首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Brain lesions in Alzheimer's disease (AD) include amyloid plaques made of Aβ peptides and neurofibrillary tangles composed of hyperphosphorylated tau protein with synaptic and neuronal loss and neuroinflammation. Aβ oligomers can trigger tau phosphorylation and neuronal alterations through activation of neuronal kinases leading to progressive cognitive decline. PKR is a ubiquitous pro‐apoptotic serine/threonine kinase, and levels of activated PKR are increased in AD brains and AD CSF. In addition, PKR regulates negatively memory formation in mice. To assess the role of PKR in an AD in vivo model, we crossed 5xFAD transgenic mice with PKR knockout (PKRKO) mice and we explored the contribution of PKR on cognition and brain lesions in the 5xFAD mouse model of AD as well as in neuron–microglia co‐cultures exposed to the innate immunity activator lipopolysaccharide (LPS). Nine‐month‐old double‐mutant mice revealed significantly improved memory consolidation with the new object location test, starmaze test, and elevated plus maze test as compared to 5xFAD mice. Brain amyloid accumulation and BACE1 levels were statistically decreased in double‐mutant mice. Apoptosis, neurodegeneration markers, and synaptic alterations were significantly reduced in double‐mutant mice as well as neuroinflammation markers such as microglial load and brain cytokine levels. Using cocultures, we found that PKR in neurons was essential for LPS microglia‐induced neuronal death. Our results demonstrate the clear involvement of PKR in abnormal spatial memory and brain lesions in the 5xFAD model and underline its interest as a target for neuroprotection in AD.  相似文献   

2.
Spinal cord injury (SCI) is a severe neurological disease; however, few drugs have been proved to treat SCI effectively. Neuroinflammation is the major pathogenesis of SCI secondary injury and considered to be the therapeutic target of SCI. Salidroside (Sal) has been reported to exert anti‐inflammatory effects in airway, adipose and myocardial tissue; however, the role of Sal in SCI therapeutics has not been clarified. In this study, we showed that Sal could improve the functional recovery of spinal cord in rats as revealed by increased BBB locomotor rating scale, angle of incline, and decreased cavity of spinal cord injury and apoptosis of neurons in vivo. Immunofluorescence double staining of microglia marker and M1/M2 marker demonstrated that Sal could suppress M1 microglia polarization and activate M2 microglia polarization in vivo. To verify how Sal exerts its effects on microglia polarization and neuron protection, we performed the mechanism study in vitro in microglia cell line BV‐2 and neuron cell line PC12. The results showed that Sal prevents apoptosis of PC12 cells in coculture with LPS‐induced M1 BV‐2 microglia, also the inflammatory secretion phenotype of M1 BV‐2 microglia was suppressed by Sal, and further studies demonstrated that autophagic flux regulation through AMPK/mTOR pathway was involved in Sal regulated microglia polarization after SCI. Overall, our study illustrated that Sal could promote spinal cord injury functional recovery in rats, and the mechanism may relate to its microglia polarization modulation through AMPK‐/mTOR‐mediated autophagic flux stimulation.  相似文献   

3.
Microglia are immune cells that maintain brain homeostasis at a resting state by surveying the environment and engulfing debris. However, in some pathological conditions, microglia can produce neurotoxic factors such as pro-inflammatory cytokines and nitric oxide (NO) that lead to neuronal degeneration. Inflammation-induced calcium (Ca2+) signaling is thought to underlie this abnormal activation of microglia, but the mechanisms are still obscure. We previously showed that combined application of lipopolysaccharide and interferon γ (LPS/IFNγ) induced-production of NO in microglia from wild-type (WT) mice is significantly reduced in microglia from transient receptor potential melastatin 2 (TRPM2)-knockout (KO) mice. Here, we found that LPS/IFNγ produced a late-onset Ca2+ signaling in WT microglia, which was abolished by application of the NADPH oxidase inhibitor diphenylene iodonium (DPI) and ML-171. In addition, pharmacological blockade or gene deletion of TRPM2 channel in microglia did not show this Ca2+ signaling. Furthermore, pharmacological manipulation and Western blotting revealed that Ca2+ mobilization, the proline-rich tyrosine kinase 2 (Pyk2), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH2-terminal kinase (JNK) contributed to TRPM2-mediated LPS/IFNγ-induced activation, while the extracellular signal-regulated protein kinase (ERK) did not. These results suggest that LPS/IFNγ activates TRPM2-mediated Ca2+ signaling, which in turn increases downstream p38 MAPK and JNK signaling and results in increased NO production in microglia.  相似文献   

