmass, and increasing community-level SLA, have both been recently reported and were both correctly predicted. Leaf-trait mapping via optimality theory holds promise for macroecological applications, including an improved understanding of community leaf-trait responses to environmental change.  相似文献   

2.
  • Intraspecific trait variation and trait–climate relationships are crucial for understanding a species’ response to climate change. However, these phenomena have rarely been studied for tree species. Euptelea pleiospermum is a relict tree species with a wide distribution in China that offers a novel opportunity to examine such relationships.
  • Here, we measured 13 leaf traits of E. pleiospermum in 20 sites across its natural distribution in China. We investigated the extent of trait variation at local and regional scales, and developed geographic and climate models to explain trait variation at the regional scale.
  • We documented intraspecific trait variation among leaf traits of Epleiospermum at local and regional scales. Five traits exhibited relatively high trait variation: leaf area, leaf density and three leaf economic traits (leaf dry matter content, specific leaf area [SLA] and leaf phosphorus concentration). Significant trait–geography correlations were mediated by local climate. Most leaf trait variation could be explained (from 24% to 64%) by geographic or climate variables, except leaf width, leaf thickness, leaf dry matter content and leaf length–width ratio. Latitude and temperature were the strongest predictors of trait variation throughout the distribution of Epleiospermum in China, and temperature explained more leaf trait variation than precipitation. In particular, we showed that leaves had longer petiole lengths, higher SLA and lower densities in northern Epleiospermum populations. We suggest that northern Epleiospermum populations are adapting to higher latitudinal environments via high growth rate (higher SLA) and low construction investment strategies (lower leaf densities), benefitting northern migration.
  • Overall, we demonstrate that intraspecific trait variation reflects Epleiospermum response to the local environment. We call for consideration of intraspecific trait variation to examine specific climate response questions. In addition, provenance experiments using widely distributed species are needed to separate trait variation resulting from genetic differentiation and plastic responses to environmental change.
  相似文献   

3.
Background and AimsThe acquisitive–conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation.MethodsWe analysed covariation of four leaf functional traits [specific leaf area (SLA) leaf dry matter content (LDMC), force to tear (Ft) and leaf nitrogen content (Nm)] in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern.Key ResultsWe found negative correlations for the LDMC–SLA, Ft–SLA, LDMC–Nm and Ft–Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not explained by climatic or edaphic variation in the field follows the expected acquisitive–conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g. all the intraspecific LDMC–SLA and LDMC–Nm slopes tend to be shallower than the global pattern).ConclusionsOur study indicates that the acquisitive–conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation–covariation in leaf functional traits not driven by environmental variables.  相似文献   

4.
  • Climate models predict a further drying of the Mediterranean summer. One way for plant species to persist during such climate changes is through acclimation. Here, we determine the extent to which trait plasticity in response to drought differs between species and between sites, and address the question whether there is a trade‐off between drought survival and phenotypic plasticity.
  • Throughout the summer we measured physiological traits (photosynthesis – Amax, stomatal conductance – gs, transpiration – E, leaf water potential – ψl) and structural traits (specific leaf area – SLA, leaf density – LD, leaf dry matter content – LDMC, leaf relative water content – LRWC) of leaves of eight woody species in two sites with slightly different microclimate (north‐ versus south‐facing slopes) in southern Spain. Plant recovery and survival was estimated after the summer drought period.
  • We found high trait variability between species. In most variables, phenotypic plasticity was lower in the drier site. Phenotypic plasticity of SLA and LDMC correlated negatively with drought survival, which suggests a trade‐off between them. On the other hand, high phenotypic plasticity of SLA and LDMC was positively related to traits associated with rapid recovery and growth after the drought period.
  • Although phenotypic plasticity is generally seen as favourable during stress conditions, here it seemed beneficial for favourable conditions. We propose that in environments with fluctuating drought periods there can be a trade‐off between drought survival and growth during favourable conditions. When climate become drier, species with high drought survival but low phenotypic plasticity might be selected for.
  相似文献   

