首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The stearoyl‐CoA desaturase (delta‐9‐desaturase) gene encodes a key enzyme in the cellular biosynthesis of monounsaturated fatty acids. In our initial genome‐wide association study (GWAS) of Chinese Holstein cows, 19 SNPs fell in a 1.8‐Mb region (20.3–22.1 Mb) on chromosome 26 underlying the SCD gene and were highly significantly associated with C14:1 or C14 index. The aims of this study were to verify whether the SCD gene has significant genetic effects on milk fatty acid composition in dairy cattle. By resequencing the entire coding region of the bovine SCD gene, a total of six variations were identified, including three coding variations (g.10153G>A, g.10213T>C and g.10329C>T) and three intronic variations (g.6926A>G, g.8646G>A and g.16158G>C). The SNP in exon 3, g.10329C>T, was predicted to result in an amino acid replacement from alanine (GCG) to valine (GTG) in the SCD protein. An association study for 16 milk fatty acids using 346 Chinese Holstein cows with accurate phenotypes and genotypes was performed using the mixed animal model with the proc mixed procedure in sas 9.2. All six detected SNPs were revealed to be associated with six medium‐ and long‐chain unsaturated fatty acids (= 0.0457 to < 0.0001), specifically for C14:1 and C14 index (= 0.0005 to < 0.0001). Subsequently, strong linkage disequilibrium (D′ = 0.88–1.00) was observed among all six SNPs in SCD and the five SNPs (rs41623887, rs109923480, rs42090224, rs42092174 and rs42091426) within the 1.8‐Mb region identified in our previous GWAS, indicating that the significant association of the SCD gene with milk fatty acid content traits reduced the observed significant 1.8‐Mb chromosome region in GWAS. Haplotype‐based analysis revealed significant associations of the haplotypes encompassing the six SCD SNPs and one SNP (rs109923480) in a GWAS with C14:1, C14 index, C16:1 and C16 index (= 0.0011 to < 0.0001). In summary, our findings provide replicate evidence for our previous GWAS and demonstrate that variants in the SCD gene are significantly associated with milk fatty acid composition in dairy cattle, which provides clear evidence for an increased understanding of milk fatty acid synthesis and enhances opportunities to improve milk‐fat composition in dairy cattle.  相似文献   

2.
3.
4.
Stearoyl‐acyl carrier protein desaturase (SACPD) activity is essential for production of the major unsaturated fatty acids (UFAs) in plant lipids. We report here the characterization of three SACPD genes from Nicotiana benthamiana, NbSACPD‐A, ‐B, and ‐C. All three genes share high similarity to AtSSI2/FAB2 (Suppressor of Salicylic acid‐Insensitivity2/Fatty Acid Biosynthesis2), the primary SACPD isoform in Arabidopsis. Knocking down the expression of individual or combinations of NbSACPDs by an artificial microRNA approach resulted in significantly reduced accumulation of 18C UFAs and elevated levels of 18:0‐FA (Fatty acids) in leaves, indicating that all three genes participated in fatty acid desaturation. The triple knockdown (KD) plants displayed severe growth phenotypes, including spontaneous cell death and dwarfing. While no vegetative morphologic abnormality was observed in NbSACPD‐A, ‐B, or ‐C KD plants, strikingly, NbSACPD‐C KD plants produced small fruits with aborted ovules. Reciprocal crosses with wild‐type and NbSACPD‐C KD plants revealed that knocking down NbSACPD‐C expression caused female, but not male, sterility. Furthermore, arrested ovule development and significantly altered lipid composition in ovaries were observed in NbSACPD‐C KD plants, consistent with the predominant NbSACPD‐C expression in ovules. The ovule development defect was fully complemented by coexpressing an amiRNA‐resistant NbSACPD‐C variant in the NbSACPD‐C KD background, further supporting a specific requirement for NbSACPD‐C in female fertility. Our results thus indicated that NbSACPD‐C plays a critical role maintaining membrane lipid composition in ovule development for female fertility in N. benthamiana, complementing and extending prior understanding on the well‐demonstrated roles of SACPDs in biotic and abiotic stresses.  相似文献   

