首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Na+/H+ exchanger 1 (NHE1), acting as an important regulator of intracellular pH (pHi) and extracellular pH (pHe), has been known to play a key role in the metastasis of many solid tumours. However, the exact mechanism underlying these processes, especially in cervical cancer, is still poorly understood. In the current study, we first showed that the inhibition of NHE1 activity by the specific inhibitor cariporide could suppress migration and invasion of HeLa cells in vitro. Moreover, cariporide also reversed the enhanced migration and invasion in HeLa cells by overexpressed membrane‐type 1 matrix metalloproteinase (MT1‐MMP). Subsequently, our results showed that NHE1 regulated the expression of MT1‐MMP at both messenger RNA and protein levels as well as its localization. Meanwhile, we observed slight modification in the morphology of HeLa cell after treating with cariporide. The present work indicates that NHE1 mediates HeLa cell metastasis via regulating the expression and localization of MT1‐MMP and provides a theoretical basis for the development of novel therapeutic strategies targeting cervical cancer. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were synthesized from the reactions of 7‐benzylidenebicyclo[3.2.0]hept‐2‐en‐6‐ones with 2‐aminobenzenethiol. The antiproliferative activities of 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay. Cisplatin and 5‐fluorouracil (5‐FU) were used as standards. The most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 cell lines with IC50=5.89 μm value (cisplatin, IC50=14.46 μm and 5‐FU, IC50=76.74 μm ). Furthermore, the most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa cell lines with IC50=3.98 μm (cisplatin, IC50=37.95 μm and 5‐FU, IC50=46.32 μm ). Additionally, computational studies of related molecules were performed by using B3LYP/6‐31G+(d,p) level in the gas phase. Experimental IR and NMR data were compared with the calculated results and were found to be compatible with each other. Molecular electrostatic potential (MEP) maps of the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa and the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 were investigated, aiming to determine the region that the molecule is biologically active. Biological activities of mentioned molecules were investigated with molecular docking analyses. The appropriate target protein (PDB codes: 1 M17 for the HeLa cells and 1JQH for the C6 cells) was used for 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole and 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole molecules exhibiting the highest biological activity against HeLa and C6 cells in the docking studies. As a result, it was determined that these molecules are the best candidates for the anticancer drug.  相似文献   

3.
Metastasis is a crucial impediment to the successful treatment for gastric cancer. SPOCK1 has been demonstrated to facilitate cancer metastasis in certain types of cancers; however, the role of SPOCK1 in the invasion and metastasis of gastric cancer remains elusive. SPOCK1 and epithelial‐mesenchymal transition (EMT)‐related biomarkers were detected by immunohistochemistry and Western blot in gastric cancer specimens. Other methods including stably transfected against SPOCK1 into gastric cancer cells, Western blot, migration and invasion assays in vitro and metastasis assay in vivo were also performed. The elevated expression of SPOCK1 correlates with EMT‐related markers in human gastric cancer tissue, clinical metastasis and a poor prognosis in patients with gastric cancer. In addition, knockdown of SPOCK1 expression significantly inhibits the invasion and metastasis of gastric cancer cells in vitro and in vivo, inversely, SPOCK1 overexpression results in the opposite effect. Interestingly, SPOCK1 expression has no effect on cell proliferation in vitro and in vivo. Regarding the mechanism(s) of SPOCK1‐induced cells invasion and metastasis, we prove that Slug‐induced EMT is involved in SPOCK1‐facilitating gastric cancer cells invasion and metastasis. The elevated SPOCK1 expression is closely correlated with cancer metastasis and patient survival, and SPOCK1 promotes the invasion and metastasis of gastric cancer through Slug‐mediated EMT, thereby possibly providing a novel therapeutic target for gastric cancer.  相似文献   

4.
Chemoresistance is a common occurrence during advanced or recurrent cervical cancer therapy when treated by conventional treatment, platinum‐based chemotherapy. This study aimed to investigate the effect and underlying mechanism of tanshinone I on attenuating proliferation and chemoresistance of cervical cancer cells. In cervical cancer cells, cell proliferation was examined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT), cell count, and soft‐agar colony‐formation assay. rVista analysis and luciferase reporter assay were used to explore the upstream regulator of KRAS, and the expression levels of key genes were also detected. Western blot analysis showed that tanshinone I significantly suppressed KRAS expression and inhibited AKT phosphorylation. rVista analysis and luciferase reporter assay demonstrated that ELK1 can binds directly to KRAS promoter and positively regulates KRAS expression. MTT assay showed that KRAS or ELK1 overexpression significantly attenuated the suppressive effects of tanshinone I on HeLa cells proliferation. In addition, tanshinone I recovered the cisplatin sensitivity of HeLa CR cells, whereas KRAS or ELK1 overexpression significantly inhibited this phenomenon. Our results suggested that tanshinone I had anticancer effects on cervical cancer cells via inhibiting ELK1 and downregulating KRAS‐AKT axis, which subsequently suppressed the proliferation and cisplatin resistance of cervical cancer cells.  相似文献   

