首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotypic diversity is restricted within local colonies of mayapple (Podophyllum peltatum), due to extensive asexual reproduction. Transplant experiments were used to examine whether disease impact from a specialist fungal pathogen (Puccinia podophylli) was affected by the local frequency of host genotypes within colonies. In each of six large mayapple colonies, I measured infection intensity on 1) ramets replanted in their native colony (which were thus surrounded mostly by identical genotypes) and 2) transplants from two foreign colonies (surrounded by different genotypes). Disease incidence during the pathogen's first generation did not vary significantly between native (11% infected) and foreign host genotypes (6% infected). In the pathogen's second generation, significant variation in infection intensity occurred among ramets from different source populations. However, at five of the six transplant sites, mean infection intensity was higher on some nonnative plants (locally rare host genotypes) than on natives (locally common host genotypes). In this system, pathogen attack does not act in a frequency-dependent manner to promote local genetic diversity among hosts.  相似文献   

2.
Recreational and other human activities degrade coral reefs worldwide to a point where efficient restoration techniques are needed. Here we tested several strategies for gardening denuded reefs. The gardening concept consists of in situ or ex situ mariculture of coral recruits, followed by their transplantation into degraded reef sites. In situ nurseries were established in Eilat's (Northern Red Sea) shallow waters, sheltering three types of coral materials taken from the branching species Stylophora pistillata (small colonies, branch fragments, and spat) that were monitored for up to two years. Pruning more than 10% of donor colonies' branches increased mortality, and surviving colonies displayed reduced reproductive activity. Maricultured isolated branches, however, exceeded donor colony life span and reproductive activity and added 0.5–45% skeletal mass per year. Forty‐four percent of the small colonies survived after 1.5‐year mariculture, revealing average yearly growth of 75 ± 32%. Three months ex situ maintenance of coral spat (sexual recruits) prior to the in situ nursery phase increased survivorship. Within the next 1.5 years, they developed into colonies of 3–4 cm diameter. Nursery periods of 2 years, 4–5 years, and more than> 5 years have been estimated for small colonies, spat, and isolated branches, respectively. These and other results, including the possible use of nubbins (minute fragments the size of a single or few polyps), are discussed, revealing benefits and drawbacks for each material. In situ coral mariculture is an improved practice to the common but potentially harmful protocol of direct coral transplantation. It is suggested that reef gardening may be used as a key management tool in conservation and restoration of denuded reef areas. The gardening concept may be applicable for coral reefs worldwide through site‐specific considerations and the use of different local coral species.  相似文献   

3.
Genes of the major histocompatibility complex (MHC) exhibit heterozygote advantage in immune defence, which in turn can select for MHC‐disassortative mate choice. However, many species lack this expected pattern of MHC‐disassortative mating. A possible explanation lies in evolutionary processes following gene duplication: if two duplicated MHC genes become functionally diverged from each other, offspring will inherit diverse multilocus genotypes even under random mating. We used locus‐specific primers for high‐throughput sequencing of two expressed MHC Class II B genes in Leach's storm‐petrels, Oceanodroma leucorhoa, and found that exon 2 alleles fall into two gene‐specific monophyletic clades. We tested for disassortative vs. random mating at these two functionally diverged Class II B genes, using multiple metrics and different subsets of exon 2 sequence data. With good statistical power, we consistently found random assortment of mates at MHC. Despite random mating, birds had MHC genotypes with functionally diverged alleles, averaging 13 amino acid differences in pairwise comparisons of exon 2 alleles within individuals. To test whether this high MHC diversity in individuals is driven by evolutionary divergence of the two duplicated genes, we built a phylogenetic permutation model. The model showed that genotypic diversity was strongly impacted by sequence divergence between the most common allele of each gene, with a smaller additional impact of monophyly of the two genes. Divergence of allele sequences between genes may have reduced the benefits of actively seeking MHC‐dissimilar mates, in which case the evolutionary history of duplicated genes is shaping the adaptive landscape of sexual selection.  相似文献   

