首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
  1. Cereal domestication during the transition to agriculture resulted in widespread food production, but why only certain species were domesticated remains unknown. We tested whether seedlings of crop progenitors share functional traits that could give them a competitive advantage within anthropogenic environments, including higher germination, greater seedling survival, faster growth rates, and greater competitive ability.
  2. Fifteen wild grass species from the Fertile Crescent were grown individually under controlled conditions to evaluate differences in growth between cereal crop progenitors and other wild species that were never domesticated. Differences in germination, seedling survival, and competitive ability were measured by growing a subset of these species as monocultures and mixtures.
  3. Crop progenitors had greater germination success, germinated more quickly and had greater aboveground biomass when grown in competition with other species. There was no evidence of a difference in seedling survival, but seed size was positively correlated with a number of traits, including net assimilation rates, greater germination success, and faster germination under competition. In mixtures, the positive effect of seed mass on germination success and speed of germination was even more beneficial for crop progenitors than for other wild species, suggesting greater fitness. Thus, selection for larger seeded individuals under competition may have been stronger in the crop progenitors.
  4. The strong competitive ability of Fertile Crescent cereal crop progenitors, linked to their larger seedling size, represents an important ecological difference between these species and other wild grasses in the region. It is consistent with the hypothesis that competition within plant communities surrounding human settlements, or under early cultivation, benefited progenitor species, favoring their success as crops.
  相似文献   

2.
In competition‐dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait‐abundance relations in the line of species trade‐off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade‐off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height‐SRA was found in NP‐fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade‐off in nutrient acquisition and resource conservation was a key driver of SRA in competition‐dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta‐communities.  相似文献   

3.
4.
Parasitic plants are mostly viewed as pests. This is caused by several species causing serious damage to agriculture and forestry. There is however much more to parasitic plants than presumed weeds. Many parasitic plans exert even positive effects on natural ecosystems and human society, which we review in this paper. Plant parasitism generally reduces the growth and fitness of the hosts. The network created by a parasitic plant attached to multiple host plant individuals may however trigger transferring systemic signals among these. Parasitic plants have repeatedly been documented to play the role of keystone species in the ecosystems. Harmful effects on community dominants, including invasive species, may facilitate species coexistence and thus increase biodiversity. Many parasitic plants enhance nutrient cycling and provide resources to other organisms like herbivores or pollinators, which contributes to facilitation cascades in the ecosystems. There is also a long tradition of human use of parasitic plants for medicinal and cultural purposes worldwide. Few species provide edible fruits. Several parasitic plants are even cultivated by agriculture/forestry for efficient harvesting of their products. Horticultural use of some parasitic plant species has also been considered. While providing multiple benefits, parasitic plants should always be used with care. In particular, parasitic plant species should not be cultivated outside their native geographical range to avoid the risk of their uncontrolled spread and the resulting damage to ecosystems.

Advances
  • Parasitic plants may act as highways for transferring systemic signals among host plants.
  • Harmful effects of parasitic plants on individual hosts suppress community dominants including invasive species, reduce competitive pressure, and may increase biodiversity.
  • Parasitic plants enhance nutrient cycling and provide resources for other organisms thus contributing to facilitation cascades in ecosystems.
  • Many parasitic plants are recorded to have medicinal values against a broad range of diseases.
  • There is a long tradition of worldwide human use of parasitic plants, which have been cultivated for their products and aesthetic values.
  相似文献   