5.
Increasing sea surface temperatures (SST) and blooms of lipid‐poor, filamentous cyanobacteria can change mesozooplankton metabolism and foraging strategies in marine systems. Lipid shortage and imbalanced diet may challenge the build‐up of energy pools of lipids and proteins, and access to essential fatty acids (FAs) and amino acids (AAs) by copepods. The impact of cyanobacterial blooms on individual energy pools was assessed for key species temperate Temora longicornis and boreal Pseudo‐/Paracalanus spp. that dominated field mesozooplankton communities isolated by seasonal stratification in the central Baltic Sea during the hot and the cold summer. We looked at (a) total lipid and protein levels, (b) FA trophic markers and AA composition, and (c) compound‐specific stable carbon isotopes (δ13C) in bulk mesozooplankton and in a subset of parameters in particulate organic matter. Despite lipid‐poor cyanobacterial blooms, the key species were largely able to cover both energy pools, yet a tendency of lipid reduction was observed in surface animals. Omni‐ and carnivory feeding modes, FA trophic makers, and δ13C patterns in essential compounds emphasized that cyanobacterial FAs and AAs have been incorporated into mesozooplankton mainly via feeding on mixo‐ and heterotrophic (dino‐) flagellates and detrital complexes during summer. Foraging for essential highly unsaturated FAs from (dino‐) flagellates may have caused night migration of Pseudo‐/Paracalanus spp. from the deep subhalocline waters into the upper waters. Only in the hot summer (SST>19.0°C) was T. longicornis submerged in the colder subthermocline water (~4°C). Thus, the continuous warming trend and simultaneous feeding can eventually lead to competition on the preferred diet by key copepod species below the thermocline in stratified systems. A comparison of δ13C patterns of essential AAs in surface mesozooplankton across sub‐basins of low and high cyanobacterial biomasses revealed the potential of δ13C‐AA isoscapes for studies of commercial fish feeding trails across the Baltic Sea food webs.  相似文献   

6.
Rapid climate changes are occurring in the Arctic, with substantial repercussions for arctic ecosystems. It is challenging to assess ecosystem changes in remote polar environments, but one successful approach has entailed monitoring the diets of upper trophic level consumers. Quantitative fatty acid signature analysis (QFASA) and fatty acid carbon isotope (δ13C‐FA) patterns were used to assess diets of East Greenland (EG) polar bears (Ursus maritimus) (n = 310) over the past three decades. QFASA‐generated diet estimates indicated that, on average, EG bears mainly consumed arctic ringed seals (47.5 ± 2.1%), migratory subarctic harp (30.6 ± 1.5%) and hooded (16.7 ± 1.3%) seals and rarely, if ever, consumed bearded seals, narwhals or walruses. Ringed seal consumption declined by 14%/decade over 28 years (90.1 ± 2.5% in 1984 to 33.9 ± 11.1% in 2011). Hooded seal consumption increased by 9.5%/decade (0.0 ± 0.0% in 1984 to 25.9 ± 9.1% in 2011). This increase may include harp seal, since hooded and harp seal FA signatures were not as well differentiated relative to other prey species. Declining δ13C‐FA ratios supported shifts from more nearshore/benthic/ice‐associated prey to more offshore/pelagic/open‐water‐associated prey, consistent with diet estimates. Increased hooded seal and decreased ringed seal consumption occurred during years when the North Atlantic Oscillation (NAO) was lower. Thus, periods with warmer temperatures and less sea ice were associated with more subarctic and less arctic seal species consumption. These changes in the relative abundance, accessibility, or distribution of arctic and subarctic marine mammals may have health consequences for EG polar bears. For example, the diet change resulted in consistently slower temporal declines in adipose levels of legacy persistent organic pollutants, as the subarctic seals have higher contaminant burdens than arctic seals. Overall, considerable changes are occurring in the EG marine ecosystem, with consequences for contaminant dynamics.  相似文献   