4.
As coral reefs decline, cryptic sources of resistance and resilience to stress may be increasingly important for the persistence of these communities. Among these sources, inter‐ and intraspecific diversity remain understudied on coral reefs but extensively impact a variety of traits in other ecosystems. We use a combination of field and sequencing data at two sites in Florida and two in the Dominican Republic to examine clonal diversity and genetic differentiation of high‐ and low‐density aggregations of the threatened coral Acropora cervicornis in the Caribbean. We find that high‐density aggregations called thickets are composed of up to 30 genotypes at a single site, but 47% of genotypes are also found as isolated, discrete colonies outside these aggregations. Genet–ramet ratios are comparable for thickets (0.636) and isolated colonies after rarefaction (0.569), suggesting the composition of each aggregation is not substantially different and highlighting interactions between colonies as a potential influence on structure. There are no differences in growth rate, but a significant positive correlation between genotypic diversity and coral cover, which may be due to the influence of interactions between colonies on survivorship or fragment retention during asexual reproduction. Many polymorphisms distinguish isolated colonies from thickets despite the shared genotypes found here, including putative nonsynonymous mutations that change amino acid sequence in 25 loci. These results highlight intraspecific diversity as a density‐dependent factor that may impact traits important for the structure and function of coral reefs.  相似文献   

5.
The ability of coral reefs to recover from natural and anthropogenic disturbance is difficult to predict, in part due to uncertainty regarding the dispersal capabilities and connectivity of their reef inhabitants. We developed microsatellite markers for the broadcast spawning gorgonian octocoral Eunicea (Plexaura) flexuosa (four markers) and its dinoflagellate symbiont, Symbiodinium B1 (five markers), and used them to assess genetic connectivity, specificity and directionality of gene flow among sites in Florida, Panama, Saba and the Dominican Republic. Bayesian analyses found that most E. flexuosa from the Florida reef tract, Saba and the Dominican Republic were strongly differentiated from many E. flexuosa in Panama, with the exception of five colonies from Key West that clustered with colonies from Panama. In contrast, Symbiodinium B1 was more highly structured. At least seven populations were detected that showed patterns of isolation by distance. The symbionts in the five unusual Key West colonies also clustered with symbionts from Panama, suggesting these colonies are the result of long‐distance dispersal. Migration rate tests indicated a weak signal of northward immigration from the Panama population into the lower Florida Keys. As E. flexuosa clonemates only rarely associated with the same Symbiodinium B1 genotype (and vice versa), these data suggest a dynamic host–symbiont relationship in which E. flexuosa is relatively well dispersed but likely acquires Symbiodinium B1 from highly structured natal areas prior to dispersal. Once vectored by host larvae, these symbionts may then spread through the local population, and/or host colonies may acquire different local symbiont genotypes over time.  相似文献   

6.
Landscape permeability is often explored spatially, but may also vary temporally. Landscape permeability, including partial barriers, influences migratory animals that move across the landscape. Partial barriers are common in rivers where barrier passage varies with streamflow. We explore the influence of partial barriers on the spatial and temporal distribution of migration‐linked genotypes of Oncorhynchus mykiss, a salmonid fish with co‐occurring resident and migratory forms, in tributaries to the South Fork Eel River, California, USA, Elder and Fox Creeks. We genotyped >4,000 individuals using RAD‐capture and classified individuals as resident, heterozygous or migratory genotypes using life history‐associated loci. Across four years of study (2014–2017), the permeability of partial barriers varied across dry and wet years. In Elder Creek, the largest waterfall was passable for adults migrating up‐river 4–39 days each year. In this stream, the overall spatial pattern, with fewer migratory genotypes above the waterfall, remained true across dry and wet years (67%–76% of migratory alleles were downstream of the waterfall). We also observed a strong relationship between distance upstream and proportion of migratory alleles. In Fox Creek, the primary barrier is at the mouth, and we found that the migratory allele frequency varied with the annual timing of high flow events. In years when rain events occurred during the peak breeding season, migratory allele frequency was high (60%–68%), but otherwise it was low (30% in two years). We highlight that partial barriers and landscape permeability can be temporally dynamic, and this effect can be observed through changing genotype frequencies in migratory animals.  相似文献   

7.
Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate‐resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K‐means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5‐enolpyruvylshikimate‐3‐phosphate synthase (EPSPS) encoding gene from glyphosate‐resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target‐site resistance mechanism.  相似文献   