5.
A long‐standing debate in ecology deals with the role of nitrogen and phosphorus in management and restoration of aquatic ecosystems. It has been argued that nutrient reduction strategies to combat blooms of phytoplankton or floating plants should solely focus on phosphorus (P). The underlying argument is that reducing nitrogen (N) inputs is ineffective because N2‐fixing species will compensate for N deficits, thus perpetuating P limitation of primary production. A mechanistic understanding of this principle is, however, incomplete. Here, we use resource competition theory, a complex dynamic ecosystem model and a 32‐year field data set on eutrophic, floating‐plant dominated ecosystems to show that the growth of non‐N2‐fixing species can become N limited under high P and low N inputs, even in the presence of N2 fixing species. N2‐fixers typically require higher P concentrations than non‐N2‐fixers to persist. Hence, the N2 fixers cannot deplete the P concentration enough for the non‐N2‐fixing community to become P limited because they would be outcompeted. These findings provide a testable mechanistic basis for the need to consider the reduction of both N and P inputs to most effectively restore nutrient over‐enriched aquatic ecosystems.  相似文献   

6.
  1. Vertebrate communities in headwater streams are assumed to be regulated through competitive and predatory interactions. Although documented predation is rare, studies regularly report competitive dominance by fish that, as larger competitors reliant on aquatic habitat, exclude semi-aquatic salamanders to marginal stream habitat. However, it is unclear whether fish interact with stream-breeding salamanders through indirect effects such as competition for resources (e.g. food or cover) or fear (i.e. threat of predation) nor is it known whether these interactions are consistent through time.
  2. This study used a novel caging approach to determine if competitive outcomes between a headwater fish and salamanders were regulated primarily through resource depletion (exploitative competition) or behavioural avoidance (interference competition).
  3. We paired banded sculpin (Cottus carolinae) and larval red salamanders (Pseudotriton ruber) of similar body size in independent flow through mesocosms with intra- and inter-specific pairs allowed to interact physically or non-physically. The experiment was repeated in the autumn and in the spring when stream salamander larvae begin to transform into terrestrial juveniles.
  4. Banded sculpin negatively influenced growth of red salamanders regardless of whether they were allowed to physically interact, suggesting interference competition and behavioural avoidance. This asymmetrical effect was strongest in the spring when salamanders underwent metamorphosis at higher rates in the presence of fish. However, in the autumn, the effects were more balanced between the two species with salamanders impacting fish through exploitative competition.
  5. By studying the temporal relationships between two competitors and using a caging method novel to competition studies, we established that the outcomes of competition are dependent on season and may vary in type relative to the timing of life-history events. For this community, these results suggest that outcomes of competition are highly dependent on season and could indicate a biotic mechanism maintaining headwater salamander distributions through source–sink dynamics. Our results also suggest that, in this species interaction, it may be unwarranted to assume that the outcomes of competition at one time represent the complex relationships regulating community interactions.
  相似文献   

7.
Global warming has greatly altered winter snowfall patterns, and there is a trend towards increasing winter snow in semi‐arid regions in China. Winter snowfall is an important source of water during early spring in these water‐limited ecosystems, and it can also affect nutrient supply. However, we know little about how changes in winter snowfall will affect ecosystem productivity and plant community structure during the growing season. Here, we conducted a 5‐year winter snow manipulation experiment in a temperate grassland in Inner Mongolia. We measured ecosystem carbon flux from 2014 to 2018 and plant biomass and species composition from 2015 to 2018. We found that soil moisture increased under deepened winter snow in early growing season, particularly in deeper soil layers. Deepened snow increased the net ecosystem exchange of CO2 (NEE) and reduced intra‐ and inter‐annual variation in NEE. Deepened snow did not affect aboveground plant biomass (AGB) but significantly increased root biomass. This suggested that the enhanced NEE was allocated to the belowground, which improved water acquisition and thus contributed to greater stability in NEE in deep‐snow plots. Interestingly, the AGB of grasses in the control plots declined over time, resulting in a shift towards a forb‐dominated system. Similar declines in grass AGB were also observed at three other locations in the region over the same time frame and are attributed to 4 years of below‐average precipitation during the growing season. By contrast, grass AGB was stabilized under deepened winter snow and plant community composition remained unchanged. Hence, our study demonstrates that increased winter snowfall may stabilize arid grassland systems by reducing resource competition, promoting coexistence between plant functional groups, which ultimately mitigates the impacts of chronic drought during the growing season.  相似文献   