7.
Objective: Our aim was to study the fatty acid (FA) composition of liver phospholipids and its relation to that in erythrocyte membranes from patients with obese nonalcoholic fatty liver disease (NAFLD), as an indication of lipid metabolism alterations leading to steatosis. Research Methods and Procedures: Eight control subjects who underwent antireflux surgery and 12 obese patients with NAFLD who underwent subtotal gastrectomy with a gastro‐jejunal anastomosis in Roux‐en‐Y were studied. The oxidative stress status of patients was assessed by serum F2‐isoprostanes levels (gas chromatography/negative ion chemical ionization tandem mass spectrometry). Analysis of FA composition of liver and erythrocyte phospholipids was carried out by gas‐liquid chromatography. Results: Patients with NAFLD showed serum F2‐isoprostanes levels 84% higher than controls. Compared with controls, liver phospholipids from obese patients exhibited significantly 1) lower levels of 20:4n‐6, 22:5n‐3, 22:6n‐3 [docosahexaenoic acid (DHA)], total long‐chain polyunsaturated FA (LCPUFA), and total n‐3 LCPUFA, 2) higher 22:5n‐6 [docosapentaenoic acid (DPAn‐6)] levels and n‐6/n‐3 LCPUFA ratios, and 3) comparable levels of n‐6 LCPUFA. Levels of DHA and DPAn‐6 in liver were positively correlated with those in erythrocytes (r = 0.77 and r = 0.90, respectively; p < 0.0001), whereas DHA and DPAn‐6 showed a negative association in both tissues (r = ?0.79, p < 0.0001 and r = ?0.58, p < 0.01, respectively), associated with lower DHA/DPAn‐6 ratios. Discussion: Obese patients with NAFLD showed marked alterations in the polyunsaturated fatty acid pattern of the liver. These changes are significantly correlated with those found in erythrocytes, thus suggesting that erythrocyte FA composition could be a reliable indicator of derangements in liver lipid metabolism in obese patients.  相似文献   

8.
Objective: The long‐term effects of fetal hyperinsulinemia, time course of changes in liver and very‐low‐density lipoprotein (VLDL) lipid levels and fatty acid compositions were investigated in obese offspring of streptozotocin‐induced mildly diabetic rats. Research Methods and Procedures: Mild hyperglycemia in pregnant rats was induced by intraperitoneal injection of streptozotocin on day 5 of gestation. Control pregnant rats were injected with citrate buffer. Liver and VLDL lipids and fatty acids were analyzed in offspring at different ages. Results: At birth, obese pups had higher VLDL triglyceride levels, saturated fatty acids, and C20:4n‐6. They also had lower C18:2n‐6 proportions in VLDL triglycerides, phospholipids, and cholesteryl esters than controls pups. In 1‐month‐old male and female obese rats, VLDL and liver lipid amounts were similar to those in their respective controls; however, high levels of C18:2n‐6 and C20:4n‐6 were noted in liver and VLDL lipids. At the age of 2 months, liver and VLDL triglyceride levels were higher in obese females than in control females. Fatty acid abnormalities seen in obese rats included low C18:3n‐3 and high C22:6n‐3 proportions in liver triglycerides and phospholipids. At the age of 3 months, obese rats, both males and females, compared with control animals, had higher VLDL and hepatic lipids with reduced C20:4n‐6 levels and polyunsaturated/saturated fatty acids ratios in hepatic and VLDL triglycerides and phospholipids. Discussion: Fetal obesity, associated with alterations in VLDL lipid fatty acid composition, represents an important risk factor for adult obesity and diabetes.  相似文献   

9.
Fluidity of a given membrane decreases at lower ambient temperatures, whereas it rises at increasing temperatures, which is achieved through changes in membrane lipid composition. In consistence with homeoviscous adaptation theory, lower temperatures result in increased tissue concentrations of polyunsaturated fatty acids (PUFAs) in Daphnia magna, suggesting a higher PUFA requirement at lower temperatures. However, so far homeoviscous adaptation has been suggested for single or geographically separated Daphnia genotypes only. Here, we investigated changes in relative fatty acid (FA) tissue concentrations in response to a lower temperature (15°C) within a D. magna population. We determined juvenile growth rates (JGR) and FA patterns of 14 genotypes that were grown on Chlamydomonas klinobasis at 15°C and 20°C. We report significant differences of JGR and the relative body content of various FAs between genotypes at either temperature and between temperatures. Based on slopes of reaction norms, we found genotype‐specific changes in FA profiles between temperatures suggesting that genotypes have different strategies to cope with changing temperatures. In a hierarchical clustering analysis, we grouped genotypes according to differences in direction and magnitude of changes in relative FA content, which resulted in three clusters of genotypes following different patterns of changes in FA composition. These patterns suggest a lower importance of the PUFA eicosapentaenoic acid (EPA, C20:5ω3) than previously assumed. We calculated an unsaturation index (UI) as a proxy for membrane fluidity at 15°C, and we neither found significant differences for this UI nor for fitness, measured as JGR, between the three genotype clusters. We conclude that these three genotype clusters represent different physiological solutions to temperature changes by altering the relative share of different FAs, but that their phenotypes converge with respect to membrane fluidity and JGR. These clusters will be subjected to different degrees of PUFA limitation when sharing the same diet.  相似文献   