8.
A population genetics approach is used to identify the most likely introduction site and introduction pathway for the North American forest pathogen Heterobasidion irregulare using 101 isolates from six sites in Italy and 34 isolates from five sites in North America. Diversity indices based on sequences from ten loci indicate the highest diversity in Italy is found in Castelfusano/Castelporziano and that diversity progressively decreases with increasing distance from that site. AMOVA, Bayesian clustering and principal coordinates analyses based on 12 SSR loci indicate high levels of gene flow among sites, high frequency of admixing, and fail to identify groups of genotypes exclusive to single locations. Cumulatively, these analyses suggest the current infestation is the result of multiple genotypes expanding their range from a single site. Based on two sequenced loci, a single source site in North America could provide enough variability to explain the variability observed in Italy. These results support the notion that H. irregulare was introduced originally in Castelporziano: because Castelporziano has been sealed off from the rest of the world for centuries except for a camp set up by the US military in 1944, we conclude the fungus may have been transported in infected wood used by the military. Finally, spatial autocorrelation analyses using SSR data indicate a significant under‐dispersion of alleles up to 0.5–10 km, while a significant overdispersion of alleles was detected at distances over 80 km: these ranges can be used to make predictions on the likely dispersal potential of the invasive pathogen.  相似文献   

9.
Viticulture in China, like in many other major grape‐growing countries around the world, is severely affected by downy mildew (DM) disease caused by Plasmopara viticola (Pv). However, little has been known about the pathogenicity and genetic structure of the pathogen distributed in China. In this study, 206 single‐sporangiophore Pv strains were isolated from Pv‐infected leaves collected from the most important grape‐growing regions in China. Among them, 29 strains, isolated from a majority of sampled regions and from the hosts with different DM resistance, were tested for their pathogenicity by inoculating into six grape cultivars with different levels of DM resistance. Significant difference in pathogenicity was observed among these strains. Seven pairs of SSR primers selected from previous reports were used for genetic studies of these 206 Pv strains. A total of 64 alleles and 193 genotypes were identified, suggesting that oosporic infection resulted from sexual reproduction made the major contributions to the disease epidemics during the growing season. Analysis of molecular variance (AMOVA) and principal coordinate analysis (PCoA) showed that most of genetic variations were within populations. In addition, low levels of pairwise FST value (ranged from 0.02 to 0.07) and high levels of gene flow were detected between populations. Results from this study suggest that long‐distance dispersals of Pv oospore occur in China.  相似文献   

10.
For many marine species, locations of key foraging areas are not well defined. We used satellite telemetry and switching state‐space modeling (SSM) to identify distinct foraging areas used by Kemp's ridley turtles (Lepidochelys kempii) tagged after nesting during 1998–2011 at Padre Island National Seashore, Texas, USA (PAIS;= 22), and Rancho Nuevo, Tamaulipas, Mexico (RN;= 9). Overall, turtles traveled a mean distance of 793.1 km (±347.8 SD) to foraging sites, where 24 of 31 turtles showed foraging area fidelity (FAF) over time (= 22 in USA,= 2 in Mexico). Multiple turtles foraged along their migratory route, prior to arrival at their “final” foraging sites. We identified new foraging “hotspots” where adult female Kemp's ridley turtles spent 44% of their time during tracking (i.e., 2641/6009 tracking days in foraging mode). Nearshore Gulf of Mexico waters served as foraging habitat for all turtles tracked in this study; final foraging sites were located in water <68 m deep and a mean distance of 33.2 km (±25.3 SD) from the nearest mainland coast. Distance to release site, distance to mainland shore, annual mean sea surface temperature, bathymetry, and net primary production were significant predictors of sites where turtles spent large numbers of days in foraging mode. Spatial similarity of particular foraging sites selected by different turtles over the 13‐year tracking period indicates that these areas represent critical foraging habitat, particularly in waters off Louisiana. Furthermore, the wide distribution of foraging sites indicates that a foraging corridor exists for Kemp's ridleys in the Gulf. Our results highlight the need for further study of environmental and bathymetric components of foraging sites and prey resources contained therein, as well as international cooperation to protect essential at‐sea foraging habitats for this imperiled species.  相似文献   