5.
  • Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade‐off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth‐related functional traits.
  • Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth‐related functional traits and (i) species’ shade‐tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth‐related functional traits.
  • We found that RGR was associated negatively with shade‐tolerance and positively with herbivory rate. However, herbivory rate and shade‐tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade‐tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content.
  • The effects of low light on RGR would be mediated by Amax, while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource‐uptake functional traits.
  相似文献   

6.
Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual‐ and trait‐based version of the DGVM LPJmL (Lund‐Potsdam‐Jena managed Land) called LPJmL‐ flexible individual traits (LPJmL‐FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL‐FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (Narea), the maximum carboxylation rate of Rubisco per leaf area (), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade‐offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade‐offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species‐rich center of the region with relatively low climatic variability. LPJmL‐FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects.  相似文献   

7.
魏海霞  霍艳玲  周忠科  张治国 《生态学报》2022,42(20):8343-8351
叶功能性状与植物的生长对策及资源利用效率密切相关,研究叶功能性状沿气候梯度的变异特征能为理解植物对气候变化的响应机制提供一种简便可行的测定指标。以我国西北荒漠地区广泛分布的唐古特白刺(Nitraria tangutorum)为研究对象,对其比叶面积(SLA)、单位质量和单位面积叶氮含量(Nmass、Narea)、单位质量和单位面积叶建成成本(CCmass、CCarea)进行测定,分析这些叶功能性状及性状相关关系沿气候梯度的变异特征。结果表明,唐古特白刺叶功能性状(CCarea除外)在气候梯度下存在显著差异,其中,温度是决定唐古特白刺SLA变化的主要因子,SLA随着温度的增加而增加;降水和温度对唐古特白刺Nmass、Narea和CCmass均有显著影响,Nmass和Narea随着降水和温度的增加而降低,而CCmass呈增加趋势。沿气候梯度,唐古特白刺SLA-Nmass、CCmass-Nmass和CCarea-Narea的线性正相关关系发生平移,导致在相同SLA、CCmass和CCarea下,降水和温度较低的地区具有更高的Nmass和Narea。这一结果表明唐古特白刺能通过调节叶功能性状之间的关系来适应气候的变化,并形成性状间的最佳功能组合。  相似文献   

8.
9.
A central issue in evolutionary biology is the exploration of functional trait variation among populations and the extent to which this variation has adaptive value. It was recently proposed that specific leaf area (SLA), leaf nitrogen concentration per mass (Nmass) and water use efficiency in cork oak play an important role in adaptation to water availability in the environment. In order to investigate this hypothesis, we explored, first, whether there was population-level variation in cork oak (Quercus suber) for these functional traits throughout its distribution range; if this were the case, it would be consistent with the hypothesis that different rainfall patterns have led to ecotypic differentiation in this species. Second, we studied whether the population-level variation matched short-term selection on these traits under different water availability conditions using two fitness components: survival and growth. We found high population-level differentiation in SLA and Nmass, with populations from dry places exhibiting the lowest values for SLA and Nmass. Likewise, reduced SLA had fitness benefits in terms of growth for plants under dry conditions. However, contrary to our expectations, we did not find any pattern of association between functional traits and survival in nine-year-old saplings despite considerable drought during one year of the study period. These results together with findings from the literature suggest that early stages of development are the most critical period for this species. Most importantly, these findings suggest that cork oak saplings have a considerable potential to cope with dry conditions. This capacity to withstand aridity has important implications for conservation of cork oak woodlands under the ongoing climate change.  相似文献   