10.
11.
Siberian apricot seed kernel (SASK) contains a high of 50% oil with suitable fuel properties conformed to biodiesel standard. To date, Prunus sibirica is a novel non‐crop feedstock for biodiesel production in China. Here, oil contents and fatty acid (FA) compositions were identified in developing SASK from AS‐80 and AS‐84, at intervals of 1 week from 3 weeks after anthesis (WAA) to 9 weeks. The major differences in oil content between C18:1 and C18:2 levels were greater among the AS‐80 (32.69/15.48 g/100 g) than among the AS‐84 (25.78/13.15 g/100 g). Subsequently, the SASKs from 4, 6, and 8 WAA, respectively, representing early, middle, and late phases of oil accumulation, were selected as optimal samples for lipidomics analysis. It was notable that 18:1/18:1/18:2, 18:1/18:1/18:3, and 18:2/18:2/18:2 were the prominent compositions in triacylglycerol (TAG), and their higher content found among the AS‐80 was consistent with FA results. Although phosphatidic acid (PA) is directly connected with diacylglycerol (DAG) in Kennedy pathway, we found significant difference between PA and DAG compositions. The resulting molecular species differ in acyl composition depending on whether they were generated via phosphatidylcholine (PC) or Kennedy pathway. By qRT‐PCR analysis, the expression levels of FAD3, PDCT, and DAG‐CPT related to the biosynthesis of polyunsaturated fatty acids (PUFAs) showed a gradual decrease with SASK mature, explaining the drastic change of DAG‐18:3/18:3 content. Additionally, the lipidomics data coupled with qRT‐PCR analysis suggested that phospholipid:DAG acyltransferase may play a critical role in incorporation of PUFAs into sn‐3 of TAG. Our data contribute significantly to understand the underlying mechanisms of lipid accumulation in P. sibirica, and may also present strategies for engineering oil accumulation in oilseed plants.  相似文献   

12.
Phytoplankton are the main source of energy and omega‐3 (n‐3) long‐chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n‐3 long‐chain polyunsaturated FA (LC‐PUFA) and an increase in omega‐6 FA and saturated FA. Based on linear regression models, we predict that global n‐3 LC‐PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n‐3 LC‐PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems.  相似文献   

13.
Muscle fatty acid profiles and PCB contents of the detritivorous species Prochilodus lineatus and its diet (stomach contents, settling particles and sediments) were analysed from reference and polluted areas of the Paraná‐Rio de la Plata basin, to evaluate the alterations produced by opportunistic feeding on sewage discharges. Overall muscle fatty acid composition was dominated by saturated and monounsaturated 16 and 18 carbon (18 C‐FA) components with reduced long‐chain polyunsaturated fatty acids (LC‐PUFA). Compared to sediments, settling particles and stomach contents were enriched in lipids and had a similar fatty acid composition. Opportunistic feeding on sewage detritus at Buenos Aires resulted in enhanced PCB and triglyceride accumulation, with higher proportions of 18 C‐FA and lower proportions of 16:1 and LC‐PUFA compared to fish from northern pristine reaches of the basin. Mid‐Paraná showed intermediate values reflecting mixing of the North stock with migrating Buenos Aires P. lineatus identified by their lipid and contaminant profile. According to multivariate analyses, this geographical variation of fatty acid composition was strongly influenced by PCB concentration. Prochilodus lineatus assimilates the energy subsidy of sewage inputs through enhanced lipogenesis with dominant 18 C‐FA and significant amounts of valuable LC‐PUFA. This lipid alteration facilitates the bioaccumulation of PCBs which in turn may reinforce the adipogenic effect of sewage feeding.  相似文献   