4.
Acetate supplementation increases brain acetyl‐CoA and histone acetylation and reduces lipopolysaccharide (LPS)‐induced neuroglial activation and interleukin (IL)‐1β expression in vivo. To determine how acetate imparts these properties, we tested the hypothesis that acetate metabolism reduces inflammatory signaling in microglia. To test this, we measured the effect acetate treatment had on cytokine expression, mitogen‐activated protein kinase (MAPK) signaling, histone H3 at lysine 9 acetylation, and alterations of nuclear factor‐kappa B (NF‐κB) in primary and BV‐2 cultured microglia. We found that treatment induced H3K9 hyperacetylation and reversed LPS‐induced H3K9 hypoacetylation similar to that found in vivo. LPS also increased IL‐1β, IL‐6, and tumor necrosis factor‐alpha (TNF‐α) mRNA and protein, whereas treatment returned the protein to control levels and only partially attenuated IL‐6 mRNA. In contrast, treatment increased mRNA levels of transforming growth factor‐β1 (TGF‐β1) and both IL‐4 mRNA and protein. LPS increased p38 MAPK and JNK phosphorylation at 4 and 2–4 h, respectively, whereas treatment reduced p38 MAPK and JNK phosphorylation only at 2 h. In addition, treatment reversed the LPS‐induced elevation of NF‐κB p65 protein and phosphorylation at serine 468 and induced acetylation at lysine 310. These data suggest that acetate metabolism reduces inflammatory signaling and alters histone and non‐histone protein acetylation.  相似文献   

5.
Reprogramming of toll‐like receptor 4 (TLR4) by brief ischemia or lipopolysacharide (LPS) contributes to superintending tolerance against destructive ischemia in brain. However, beneficial roles of TLR4 signaling in ischemic retina are not well known. This study demonstrated that preconditioning with LPS 48 h prior to the retinal ischemia prevents the cellular damage in morphology with hematoxylin and eosin (H&E) staining and functions of retina with electroretinogram (ERG), while post‐ischemia treatment deteriorated it. The preventive effects of LPS preconditioning showed the cell type‐specificity of retinal cells. There was complete rescue of ganglion cells, partial rescue of bipolar and photoreceptor cells or no rescue of amacrine cells, respectively. LPS treatment caused the proliferation and migration of retinal microglia and its preconditioning prevented the ischemia‐induced microglial activation. Preventive actions from cell damages following LPS preconditioning prior to retinal ischemia were abolished in TLR4 knock‐out mice, and by pre‐treatments with anti‐TLR4 antibody or minocycline, a microglia inhibitor, which themselves had no effects on the retinal ischemia‐induced damages or microglia activation. Thus, this study revealed that TLR4 mediates the LPS preconditioning‐induced preventive effects through microglial activation in the retinal ischemia model.  相似文献   

6.
Microglia regulate immune responses in the brain, and their activation is key to the pathogenesis of diverse neurological diseases. Receptor-mediated lysophosphatidic acid (LPA) signaling has been known to regulate microglial biology, but it is still unclear which receptor subtypes guide the biology, particularly, microglial activation. Here, we investigated the pathogenic aspects of LPA receptor subtype 1 (LPA1) in microglial activation using a systemic lipopolysaccharide (LPS) administration-induced septic mouse model in vivo and LPS-stimulated rat primary microglia in vitro. LPA1 knockdown in the brain with its specific shRNA lentivirus attenuated the sepsis-induced microglia activation, morphological transformation, and proliferation. LPA1 knockdown also resulted in the downregulation of TNF-α, at both mRNA and protein levels in septic brains, but not IL-1β or IL-6. In rat primary microglia, genetic or pharmacological blockade of LPA1 attenuated gene upregulation and secretion of TNF-α in LPS-stimulated cells. In particular, the latter was associated with the suppressed TNF-α converting enzyme (TACE) activity. We reaffirmed these biological aspects using a BV2 microglial cell line in which LPA1 expression was negligible. LPA1 overexpression in BV2 cells led to significant increments in TNF-α production upon stimulation with LPS, whereas inhibiting LPA1 reversed the production. We further identified ERK1/2, but not p38 MAPK or Akt, as the underlying effector pathway after LPA1 activation in both septic brains and stimulated microglia. The current findings of the novel role of LPA1 in microglial activation along with its mechanistic aspects could be applied to understanding the pathogenesis of diverse neurological diseases that involve microglial activation.  相似文献   