10.
Although intraspecific trait variability is an important component of species ecological plasticity and niche breadth, its implications for community and functional ecology have not been thoroughly explored. We characterized the intraspecific functional trait variability of Scots pine (Pinus sylvestris) in Catalonia (NE Spain) in order to (1) compare it to the interspecific trait variability of trees in the same region, (2) explore the relationships among functional traits and the relationships between them and stand and climatic variables, and (3) study the role of functional trait variability as a determinant of radial growth. We considered five traits: wood density (WD), maximum tree height (H max), leaf nitrogen content (Nmass), specific leaf area (SLA), and leaf biomass-to-sapwood area ratio (B L:A S). A unique dataset was obtained from the Ecological and Forest Inventory of Catalonia (IEFC), including data from 406 plots. Intraspecific trait variation was substantial for all traits, with coefficients of variation ranging between 8 % for WD and 24 % for B L:A S. In some cases, correlations among functional traits differed from those reported across species (e.g., H max and WD were positively related, whereas SLA and Nmass were uncorrelated). Overall, our model accounted for 47 % of the spatial variability in Scots pine radial growth. Our study emphasizes the hierarchy of factors that determine intraspecific variations in functional traits in Scots pine and their strong association with spatial variability in radial growth. We claim that intraspecific trait variation is an important determinant of responses of plants to changes in climate and other environmental factors, and should be included in predictive models of vegetation dynamics.  相似文献   

11.
12.

The present study was carried out to analyze the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy infestation by lianas. A total of 11 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (with or without liana). In the liana-free environment (L), evergreen trees had significantly higher leaf tissue density (LTD) and total chlorophyll (CHLt) than the deciduous species. Whereas the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed with the well-established global trait-pair relationships (leaf thickness (LT) vs. SLA, Nmass vs. LT, SLA vs. Nmass, and LDMC vs. SLA). There was a significant difference between L+ and L individuals in leaf area (LA), petiole length (PL), SLA, LDMC, and CHLt in the deciduous species. On the other hand, evergreen species showed marked differences across LT, SLA, LTD, Nmass, and chlorophyll components between L+ and L individuals of the same species. The results revealed the differential impact of liana colonization on the host trees with contrasting leaf habits. The deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environments (L), whereas evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment and further, the magnitude of such impact may vary among species of different leaf habits. The result also indicated the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species explaining the patterns of species co-existence.

  相似文献   

13.
Increased drought severity is expected in the Mediterranean Basin over the twenty-first century, but our understanding of the potential of most forest tree species to cope with it remains uncertain. In this study, (1) we examined the potential effects of long-term selection and the capacity to respond to future changes in selective pressures in three populations of cork oak (Quercus suber L.). For this purpose, we evaluated the response to dry conditions of 45 open-pollinated trees originating from populations in Morocco, Portugal, and Spain. Growth, leaf size, specific leaf area (SLA), carbon isotope discrimination (Δ13C), leaf nitrogen content (Nmass), and total chlorophyll content (Chlmass) were measured in 9-year-old plants. (2) We also investigated the relationships between functional traits and aboveground growth by regression models. Plants presenting larger and more sclerophyllous leaves (low SLA and high leaf thickness) exhibited higher growths, with results suggesting that these traits are subjected to divergent selection in this species. Heritability estimates were moderately high for Δ13C (0.43 ± 0.25–0.83 ± 0.31) and stem diameter (0.40 ± 0.15–0.71 ± 0.28) for the tree populations. For the rest of the traits (except for annual growth), heritability values varied among populations, particularly for height, leaf size, leaf thickness, and Nmass. Our results suggest that natural selection has led to local adaptations and has also affected the genetic variance intrapopulation in these cork oak populations, although studies with a higher number of populations should be carried out across different years. Additionally, the absence of significant genetic correlations and the fact that correlated traits did not undergo opposing selection provided little evidence for constraints on evolution caused by genetic correlations.  相似文献   

14.
  1. To improve biological control and habitat management, how pest predators spread from natural habitats to crops must be understood. We studied whether intrinsic differences in stable-isotopic ratios of C and N from an artificial C4 (sugar-cane) or C3 (muti-flower honey) diet could help mark and track predators that feed on them.
  2. Two aphid predators solely feeding on sugar resources as adults were used: the green lacewing Chrysoperla carnea s.l., and the parasitic wasp Aphidius colemani. δ13C and δ15N values from wild individuals helped distinguish them from marked ones and determine the habitat resources they used.
  3. Green lacewings fed on C4 showed significantly higher δ13C values than those on C3 and wild individuals. However, parasitoid values were unaffected, with no mark acquired. Logistic regression was fitted to assess the probability of green lacewings having either diet with a probability of 0.93. Marks were acquired after 5 days and were detectable 20 days after switching diets with a probability of 0.67. Similar δ15N values for both wild populations indicated both predators had similar prey, but different vegetal resources (different δ13C values).
  4. Sugar-cane honey is a natural and reliable marker for tracking lacewing populations in the field, but not for parasitoids.
  相似文献   