8.
Abstract

Plant‐microbial interactions under N‐limiting conditions are governed by competitive abilities of plants for N. Our study aimed to examine how two plant species of strawberry, Fragaria vesca L. (native species) and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe), growing in intra‐specific and inter‐specific competition alter the functions of rhizosphere microorganisms in dependence on N availability. By intra‐specific competition at low N level, a 2.4‐fold slower microbial‐specific growth rate was observed under D. indica characterized by smaller root biomass and lower N content in roots compared with F. vesca. By inter‐specific competition of both plants at low N level, microbial growth rates were similar to those for D. indica indicating that plants with stronger competitive abilities for N controls microbial community in the rhizosphere. Since a high N level smoothed the differences between plant species in root and microbial biomass as well as in microbial growth rates under both intra‐specific and inter‐specific competition, we conclude that competitive abilities of plant species were crucial for microbial growth in the rhizosphere only under N imitation.  相似文献   

9.
  1. Increasing rates of invasions in ecosystems worldwide necessitate experiments to determine the role of biotic interactions in the success and impact of multiple alien species. Here, we examined competitive and facilitative interactions among various combinations of three widespread and often co-occurring invaders: the zebra mussel Dreissena polymorpha, and the macrophytes Elodea canadensis and Elodea nuttallii.
  2. Using a mesocosm-based, factorial experimental design, we assessed the effect of interspecific competition on macrophyte growth rates in the absence and presence at varying biomass of D. polymorpha.
  3. Growth rates (wet g/day) of E. canadensis and E. nuttallii were similar when grown in isolation. When grown together, in the absence of D. polymorpha, E. canadensis growth was not significantly reduced in the presence of E. nuttallii and vice versa. In the presence of D. polymorpha (26.0 ± 1 mm), monocultural growth of E. canadensis was largely unaffected, while E. nuttallii growth was strongly enhanced. Low (2.64 g) and medium (3.96 g) mussel biomass led to negative interspecific effects between E. canadensis and E. nuttallii; at high (5.28 g) mussel biomass, the effect of interspecific competition was negated.
  4. Overall, D. polymorpha alleviated competitive interactions between the two invasive macrophytes when all three species co-occurred, and substantially enhanced growth of E. nuttallii with increasing mussel biomass, thereby suggesting a possible influence on the relative dominance of these macrophytes in the field.
  5. Our study demonstrates how facilitations can cause shifts in dominance among closely related invaders. The consequences of such facilitations for the structure and function of communities remain to be explored generally.
  相似文献   

10.
Among the greatest challenges currently facing terrestrial plant communities are anthropogenic nutrient amendments. Nutrient inputs can change community attributes, such as diversity and composition, and have been implicated in the increasing dominance of certain groups of species, like exotics. Overall effects of nutrients will likely be contingent on other factors in the community. One such factor is within-season change in plant communities, which has seldom been examined but may be of considerable importance. We examined within-season effects of nutrient manipulations (fertilization and litter removal) on overall community attributes and different species groups in a temperate grassland. We found the effects of nutrient amendments varied significantly over the growing season. Fertilization reduced species richness and diversity at all census points, but had the greatest effects on communities early and late in the growing season. There were few seasonal effects on species richness within functional groups, suggesting that nutrient effects were consistent and established early. Although fertilization reduced both native and exotic forb species richness throughout the season, exotics surprisingly suffered greater species losses than natives. Comparisons between within-season data and data from the end of season showed nutrient amendments have stronger community effects than previously recognized. We found that differences in cumulative species richness (all species detected during the growing season) between fertilized and unfertilized plots were greater than differences in species richness measures from any single census date. Our results suggest that predicting the overall response of plant communities to anthropogenic nutrient amendments will require thorough temporal assessments, particularly of early season species, which are generally overlooked in community studies.  相似文献   