7.
The serum protein fetuin‐A is essential for mineral homeostasis and shows immunomodulatory functions, for example by binding to TGF superfamily proteins. It proved neuroprotective in a rat stroke model and reduced lethality after systemic lipopolysaccharide challenge in mice. Serum fetuin‐A concentrations are highest during intrauterine life. Different species show intrauterine cerebral fetuin‐A immunoreactivity, suggesting a contribution to brain development. We therefore aimed at specifying fetuin‐A immunoreactivity in brains of newborn rats (age P0–P28) and human neonates (20–40 weeks of gestation). In humans and rats, fetuin‐A was found in cortex, white matter, subplate, hippocampus, subventricular zone, and ependymal cells which supports a global role for brain function. In rats, overall fetuin‐A immunoreactivity decreased with age. At P0 fetuin‐A immunoreactivity affected most brain structures. Thereafter, it became increasingly restricted to distinct cells of the hippocampus, cingular gyrus, periventricular stem cell layer, and ependyma. In ependymal cells the staining pattern complied with active transependymal transport from cerebrospinal fluid. Double immunofluorescence studies revealed colocalization with NeuN (mature neurons), beta III tubulin (immature neurons), GFAP (astrocytes), and CD68 (activated microglia). This points to a role of fetuin‐A in different brain functional systems. In human neonatal autopsy cases, frequently affected from severe neurological and non‐neurological diseases, fetuin‐A immunoreactivity was heterogeneous and much less associated with age than in healthy tissues studied earlier, suggesting an impact of exogeneous noxious factors on fetuin‐A regulation. Further research on the role of fetuin‐A in the neonatal brain during physiological and pathological conditions is recommended. © 2012 Wiley Periodicals, Inc. Develop Neurobiol 73: 354–369, 2013  相似文献   

8.
To date, hypothermia has focused on improving rates of resuscitation to increase survival in patients sustaining cardiac arrest (CA). Towards this end, the role of body temperature in neuronal damage or death during CA needs to be determined. However, few studies have investigated the effect of regional temperature variation on survival rate and neurological outcomes. In this study, adult male rats (12 week-old) were used under the following four conditions: (i) whole-body normothermia (37 ± 0.5 °C) plus (+) no asphyxial CA, (ii) whole-body normothermia + CA, (iii) whole-body hypothermia (33 ± 0.5 °C)+CA, (iv) body hypothermia/brain normothermia + CA, and (v) brain hypothermia/body normothermia + CA. The survival rate after resuscitation was significantly elevated in groups exposed to whole-body hypothermia plus CA and body hypothermia/brain normothermia plus CA, but not in groups exposed to whole-body normothermia combined with CA and brain hypothermia/body normothermia plus CA. However, the group exposed to hypothermia/brain normothermia combined with CA exhibited higher neuroprotective effects against asphyxial CA injury, i.e. improved neurological deficit and neuronal death in the hippocampus compared with those involving whole-body normothermia combined with CA. In addition, neurological deficit and neuronal death in the group of rat exposed to brain hypothermia/body normothermia and CA were similar to those in the rats subjected to whole-body normothermia and CA. In brief, only brain hypothermia during CA was not associated with effective survival rate, neurological function or neuronal protection compared with those under body (but not brain) hypothermia during CA. Our present study suggests that regional temperature in patients during CA significantly affects the outcomes associated with survival rate and neurological recovery.  相似文献   