15.
  1. Functional traits are measurable characteristics of an organism that have an impact on its fitness. Variation in functional traits between and among species has been suggested to represent the basis for competition and selection, thus allowing for evolution in natural populations.
  2. In freshwater ecosystems, the availability of essential polyunsaturated fatty acids (PUFAs), in particular ω3‐ and ω6‐PUFAs, determines the food quality of phytoplankton for the herbivorous zooplankton Daphnia, an unselective filter feeder. The content of such essential PUFAs in the phytoplankton is thus a functional phytoplankton trait affecting the trophic transfer efficiency and dynamics at the pelagic plant–herbivore interface.
  3. In turn, the susceptibility of consumers to become limited by the availability of essential PUFAs is a fitness‐determining trait of Daphnia genotypes, and variability of this herbivore trait may thus affect the daphnids’ intrapopulation competition. To estimate the intrapopulation variation in susceptibility, we isolated clonal lines of Daphnia longispina from a natural population and compared the strength of their limitation by dietary PUFA availability via standardised laboratory growth assays. We used a liposome supplementation technique to enrich a PUFA‐poor green alga with essential ω3‐ and ω6‐PUFAs and determined juvenile somatic growth rate of different D. longispina genotypes as a fitness proxy.
  4. As expected, D. longispina genotypes that coexisted in a natural population differed markedly in their specific patterns of susceptibility to dietary PUFA availability. On average, the D. longispina population was more strongly susceptible to limitations in the availability of the ω6‐PUFA arachidonic acid (20:4ω6) than to limitations in the availability of ω3‐PUFAs α‐linolenic acid (18:3ω3) and eicosapentaenoic acid (20:5ω3).
  5. The ability to cope with PUFA limitation is thus a crucial trait that can probably affect intraspecific competition and Daphnia population structure. Therefore, we suggest that such intrapopulation variation in susceptibility to absence of dietary PUFAs might be one of the driving forces of natural selection and local adaptation among freshwater zooplankton.
  相似文献   

16.
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought‐resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space‐for‐time substitution, common garden experiment with 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as ‘cool/moist’, ‘moderate’, or ‘warm/dry’) to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought‐resistance, (ii) the patterns of genetic variation are related to the native source‐climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought‐resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpirationmin), water deficit (% below turgid saturation), and specific leaf area (SLA, cmg?1) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought‐resistance (i.e., lower transpirationmin, water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought‐resistance across all test sites. Multiple regression analysis indicated that Douglas‐fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future.  相似文献   

17.
Global patterns of intraspecific leaf trait responses to elevation   总被引:1,自引:0,他引:1  
Elevational gradients are often used to quantify how traits of plant species respond to abiotic and biotic environmental variations. Yet, such analyses are frequently restricted spatially and applied along single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to elevation across the globe, we here perform a global meta‐analysis of leaf traits in 109 plant species located in 4 continents and reported in 71 studies published between 1983 and 2018. We quantified the intraspecific change in seven morpho‐ecophysiological leaf traits along global elevational gradients: specific leaf area (SLA), leaf mass per area (LMA), leaf area (LA), nitrogen concentration per unit of area (Narea), nitrogen concentration per unit mass (Nmass), phosphorous concentration per unit mass (Pmass) and carbon isotope composition (δ13C). We found LMA, Narea, Nmass and δ13C to significantly increase and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant pattern with elevation worldwide. We found significantly larger increase in Narea, Nmass, Pmass and δ13C with elevation in warmer regions. Larger responses to increasing elevation were apparent for SLA of herbaceous compared to woody species, but not for the other traits. Finally, we also detected evidences of covariation across morphological and physiological traits within the same elevational gradient. In sum, we demonstrate that there are common cross‐species patterns of intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such variation is genetically determined via local adaptation or attributed to phenotypic plasticity, the leaf trait patterns quantified here suggest that plant species are adapted to live on a range of temperature conditions. Since the distribution of mountain biota is predominantly shifting upslope in response to changes in environmental conditions, our results are important to further our understanding of how plants species of mountain ecosystems adapt to global environmental change.  相似文献   