11.
Competition among plants in extreme environments such as the High Arctic has often been described as unimportant, or even nonexistent; environmental factors are thought to overrule any negative plant–plant interactions. However, few studies have actually addressed this question experimentally in the Arctic, and those that did found only little evidence for competition. Such species interactions will presumably become more important in the future, as Global Climate Change takes effect on terrestrial ecosystems. We investigated plant–plant interactions in the High Arctic, following the growth of Luzula confusa and Salix polaris in pure and mixed stands, and under elevated‐temperature treatment over 2 years. To understand the mechanisms of competition, a parallel experiment was undertaken in phytotrons, manipulating competition, temperature and nutrient availability. Our findings indicate that competition is acting in the natural vegetation, and that climatic warming will alter the balance of interactions in favour of the dwarf shrub S. polaris. The phytotron experiment suggested that the mechanism is a higher responsiveness of Salix to nutrient availability, which increased under warming in the field. While Luzula showed a positive response to higher temperature in the lab, its performance in mixed stands in the field was actually reduced by warming, indicating a competitive repression of growth by Salix. The growth of Salix was also reduced by the presence of Luzula, but it was still able to profit from warming. Our findings suggest that climatic warming will result in greater shrub dominance of High Arctic tundra, but we also conjecture that grazing could reverse the situation to a graminoid‐dominated tundra. These two divergent scenarios would have different implications for ecosystem feedbacks to climatic change.  相似文献   

12.
Nutrients, competition and plant zonation in a New England salt marsh   总被引:13,自引:2,他引:11  
1 We examined the effects of nutrient availability on the competitive interactions of the New England salt marsh perennials that occupy discrete vegetational zones parallel to the shoreline.
2 Fertilized and unfertilized plots of pair-wise mixtures and monocultures of Spartina alterniflora, S. patens and Juncus gerardi were compared in order to assess the effects of nutrient addition on the competitive dynamics of these species in the field. In addition, we examined competition between some of these species and Distichlis spicata , a species common to disturbed marsh habitats.
3 After two growing seasons, changes in above-ground biomass of the species indicated that in fertilized plots, S. alterniflora outcompeted S. patens, S. patens outcompeted J. gerardi, and D. spicata outcompeted both J. gerardi and S. patens. This was the reverse of the interactions seen under ambient marsh conditions, and suggested that, under conditions of nutrient limitation, competitive dominance may result from efficient competition for nutrients.
4 Using a conceptual model of salt marsh zonation as a function of competition, physical stress and nutrient limitation, we hypothesize that a nutrient-induced reversal in the competitive dynamics among salt marsh perennials may result in modification of the pattern of plant zonation in this and similar marshes.  相似文献   

13.
Pollinator activity and competition for pollinators lead to quantitative and qualitative pollen limitations on seed production and affect the reproductive success of plant species, depending on their breeding system (e.g., self‐compatibility and heterospecific compatibility) and genetic load (e.g., inbreeding depression and hybrid inviability). In alpine ecosystems, snowmelt regimes determine the distribution and phenology of plant communities. Plant species growing widely along a snowmelt gradient often grow with different species among local populations. Their pollinators also vary in their abundance, activity, and behavior during the season. These variations may modify plant–pollinator and plant–plant interactions. We integrated a series of our studies on the alpine dwarf shrub, Phyllodoce aleutica (Ericaceae), to elucidate the full set of intrinsic (species‐specific breeding system) and extrinsic factors (snow condition, pollinator activity, and interspecific competition) acting on their reproductive process. Seasonality of pollinator activity led to quantitative pollen limitation in the early‐blooming populations, whereas in the late‐blooming populations, high pollinator activity ensured pollination service, but interspecific competition for pollinators led to qualitative and quantitative pollen limitation in less competitive species. However, negative effects of illegitimate pollen receipt on seed‐set success might be reduced when cryptic incompatibility systems (i.e., outcross pollen grains took priority over self‐ and heterospecific pollen grains) could effectively prevent ovule and seed discounting. Our studies highlight the importance of species‐specific responses of plant reproduction to changing pollinator availability along environmental gradients to understand the general features of pollination networks in alpine ecosystems.  相似文献   