11.
The genetic diversity of 85 isolates of Phytophthora infestans collected in 2007 from Gansu province in China was determined and compared with 21 isolates collected before 2004. Among them, 70 belonged to the A1 mating type and 15 were self‐fertile (SF). The mitochondrial DNA haplotypes revealed both Ia (25%) and IIa (75%) haplotypes. Metalaxyl resistance occurred with high frequency (54%) in Gansu. Simple sequence repeat (SSR) genotyping revealed 26 genotypes (13 from the Tianshui region) among the 85 isolates, and 18 genotypes among the 21 isolates collected before 2004, without overlap in genotypes detected in the two groups. Cluster analysis showed clear subdivisions within the different mating type isolates. Among Gansu's isolates, Nei's and Shannon's diversity indices were highest in isolates collected in Tianshui where both A1 and SF isolates were found. Analysis of molecular variance of isolates from Gansu indicated that 51% and 49% of the variance was explained by within‐area and among‐area variance, respectively. The results suggest that the occurrence of SF isolates increases the risk of sexual reproduction, the formation of oospore as initial inocula in the field, and affects the genotypic diversity in the population.  相似文献   

12.
Yersinia pestis was introduced to North America around 1900 and leads to nearly 100% mortality in prairie dog (Cynomys spp.) colonies during epizootic events, which suggests this pathogen may exert a strong selective force. We characterized genetic diversity at an MHC class II locus (DRB1) in Gunnison's prairie dog (C. gunnisoni) and quantified population genetic structure at the DRB1 versus 12 microsatellite loci in three large Arizona colonies. Two colonies, Seligman (SE) and Espee Ranch (ES), have experienced multiple plague‐related die‐offs in recent years, whereas plague has never been documented at Aubrey Valley (AV). We found fairly low allelic diversity at the DRB1 locus, with one allele (DRB1*01) at high frequency (0.67–0.87) in all colonies. Two other DRB1 alleles appear to be trans‐species polymorphisms shared with the black‐tailed prairie dog (C. ludovicianus), indicating that these alleles have been maintained across evolutionary time frames. Estimates of genetic differentiation were generally lower at the MHC locus (FST = 0.033) than at microsatellite markers (FST = 0.098). The reduced differentiation at DRB1 may indicate that selection has been important for shaping variation at MHC loci, regardless of the presence or absence of plague in recent decades. However, genetic drift has probably also influenced the DRB1 locus because its level of differentiation was not different from that of microsatellites in an FST outlier analysis. We then compared specific MHC alleles to plague survivorship in 60 C. gunnisoni that had been experimentally infected with Y. pestis. We found that survival was greater in individuals that carried at least one copy of the most common allele (DRB1*01) compared to those that did not (60% vs. 20%). Although the sample sizes of these two groups were unbalanced, this result suggests the possibility that this MHC class II locus, or a nearby linked gene, could play a role in plague survival.  相似文献   

13.
In sessile modular marine invertebrates, chimeras can originate from fusions of closely settling larvae or of colonies that come into contact through growth or movement. While it has been shown that juveniles of brooding corals fuse under experimental conditions, chimera formation in broadcast spawning corals, the most abundant group of reef corals, has not been examined. This study explores the capacity of the broadcast spawning coral Acropora millepora to form chimeras under experimental conditions and to persist as chimeras in the field. Under experimental conditions, 1.5-fold more larvae settled in aggregations than solitarily, and analyses of nine microsatellite loci revealed that 50 per cent of juveniles tested harboured different genotypes within the same colony. Significantly, some chimeric colonies persisted for 23 months post-settlement, when the study ended. Genotypes within persisting chimeric colonies all showed a high level of relatedness, whereas rejecting colonies displayed variable levels of relatedness. The nearly threefold greater sizes of chimeras compared with solitary juveniles, from settlement through to at least three months, suggest that chimerism is likely to be an important strategy for maximizing survival of vulnerable early life-history stages of corals, although longer-term studies are required to more fully explore the potential benefits of chimerism.  相似文献   

14.
During an unusual cold‐water event in January 2010, reefs along the Florida Reef Tract suffered extensive coral mortality, especially in shallow reef habitats in close proximity to shore and with connections to coastal bays. The threatened staghorn coral, Acropora cervicornis, is the focus of propagation and restoration activities in Florida and one of the species that exhibited high susceptibility to low temperatures. Complete mortality of wild staghorn colonies was documented at 42.9% of donor sites surveyed after the cold event. Remarkably, 72.7% of sites with complete A. cervicornis mortality had fragments surviving within in situ coral nurseries. Thus, coral nurseries served as repositories for genetic material that would have otherwise been completely lost from donor sites. The location of the coral nurseries at deeper habitats and distanced from shallow nearshore habitats that experienced extreme temperature conditions buffered the impacts of the cold‐water event and preserved essential local genotypes for future Acropora restoration activities.  相似文献   