18.
  • Forest understorey plants are sensitive to light availability, and different species groups can respond differently to changing light conditions. A plant trait tightly linked to light capture is specific leaf area (SLA). Studies considering the relative role of within‐ and among‐species SLA variation across different species groups (e.g. specialists and generalists) are rarely implemented in temperate forest understories varying in their maturity.
  • We examined community‐level SLA patterns of beech forest understories along a light availability gradient, and for habitat specialists and generalists separately. We then disentangled and quantified the contribution of intraspecific trait variability and interspecific trait differences in shaping SLA patterns.
  • We revealed that the increase in community‐level SLA with decreasing light availability was primarily driven by beech forest specialists (and, to a lesser extent, by forest generalists), and this pattern was mainly determined by specialists’ high intraspecific variability. Community‐level SLA was therefore formed by different responses at different organizational levels, i.e. within and among species, and for separate species groups.
  • This study provides insights into factors shaping the shade tolerance strategy in beech forest understorey plants; specialists persistence under putative less favourable conditions (i.e. high irradiation) may be fostered by their ability to adjust their light capture strategies intraspecifically.
  相似文献   

19.
  1. Overwintering Drosophila often display adaptive phenotypic differences beneficial for survival at low temperatures. However, it is unclear which morphological traits are the best estimators of abiotic conditions, how those traits are correlated with functional outcomes in cold tolerance, and whether there are regional differences in trait expression.
  2. We used a combination of controlled laboratory assays, and collaborative field collections of invasive Drosophila suzukii in different areas of the United States, to study the factors affecting phenotype variability of this temperate fruit pest now found globally.
  3. Laboratory studies demonstrated that winter morph (WM) trait expression is continuous within the developmental temperature niche of this species (10–25°C) and that wing length and abdominal melanization are the best predictors of the larval abiotic environment.
  4. However, the duration and timing of cold exposure also produced significant variation in development time, morphology, and survival at cold temperatures. During a stress test assay conducted at ?5°C, although cold tolerance was greater among WM flies, long‐term exposure to cold temperatures as adults significantly improved summer morph (SM) survival, indicating that these traits are not controlled by a single mechanism.
  5. Among wild D. suzukii populations, we found that regional variation in abiotic conditions differentially affects the expression of morphological traits, although further research is needed to determine whether these differences are genetic or environmental in origin and whether thermal susceptibility thresholds differ among populations within its invaded range.
  相似文献   

20.
Wild Arachis genotypes were analysed for chlorophyll a fluorescence, carbon isotope discrimination (ΔC), specific leaf area (SLA), and SPAD readings. Associations between different traits, i.e., SLA and SPAD readings (r =–0.76), SLA and ΔC (r = 0.42), and ΔC and SPAD readings (r = 0.30) were established. The ratio of maximal quantum yield of PSII photochemistry (Fv/Fm) showed a wider variability under water deficit (WD) than that after irrigation (IR). Genotypes were grouped according to the Fv/Fm ratio as: efficient, values between 0.80 and 0.85; moderately efficient, the values from 0.79 to 0.75; inefficient, the values < 0.74. Selected Selected genotypes were evaluated also for their green fodder yield: the efficient genotypes ranged between 3.0 and 3.8, the moderately efficient were 2.6 and 2.7, the inefficient genotypes were of 2.3 and 2.5 t ha?1 per year in 2008 and 2009, respectively. Leaf water-relation traits studied in WD and IR showed that the efficient genotypes were superior in maintenance of leaf water-relation traits, especially, under WD. Potential genotypes identified in this study may enhance biomass productivity in the semiarid tropic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号