14.
  1. Deep roots have long been thought to allow trees to coexist with shallow‐rooted grasses. However, data demonstrating how root distributions affect water uptake and niche partitioning are uncommon.
  2. We describe tree and grass root distributions using a depth‐specific tracer experiment six times over two years in a subtropical savanna, Kruger National Park, South Africa. These point‐in‐time measurements were then used in a soil water flow model to simulate continuous water uptake by depth and plant growth form (trees and grasses) across two growing seasons. This allowed estimates of the total amount of water a root distribution could absorb as well as the amount of water a root distribution could absorb in excess of the other rooting distribution (i.e., unique hydrological niche).
  3. Most active tree and grass roots were in shallow soils: The mean depth of water uptake was 22 cm for trees and 17 cm for grasses. Slightly deeper rooting distributions provided trees with 5% more soil water than the grasses in a drier season, but 13% less water in a wetter season. Small differences also provided each rooting distribution (tree or grass) with unique hydrological niches of 4 to 13 mm water.
  4. The effect of rooting distributions has long been inferred. By quantifying the depth and timing of water uptake, we demonstrated how even small differences in rooting distributions can provide plants with resource niches that can contribute to species coexistence. Differences in total water uptake and unique hydrological niche sizes were small in this system, but they indicated that tradeoffs in rooting strategies can be expected to contribute to tree and grass coexistence because 1) competitive advantages change over time and 2) plant growth forms always have access to a soil resource pool that is not available to the other plant growth form.
  相似文献   

15.
  • 1 In the laboratory, the growth and reproduction of Anuraeopsis fissa were measured when fed on Scenedesmus species grown in nutrient‐sufficient, nitrogen‐limited and phosphorus‐limited media and in the presence or absence of one adult Daphnia longispina per vial.
  • 2 Poor food quality may reduce the effect of competition on rotifers. Competition from Daphnia was stronger with nutrient sufficient algae than with nutrient limited algae. P‐limitation significantly reduced Anuraeopsis population growth rate and fecundity. The effect of nutrient limitation on Anuraeopsis was stronger than that of competition with Daphnia. The Anuraeopsis population declined with P‐limited food in both the presence and absence of Daphnia.
  • 3 Exploitative competition by Daphnia on Anuraeopsis was stronger in the nutrient‐sufficient treatment than in the N‐limited one. Density, fecundity and population growth rate of Anuraeopsis were negatively affected by Daphnia in the nutrient‐sufficient treatment, while only fecundity was reduced by Daphnia in the N‐limited treatment. Consequently, in the N‐limited treatment, mortality should be lower in the presence of Daphnia. This result could suggest that Anuraeopsis lives longer when short of nitrogen.
  • 4 Nutrient limitation may affect to the competitive interactions between zooplankton species. P‐limitation decreased the quality of algae as food for Anuraeopsis while N‐limitation decreased the susceptibility of this rotifer species to exploitative competition by Daphnia.
  相似文献   

16.
Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually) on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species'' ability to persist in a nutrient-enriched boreal forest understory.  相似文献   

17.
The effects of irrigation, nitrogen fertilization, grass competition and clipping were investigated for one growing season at the research farm of the University of Fort Hare in the Eastern Cape Province of South Africa. The aim of the experiment was to assess the short‐term performance of Acacia karroo seedlings under different environmental conditions and the implications of such factors on the long‐term recruitment of plant species in savanna rangelands. There were no significant treatment effects on the survival of A. karroo seedlings. Using stem length and basal diameter as growth parameters, it was observed that irrigation enhanced both variables, while nitrogen fertilization did not have any significant effects. Clipping, grass competition and their interaction greatly suppressed the growth of the seedlings. Clipping increased the mean stem length when they were irrigated and fertilized. Control and fertilized plants had the highest stem length in the absence of grass competition, while grass competition combined with clipping resulted in the lowest stem length in both irrigated and nonirrigated plants. It was concluded that in the presence of grass competition, controlled browsing could be a viable solution to the problem of bush encroachment in savanna rangelands.  相似文献   