15.
Willows (Salix spp.) are important biomass crops due to their ability to grow rapidly with low fertilizer inputs and ease of cultivation in short‐rotation coppice cycles. They are relatively undomesticated and highly diverse, but functional testing to identify useful allelic variation is time‐consuming in trees and transformation is not yet possible in willow. Arabidopsis is heralded as a model plant from which knowledge can be transferred to advance the improvement of less tractable species. Here, knowledge and methodologies from Arabidopsis were successfully used to identify a gene influencing stem number in coppiced willows, a complex trait of key biological and industrial relevance. The strigolactone‐related More AXillary growth (MAX) genes were considered candidates due to their role in shoot branching. We previously demonstrated that willow and Arabidopsis show similar response to strigolactone and that transformation rescue of Arabidopsis max mutants with willow genes could be used to detect allelic differences. Here, this approach was used to screen 45 SxMAX1, SxMAX2, SxMAX3 and SxMAX4 alleles cloned from 15 parents of 11 mapping populations varying in shoot‐branching traits. Single‐nucleotide polymorphism (SNP) frequencies were locus dependent, ranging from 29.2 to 74.3 polymorphic sites per kb. SxMAX alleles were 98%–99% conserved at the amino acid level, but different protein products varying in their ability to rescue Arabidopsis max mutants were identified. One poor rescuing allele, SxMAX4D, segregated in a willow mapping population where its presence was associated with increased shoot resprouting after coppicing and colocated with a QTL for this trait.  相似文献   

16.
Dispersal is a critical process for the persistence and productivity of marine populations. For many reef species, there is increasing evidence that local demography and self‐recruitment have major consequences on their genetic diversity and adaptation to environmental change. Yet empirical data of dispersal patterns in reef‐building species remain scarce. Here, we document the first genetic estimates of self‐recruitment and dispersal distances in a free‐spawning marine invertebrate, the hydrocoral Millepora cf. platyphylla. Using twelve microsatellite markers, we gathered genotypic information from 3,160 georeferenced colonies collected over 27,000 m2 of a single reef in three adjacent habitats in Moorea, French Polynesia; the mid slope, upper slope, and back reef. Although the adult population was predominantly clonal (85% were clones), our parentage analysis revealed a moderate self‐recruitment rate with a minimum of 8% of sexual propagules produced locally. Assigned offspring often settled at <10 m from their parents and dispersal events decrease with increasing geographic distance. There were no discrepancies between the dispersal distances of offspring assigned to parents belonging to clonal versus nonclonal genotypes. Interhabitat dispersal events via cross‐reef transport were also detected for sexual and asexual propagules. Sibship analysis showed that full siblings recruit nearby on the reef (more than 40% settled at <30 m), resulting in sibling aggregations. Our findings highlight the importance of self‐recruitment together with clonality in stabilizing population dynamics, which may ultimately enhance local sustainability and resilience to disturbance.  相似文献   

17.
Kin selection theory predicts that honeybee (Apis mellifera) workers should largely refrain from producing their own offspring, as the workers collectively have higher inclusive fitness if they rear the sons of their mother, the queen. Studies that have quantified levels of ovary activation and reproduction among workers have largely supported this prediction. We sampled pre‐emergent male pupae and adult workers from seven colonies at regular intervals throughout the reproductive part of the season. We show that the overall contribution of workers to male (drone) production is 4.2%, nearly 40 times higher than is generally reported, and is highest during reproductive swarming, when an average of 6.2% of the males genotyped are worker‐produced. Similarly, workers in our samples were 100 times more likely to have active ovaries than previously assumed. Worker reproduction is seasonally influenced and peaks when colonies are rearing new queens. Not all worker subfamilies contribute equally to reproduction. Instead, certain subfamilies are massively over‐represented in drone brood. By laying eggs within the period in which many colonies produce virgin queens, these rare worker subfamilies increase their direct fitness via their well‐timed sons.  相似文献   