14.
Oilseed rape (Brassica napus) is the third largest source of vegetable oil globally. In addition to food uses, there are industrial applications that exploit the ability of the species to accumulate the very‐long‐chain fatty acid (VLCFA) erucic acid in its seed oil, controlled by orthologues of FATTY ACID ELONGASE 1 (Bna.FAE1.A8 and Bna.FAE1.C3). The proportion of polyunsaturated fatty acids (PUFAs) in rapeseed oil is predicted to affect its thermal stability and is controlled by orthologues of FATTY ACID DESATURASE 2, particularly Bna.FAD2.C5. Our aim was to develop rapeseed lines combining high erucic and low PUFA characters and to assess the impact on thermal stability of the oil they produce. The new type of rapeseed oil (high erucic low polyunsaturate; HELP) contained a substantially greater proportion of erucic acid (54%) compared with high erucic rapeseed oil (46%). Although the total VLCFA content was greater in oil from HELP lines (64%) than from high erucic rapeseed (57%), analysis of triacylglycerol composition showed negligible incorporation of VLCFAs into the sn‐2 position. Rancimat analysis showed that the thermal stability of rapeseed oil was improved greatly as a consequence of reduction of PUFA content, from 3.8 and 4.2 h in conventional low erucic and high erucic rapeseed oils, respectively, to 11.3 and 16.4 h in high oleic low PUFA (HOLP) and HELP oils, respectively. Our results demonstrate that engineering of the lipid biosynthetic pathway of rapeseed, using traditional approaches, enables the production of renewable industrial oils with novel composition and properties.  相似文献   

15.
Emerging aquatic insects, including mosquitoes, are known to transfer to terrestrial ecosystems specific essential biochemicals, such as polyunsaturated fatty acids (PUFA). We studied fatty acid (FA) composition and contents of dominant mosquito populations (Diptera: Culicidae), that is, Anopheles messeae, Ochlerotatus caspius, Oc. flavescens, Oc. euedes, Oc. subdiversus, Oc. cataphylla, and Aedes cinereus, inhabited a steppe wetland of a temperate climate zone to fill up the gap in their lipid knowledge. The polar lipid and triacylglycerol fractions of larvae and adults were compared. In most studied mosquito species, we first found and identified a number of short‐chain PUFA, for example, prominent 14:2n‐6 and 14:3n‐3, which were not earlier documented in living organisms. These PUFA, although occurred in low levels in adult mosquitoes, can be potentially used as markers of mosquito biomass in terrestrial food webs. We hypothesize that these acids might be synthesized (or retroconverted) by the mosquitoes. Using FA trophic markers accumulated in triacylglycerols, trophic relations of the mosquitoes were accessed. The larval diet comprised green algae, cryptophytes, and dinoflagellates and provided the mosquitoes with essential n‐3 PUFA, linolenic, and eicosapentaenoic acids. As a result, both larvae and adults of the studied mosquitoes had comparatively high content of the essential PUFA. Comparison of FA proportions in polar lipids versus storage lipids shown that during mosquito metamorphosis transfer of essential eicosapentaenoic and arachidonic acids from the reserve in storage lipids of larvae to functional polar lipids in adults occurred.  相似文献   

16.
Phaeodactylum tricornutum is a widely studied diatom and has been proposed as a source of oil and polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA). Recent studies indicate that lipid accumulation occurs under nutritional stress. Aim of this research was to determine how changes in nitrogen availability affect productivity, oil yield, and fatty acid (FA) composition of P. tricornutum UTEX 640. After preliminary laboratory trials, outdoor experiments were carried out in 40‐L GWP® reactors under different nitrogen regimes in batch. Nitrogen replete cultures achieved the highest productivity of biomass (about 18 g m?2 d?1) and EPA (about 0.35 g m?2 d?1), whereas nitrogen‐starved cultures achieved the highest FA productivity (about 2.6 g m?2 d?1). The annual potential yield of P. tricornutum grown outdoors in GWP® reactors is 730 kg of EPA per hectare under nutrient‐replete conditions and 5,800 kg of FA per hectare under nitrogen starvation. Biotechnol. Bioeng. 2017;114: 2204–2210. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
  相似文献   