9.
Intrauterine hypoxia is one of the most common stressors in fetuses, which can lead to abnormal brain development and permanent neurological deficits in adulthood. Neurological disorder excitotoxicity induced by hypoxia or ischemia may involve N-methyl-d-aspartate receptors (NMDARs), which are known to participate in the maturation and plasticity of developmental neurons. Inhibition of NMDARs has been reported to improve neurological outcomes in traumatic brain injuries and Alzheimer’s disease. Here, we investigated if antenatal blockade of NMDARs induced by memantine could alleviate neurodevelopmental brain damage and long-term cognitive deficits in intrauterine hypoxia rats. Pregnant rats were assigned to four groups: air control, air?+?memantine, hypoxia, and hypoxia?+?memantine. The rats were exposed to hypoxic conditions (FiO2?=?0.095–0.115) for 8 h/day (hypoxia group) or given a daily memantine injection (5 mg/kg, i.p.) before hypoxia exposure from pregnant day 19 (G19) to G20 (hypoxia?+?memantine group).The influence of NMDARs antenatal blockade by memantine on intrauterine hypoxia-induced brain developmental damage and cognitive function was then studied. Intrauterine hypoxia resulted in decreased fetal body weight, brain weight, cognitive function, hippocampal neuron numbers, and Ki-67 proliferation index in the hippocampus. Memantine preventive treatment in pregnant rats before hypoxia exposure alleviated the aforementioned damage in vivo. Excessive activation of NMDARs contributes to fetal brain developmental damage and cognitive ability impairment induced by intrauterine hypoxia, which could be alleviated by antenatal memantine preventative treatment.  相似文献   

10.
Traumatic injury or the pathogenesis of some neurological disorders is accompanied by inflammatory cellular mechanisms, mainly resulting from the activation of central nervous system (CNS) resident microglia. Under inflammatory conditions, microglia up‐regulate the inducible isoform of NOS (iNOS), leading to the production of high concentrations of the radical molecule nitric oxide (NO). At the onset of inflammation, high levels of microglial‐derived NO may serve as a cellular defense mechanism helping to clear the damaged tissue and combat infection of the CNS by invading pathogens. However, the excessive overproduction of NO by activated microglia has been suggested to govern the inflammation‐mediated neuronal loss causing eventually complete neurodegeneration. Here, we investigated how NO influences phagocytosis of neuronal debris by BV‐2 microglia, and how neurite outgrowth of human NT2 model neurons is affected by microglial‐derived NO. The presence of NO greatly increased microglial phagocytic capacity in a model of acute inflammation comprising lipopolysaccharide (LPS)‐activated microglia and apoptotic neurons. Chemical manipulations suggested that NO up‐regulates phagocytosis independently of the sGC/cGMP pathway. Using a transwell system, we showed that reactive microglia inhibit neurite outgrowth of human neurons via the generation of large amounts of NO over effective distances in the millimeter range. Application of a NOS blocker prevented the LPS‐induced NO production, totally reversed the inhibitory effect of microglia on neurite outgrowth, but reduced the engulfment of neuronal debris. Our results indicate that a rather simple notion of treating excessive inflammation in the CNS by NO synthesis blocking agents has to consider functionally antagonistic microglial cell responses during pharmaceutic therapy. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 566–584, 2016  相似文献   

11.
Microglia activation initiates a neurological deficit cascade that contributes to substantial neuronal damage and impairment following ischemia stroke. Toll-like receptor 4 (TLR4) has been demonstrated to play a critical role in this cascade. In the current study, we tested the hypothesis that hydroxysafflor yellow A (HSYA), an active ingredient extracted from Flos Carthami tinctorii, alleviated inflammatory damage, and mediated neurotrophic effects in neurons by inducing the TLR4 pathway in microglia. A non-contact Transwell co-culture system comprised microglia and neurons was treated with HSYA followed by a 1 mg/mL lipopolysaccharide (LPS) stimulation. The microglia were activated prior to neuronal apoptosis, which were induced by increasing TLR4 expression in the activated microglia. However, HSYA suppressed TLR4 expression in the activated microglia, resulting in less neuronal damage at the early stage of LPS stimulation. Western blot analysis and immunofluorescence indicated that dose-dependently HSYA down-regulated TLR4-induced downstream effectors myeloid differentiation factor 88 (MyD88), nuclear factor kappa b (NF-κB), and the mitogen-activated protein kinases (MAPK)-regulated proteins c-Jun NH2-terminal protein kinase (JNK), protein kinase (ERK) 1/2 (ERK1/2), p38 MAPK (p38), as well as the LPS-induced inflammatory cytokine release. However, HSYA up-regulated brain-derived neurotrophic factor (BDNF) expression. Our data suggest that HSYA could exert neurotrophic and anti-inflammatory functions in response to LPS stimulation by inhibiting TLR4 pathway-mediated signaling.  相似文献   