18.
Recently, many studies have focused on the possibility of restoring mangrove ecosystems by introducing fast‐growing mangroves. However, methods for managing an exotic fast‐growing species to restore mangrove ecosystems and at the same time preventing invasion by introduced species remains unclear. Sonneratia apetala Buch‐Ham is one example of an exotic mangrove with both high ecological value and potential risk for invasion after introduction. To investigate the possibility of reducing the potential for invasion by altering light availability, we simulated different irradiances of S. apetala understory in the greenhouse. For each irradiance treatment, three levels of competition between S. apetala and native mangroves Aegiceras corniculatum (L.) were used: no competition, intraspecific competition and interspecific competition. Compared with A. corniculatum, S. apetala showed a significantly higher growth rate for both height and biomass accumulation under full irradiation. Compared to the full irradiation treatment, the shading treatment significantly reduced the height, total biomass and biomass allocation to leaves of S. apetala by 61.31, 71.0, and 76.2%, respectively, whereas the growth of A. corniculatum was not affected. The results suggested that lowering light availability could inhibit the growth of S. apetala and increase the competitiveness of A. corniculatum. Planting introduced fast‐growing mangroves at a density of approximately 2,000 plants/hm2 is an effective strategy for preventing potential invasion and restoring wetland habitats. By taking advantage of the differences in shade tolerance between fast‐growing exotic mangroves and native mangroves, introduction of fast‐growing mangroves in coastal areas could have huge potential for reforesting mangrove ecosystems.  相似文献   

19.
Ecological trade‐offs are fundamental to theory in community ecology; critical for understanding species coexistence in diverse plant communities, as well as the evolution of diverse life‐history strategies. Invasions by exotic species can provide insights into the importance of trade‐offs in community assembly, because the ecological strategies of invading species often differ from those present in the native species pool. Exotic annual species have invaded many Mediterranean‐climate areas around the globe, and often germinate and emerge earlier in the growing season than native species. Early‐season growth can enable exotic annual species to preempt space and resources, competitively suppressing later‐emerging native species; however, early‐emerging individuals may also be more apparent to herbivores. This suggests a potential trade‐off between seasonal phenology and susceptibility to herbivory. To evaluate this hypothesis, we monitored the emergence and growth of 12 focal species (six each native and exotic) in monoculture and polyculture, while experimentally excluding generalist herbivores both early and later in the growing season. Consistent with past studies, the exotic species emerged earlier than native species. Regardless of species origin, earlier‐emerging species achieved greater biomass by the end of the experiment, but were more negatively impacted by herbivory, particularly in the early part of the growing season. This greater impact of early‐season herbivory on early‐active species led to a reduction in the competitive advantage of exotic species growing in polyculture, and improved the performance of later‐emerging natives. Such a trade‐off between early growth and susceptibility to herbivores could be an important force in community assembly in seasonal herbaceous‐dominated ecosystems. These results also show how herbivore exclusion favors early‐active exotic species in this system, with important implications for management in many areas invaded by early‐active exotic species.  相似文献   

20.
  1. The giant willow aphid (Tuberolachnus salignus) is an invasive pest that can attain large populations on willows (Salix spp.). This has the potential to have a negative impact on the extensive use of willows for soil conservation, and as a source of pollen and nectar for honey bees in New Zealand.
  2. A willow nursery field trial was established to evaluate the aphid populations, and the survival and growth of young plants of several willow species and hybrids, during two growing seasons from planting.
  3. The willow species and hybrids varied widely in their susceptibility to the aphid, with large aphid populations and plant mortality in the most susceptible willows, and reductions in plant growth in all but aphid-resistant willows. The effects on the plants were not seen in the first season, but occurred during the second season.
  4. The aphid can be expected to have some negative impacts in New Zealand, with reductions in growth of some willows commonly used for soil conservation, and for pollen and nectar for honey bees.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号