18.
Piglet diarrhea is one of the most common factors that affects the benefits of the swine industry. Although recent studies have shown that exon 2 of SLA‐DQA is associated with piglet resistance to diarrhea, contributions of genetic variation in the additional exon coding regions of this gene remain unclear. Here, we investigated variation in exons 1, 3 and 4 of the SLA‐DQA gene and evaluated their effects on diarrheal infection in 425 suckling piglets. No variation was identified in exon 1. In exon 3, there were eight alleles detected, generated by 14 single nucleotide polymorphisms (SNPs) and three nucleotide deletions, eight SNPs being newly identified. Four allele sequences and three SNPs were identified in exon 4, only one SNP being newly identified. Statistical analysis showed that the genotypes of exon 3 are significantly associated with piglet diarrhea; indeed, genotypes DQA*wb01/wb02 and wb04/wb05 are clearly associated with resistance to piglet diarrhea, as they have the lowest probabilities of infection (< 0.05). However, no significant association was found between the genotypes of exon 4 and diarrhea (> 0.05). These results provide important new information concerning the level of genetic diversity at the SLA‐DQA locus and suggest that further genetic association studies of piglet diarrhea resistance should include analyses of both exons 2 and 3 of this locus.  相似文献   

19.
Microsatellites (simple sequence repeats, SSRs) still remain popular molecular markers for studying neutral genetic variation. Two alternative models outline how new microsatellite alleles evolve. Infinite alleles model (IAM) assumes that all possible alleles are equally likely to result from a mutation, while stepwise mutation model (SMM) describes microsatellite evolution as stepwise adding or subtracting single repeat units. Genetic relationships between individuals can be analyzed in higher precision when assuming the SMM scenario with allele size differences as a proxy of genetic distance. If population structure is not predetermined in advance, an empirical data analysis usually includes (a) estimating proximity between individual SSR profiles with a selected dissimilarity measure and (b) determining putative genetic structure of a given set of individuals using methods of clustering and/or ordination for the obtained dissimilarity matrix. We developed new dissimilarity indices between SSR profiles of haploid, diploid, or polyploid organisms assuming different mutation models and compared the performance of these indices for determining genetic structure with population data and with simulations. More specifically, we compared SMM with a constant or variable mutation rate at different SSR loci to IAM using data from natural populations of a freshwater bryozoan Cristatella mucedo (diploid), wheat leaf rust Puccinia triticina (dikaryon), and wheat powdery mildew Blumeria graminis (monokaryon). We show that inferences about population genetic structure are sensitive to the assumed mutation model. With simulations, we found that Bruvo's distance performs generally poorly, while the new metrics are capturing the differences in the genetic structure of the populations.  相似文献   

20.
Genotyping of classical major histocompatibility complex (MHC) genes is challenging when they are hypervariable and occur in multiple copies. In this study, we used several different approaches to genotype the moderately variable MHC class I exon 3 (MHCIe3) and the highly polymorphic MHC class II exon 2 (MHCIIβe2) in the bluethroat (Luscinia svecica). Two family groups (eight individuals) were sequenced in replicates at both markers using Ion Torrent technology with both a single‐ and a dual‐indexed primer structure. Additionally, MHCIIβe2 was sequenced on Illumina MiSeq. Allele calling was conducted by modifications of the pipeline developed by Sommer et al. (BMC Genomics, 14, 2013, 542) and the software AmpliSAS. While the different genotyping strategies gave largely consistent results for MHCIe3, with a maximum of eight alleles per individual, MHCIIβe2 was remarkably complex with a maximum of 56 MHCIIβe2 alleles called for one individual. Each genotyping strategy detected on average 50%–82% of all MHCIIβe2 alleles per individual, but dropouts were largely allele‐specific and consistent within families for each strategy. The discrepancies among approaches indicate PCR biases caused by the platform‐specific primer tails. Further, AmpliSAS called fewer alleles than the modified Sommer pipeline. Our results demonstrate that allelic dropout is a significant problem when genotyping the hypervariable MHCIIβe2. As these genotyping errors are largely nonrandom and method‐specific, we caution against comparing genotypes across different genotyping strategies. Nevertheless, we conclude that high‐throughput approaches provide a major advance in the challenging task of genotyping hypervariable MHC loci, even though they may not reveal the complete allelic repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号