12.
We investigated the consequences of transient application of specific stimuli mimicking inflammation to hippocampal tissue on microglia activation and neuronal cell vulnerability to a subsequent excitotoxic insult. Two-week-old organotypic hippocampal slice cultures, from 7-day-old C57BL/6 donor mice, were exposed for 3 h to lipopolysaccharide (LPS; 10 ng/mL) followed by 3 h co-incubation with 1 mM ATP, or 100 microM 2'3'-O-(4-benzoyl-benzoyl) adenosine 5'-triphosphate triethylammonium, a selective P2X(7) receptor agonist. These treatments in combination, but not individually, induced a pronounced activation and apoptotic-like death of macrophage antigen-1 (MAC-1)-positive microglia associated with a massive release of interleukin (IL)-1beta exceeding that induced by LPS alone. Antagonists of P2X(7) receptors prevented these effects. Transient pre-exposure of slice cultures to a combination of LPS and P2X(7) receptor agonists, but not either one or the other alone, significantly exacerbated CA3 pyramidal cell loss induced by subsequent 12 h exposure to 8 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazole propinate (AMPA). Potentiation of AMPA toxicity was prevented when IL-1beta production or its receptor signaling were blocked by an inhibitor of interleukin-converting-enzyme or IL-1 receptor antagonist during application of LPS + ATP. The same treatments did not prevent microglia apoptosis-like death. These findings show that transient exposure to specific pro-inflammatory stimuli in brain tissue can prime neuronal susceptibility to a subsequent excitotoxic insult. P2X(7) receptor stimulation, and the consequent IL-1beta release, is mandatory for exacerbation of neuronal loss. These mechanisms may contribute to determine cell death/survival in acute and chronic neurodegenerative conditions associated with inflammatory events.  相似文献   

13.
Activated microglia mediate neuronal cell injury via a nitric oxide mechanism.   总被引:31,自引:0,他引:31  
Activated microglial have been proposed to play a pathogenetic role in immune-mediated neurodegenerative diseases. To test this hypothesis, purified murine neonatal microglial were cocultured with neuronal cells derived from fetal brain. Activation with IFN-gamma and LPS of these cocultures brought about a sharp decrease in uptake of gamma-amino butyric acid and a marked reduction in neuronal cell survival. These effects varied with the density of microglia, the concentrations of the activation signals (IFN-gamma and LPS), and the duration of coculture. Inasmuch as addition of NG-monomethyl-L-arginine blocked these effects, a L-arginine-dependent neurocytotoxic mechanism was implicated. Abundant nitrite, a metabolite of the free radical nitric oxide (NO) derived from L-arginine, was detected in activated microglial/neuronal cell cocultures and in purified microglial cell cultures but not in purified astrocyte or neuronal cell cultures, suggesting that microglial were the principal source of the NO. These findings support the hypothesis that microglia are the source of a neurocytotoxic-free radical, and shed light on an additional mechanism of immune-mediated brain injury.  相似文献   

14.
15.
《Autophagy》2013,9(7):963-966
Many recent studies indicate that dysregulation of autophagy is a common feature of many neurodegenerative diseases. The HIV-1-associated neurological disorder is an acquired cognitive and motor disease that includes a severe neurodegenerative dementia. We find that the neurodegeneration seen in the brain in HIV-1 infection is associated with an inhibition of neuronal autophagy, leading to neuronal demise. Neurons treated with supernatants from SIV-infected microglia develop a decrease in autophagy-inducing proteins, a decrease in neuronal autophagy vesicles, and an increase in sequestosome-1/p62. Examination of brains from HIV-infected individuals and SIV-infected monkeys reveals signs of autophagy dysregulation, associated, respectively, with dementia and encephalitis. Excitotoxic and inflammatory factors could inhibit neuronal autophagy, and stimulation of autophagy with rapamycin prevents such effects. Here we amplify on these findings, and propose that in the setting of HIV-infection, the decreased neuronal autophagy sensitizes cells to pro-apoptotic and other damaging mechanisms, leading to neuronal dysfunction and death. Hence, new therapeutic approaches aimed at boosting neuronal autophagy are conceivable to treat those suffering from the neurological complications of HIV.