17.
The biosynthesis of nutritionally important polyunsaturated fatty acids (PUFAs) in phytoplankton is influenced by environmental temperature. We investigated the potential of climate warming to alter lipid dynamics of Scenedesmus obliquus (Turpin) Kütz. by comparing lipid and fatty acid (FA) profiles as well as FA metabolism (using [1‐14C] acetate) at 20°C and 28°C. We documented an overall decline (53%–37%) in the proportion of n‐3 PUFA (in particular, of α‐linolenic acid [ALA; 18:3n‐3]), and a concomitant increase in saturated fatty acids (SAFAs) in total lipids (TLs) at 28°C, consistent with enhanced incorporation of radioactivity from [1‐14C] acetate into total 16:0, 18:1, and decreased incorporation into 18:2 and 18:3 FA (from 36% to 22% of the total) at 28°C. Glycerophospholipids were also affected by warming; ALA and stearidonic acids (SDAs; 18:4n‐3) both decreased (by 13% and 15%, respectively) in phosphatidylcholine (PC) and (by 24% and 20%, respectively) in phosphatidylethanolamine (PE). The characteristic FA in phosphatidylglycerol (PG; 16:1n‐13t) increased (by 22%) at 28°C. The activities of desaturases, which add double bonds to FA moieties, comprised the major suite of reactions affected by the temperature increase in TL and polar lipid (PL) classes. Climate modelers predict an increase in the number of extreme heat days in summer at temperate latitudes, with parallel projected increases in water temperatures of shallow water bodies. Our results suggest that the overall decrease in the essential n‐3 FA ALA in S. obliquus at higher water temperatures may lower food quality for higher tropic levels, adding another climate‐warming stress.  相似文献   

18.
The lipid and fatty acid (FA) compositions of a marine diatom alga Thalassiosira pseudonana grown in culture were investigated. The relative content of separate lipid classes and their FA composition varied during of the life cycle. During the periods of active cell division and resting cell production, the proportion of polar lipids, as the structural components of cell membranes, increased. Changes in the proportion of lipid classes resulted in shifts in the FA composition of total lipids. It is suggested that the structural components of photosynthetic and cells membranes accumulate in the resting cells. Thereby, a rapid cell growth and an extensive development of the species under favorable environmental conditions is provided.  相似文献   

19.
Xerophyta humilis is a poikilochlorophyllous monocot resurrection plant used as a model to study vegetative desiccation tolerance. Dehydration imposes tension and ultimate loss of integrity of membranes in desiccation sensitive species. We investigated the predominant molecular species of glycerolipids present in root and leaf tissues, using multiple reaction monitoring mass spectrometry, and then analysed changes therein during dehydration and subsequent rehydration of whole plants. The presence of fatty acids with long carbon chains and with odd numbers of carbons were detected and confirmed by gas chromatography. Dehydration of both leaves and roots resulted in an increase in species containing polyunsaturated fatty acids and a decrease in disaturated species. Upon rehydration, lipid saturation was reversed, with this being initiated immediately upon watering in roots but only 12–24 hr later in leaves. Relative levels of species with short‐chained odd‐numbered saturated fatty acids decreased during dehydration and increased during rehydration, whereas the reverse trend was observed for long‐chained fatty acids. X. humilis has a unique lipid composition, this report being one of the few to demonstrate the presence of odd‐numbered fatty acids in plant phosphoglycerolipids.  相似文献   

20.
The fatty acid (FA) composition of algae Ulva fenestrata (Chlorophyta), Costaria costata (Phaeophyta), and Grateloupia turuturu (Rhodophyta) differed in their illumination habitats (shaded grotto and bright light). It was found that the light intensity affect the lipid content and fatty acid (FA) ratios in the algae. In the shaded places, the content of polyunsaturated FAs of the (n-3) series in U. fenestrate and of the (n-3) and (n-6) series, except 18 : 2, in C. costata are higher than at bright light, whereas in G. turuturu, the content of 20 : 5n-3 acids in that instance was lower. The lipid content was 2.5–3.6 times higher in the algae at low light intensity. The content variation of algal lipid components apparently was related to adaptive response of these plants to illumination condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号