Addendum to: Alirezaei M, Kiosses WB, Flynn CT, Brady NR, Fox HS. Disruption of neuronal autophagy by infected microglia results in neurodegeneration. PLoS ONE 2008; 3:e2906.  相似文献   

16.
Mutation of DJ-1 (PARK7) has been linked to the development of early-onset Parkinson’s disease (PD). However, the underlying molecular mechanism is still unclear. This study is aimed to compare the sensitivity of nigrostriatal dopaminergic neurons to lipopolysaccharide (LPS) challenge between DJ-1 knockout (KO) and wild-type (WT) mice, and explore the underlying cellular and molecular mechanisms. Our results found that the basal levels of interferon (IFN)-γ (the hub cytokine) and interferon-inducible T-cell alpha chemoattractant (I-TAC) (a downstream mediator) were elevated in the substantia nigra of DJ-1 KO mice and in microglia cells with DJ-1 deficiency, and the release of cytokine/chemokine was greatly enhanced following LPS administration in the DJ-1 deficient conditions. In addition, direct intranigral LPS challenge caused a greater loss of nigrostriatal dopaminergic neurons and striatal dopamine content in DJ-1 KO mice than in WT mice. Furthermore, the sensitization of microglia cells to LPS challenge to release IFN-γ and I-TAC was via the enhancement of NF-κB signaling, which was antagonized by NF-κB inhibitors. LPS-induced increase in neuronal death in the neuron-glia co-culture was enhanced by DJ-1 deficiency in microglia, which was antagonized by the neutralizing antibodies against IFN-γ or I-TAC. These results indicate that DJ-1 deficiency sensitizes microglia cells to release IFN-γ and I-TAC and causes inflammatory damage to dopaminergic neurons. The interaction between the genetic defect (i.e. DJ-1) and inflammatory factors (e.g. LPS) may contribute to the development of PD.  相似文献   

17.
18.
White matter injury is the most frequently observed brain lesion in preterm infants. The etiology remains unclear, however, both cerebral hypoperfusion and intrauterine infections have been suggested as risk factors. We compared the neuropathological outcome, including the effect on oligodendrocytes, astrocytes, and microglia, following either systemic asphyxia or endotoxemia in fetal sheep at midgestation. Fetal sheep were subjected to either 25 minutes of umbilical cord occlusion or systemic endotoxemia by administration of Escherichia coli lipopolysaccharide (LPS O111:B4, 100 ng/kg, IV). Periventricular white matter lesions were observed in 2 of 6 asphyxiated fetuses, whereas the remaining animals showed diffuse injury throughout the subcortical white matter and neuronal necrosis in subcortical regions, including the striatum and hippocampus. LPS-treatment resulted in focal inflammatory infiltrates and cystic lesions in periventricular white matter in 2 of 5 animals, but with no neuron specific injury. Both experimental paradigms resulted in microglia activation in the white matter, damaged astrocytes, and loss of oligodendrocytes. These results show that the white matter at midgestation is sensitive to injury following both systemic asphyxia and endotoxemia. Asphyxia induced lesions in both white and subcortical grey matter in association with microglia activation, and endotoxemia resulted in selective white matter damage and inflammation.  相似文献   

19.
Inflammation significantly impacts the progression of Huntington's disease (HD) and the mutant HTT protein determines a pro‐inflammatory activation of microglia. Mesenchymal stem/stromal cells (MSC) from the amniotic membrane (hAMSC), and their conditioned medium (CM‐hAMSC), have been shown to possess protective effects in vitro and in vivo in animal models of immune‐based disorders and of traumatic brain injury, which have been shown to be mediated by their immunomodulatory properties. In this study, in the R6/2 mouse model for HD we demonstrate that mice treated with CM‐hAMSC display less severe signs of neurological dysfunction than saline‐treated ones. CM‐hAMSC treatment significantly delayed the development of the hind paw clasping response during tail suspension, reduced deficits in rotarod performance, and decreased locomotor activity in an open field test. The effects of CM‐hAMSC on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal atrophy and the formation of striatal neuronal intranuclear inclusions. In addition, while no significant increase was found in the expression of BDNF levels after CM‐hAMSC treatment, a significant decrease of microglia activation and inducible nitric oxide synthase levels were observed. These results support the concept that CM‐hAMSC could act by modulating inflammatory cells, and more specifically microglia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号