5.
A priority in recent anti‐cancer drug development has been attaining better side‐effect profiles for potential compounds. To produce highly specific cancer therapies it is necessary to understand both the effects of the proposed compound on cancer and on normal cells comprising the rest of the human body. Thus in vitro evaluation of these compounds against non‐carcinogenic cell lines is of critical importance. One of the most recent developments in experimental anti‐cancer agents is 2‐methoxyestradiol‐bis‐sulphamate (2ME‐BM), a sulphamoylated derivative of 2‐methoxyestradiol. The aim of this study was to evaluate the in vitro effects of 2ME‐BM on cell proliferation, morphology and mechanisms of cell death in the non‐carcinogenic MCF‐12A breast epithelial cell line. The study revealed changes in proliferative capacity, morphology and cell death induction in response to 2ME‐BM exposure (24 h at 0.4 µM). Microscopy showed decreased cell density and cell death‐associated morphology (increased apoptotic characteristics), a slight increase in acidic intracellular vesicles and insignificant ultra‐structural aberrations. Mitotic indices revealed a G2M‐phase cell cycle block. This was confirmed by flow cytometry, where an increased fraction of abnormal cells and a decrease in cyclin B1 levels were observed. These results evidently demonstrate that the non‐carcinogenic MCF‐12A cell line is less susceptible when compared to 2ME‐BM‐exposed cancer cell lines previously tested. Further in vitro research into the mechanism of this potentially useful compound is warranted. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In the present study, an ayurvedic medicinal plant, Anthocephalus cadamba (Roxb .) Miq . commonly known as ‘Kadamb’ was explored for its potential against oxidative stress and cancer. The fractions namely AC‐4 and ACALK (alkaloid rich fraction) were isolated from A. cadamba leaves by employing two different isolation methods and evaluated for their in vitro antioxidant and antiproliferative activity. The structure of the isolated AC‐4 was characterized tentatively as dihydrocadambine by using various spectroscopic techniques such as ESI‐QTOF‐MS, 1H‐ and 13C‐NMR, DEPT, COSY, HMQC, and HMBC. Results of various antioxidant assays viz. 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), ABTS cation radical, superoxide anion radical scavenging, and plasmid nicking assay demonstrated that both the fractions viz. AC‐4 and ACALK possess ability to scavenge DPPH, ABTS radicals and effectively protected plasmid pBR322 DNA from damage caused by hydroxyl radicals. Further, when both fractions were evaluated for their potential to suppress growth of HeLa and COLO 205 cells, only ACALK fraction showed antiproliferative effects. ACALK exhibited GI50 of 205.98 and 99.54 μg/ml in HeLa and COLO 205 cell lines, respectively. Results of Hoechst staining in cervical carcinoma (HeLa) cells confirmed that ACALK induced cell death in HeLa cells via apoptotic mode. Both the fractions also inhibited COX‐2 enzyme activity.  相似文献   

7.
BF12 [(2E)‐3‐[6‐Methoxy‐2‐(3,4,5‐trimethoxybenzoyl)‐1‐benzofuran‐5‐yl]prop‐2‐enoic acid], a novel derivative of combretastatin A‐4 (CA‐4), was previously found to inhibit tumor cell lines, with a particularly strong inhibitory effect on cervical cancer cells. In this study, we investigated the microtubule polymerization effects and apoptosis signaling mechanism of BF12. BF12 showed a potent efficiency against cervical cancer cells, SiHa and HeLa, with IC50 values of 1.10 and 1.06 μm , respectively. The cellular mechanism studies revealed that BF12 induced G2/M phase arrest and apoptosis in SiHa and HeLa cells, which were associated with alterations in the expression of the cell G2/M cycle checkpoint‐related proteins (cyclin B1 and cdc2) and alterations in the levels of apoptosis‐related proteins (P53, caspase‐3, Bcl‐2, and Bax) of these cells, respectively. Western blot analysis showed that BF12 inhibited the PI3 K/Akt/mTOR signaling pathway and induced apoptosis in human cervical cancer cells. BF12 was identified as a tubulin polymerization inhibitor, evidenced by the effective inhibition of tubulin polymerization and heavily disrupted microtubule networks in living SiHa and HeLa cells. By inhibiting the PI3 K/Akt/mTOR signaling pathway and inducing apoptosis in human cervical cancer cells, BF12 shows promise for use as a microtubule inhibitor.  相似文献   

8.
9.
The molecular conformation of certain therapeutic agents has been shown to affect the ability to gain access to target cells, suggesting potential value in defining conformation of candidate molecules. This study explores how the shape and size of poly‐γ‐glutamyl‐glutamate paclitaxel (PGG‐PTX), an amphiphilic polymer‐drug with potential chemotherapeutic applications, can be systematically controlled by varying hydrophobic and hydrophilic entities. Eighteen different formulations of PGG‐PTX varying in three PTX loading fractions (fPTX) of 0.18, 0.24, and 0.37 and six spatial arrangements of PTX (‘clusters’, ‘ends’, ‘even’, ‘middle’, ‘random’, and ‘side’) were explored. Molecular dynamics (MD) simulations of all‐atom (AA) models of PGG‐PTX were run until a statistical equilibrium was reached at 100 ns and then continued as coarse‐grained (CG) models until a statistical equilibrium was reached at an effective time of 800 ns. Circular dichroism spectroscopy was used to suggest initial modeling configurations. Results show that a PGG‐PTX molecule has a strong tendency to form coil shapes, regardless of the PTX loading fraction and spatial PTX arrangement, although globular shapes exist at fPTX = 0.24. Also, less uniform PTX arrangements such as ‘ends’, ‘middle’, and ‘side’ produce coil geometries with more curvature. The prominence of coil shapes over globules suggests that PGG‐PTX may confer a long circulation half‐life and high propensity for accumulation to tumor endothelia. This multiscale modeling approach may be advantageous for the design of cancer therapeutic delivery systems. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 936–951, 2010.  相似文献   

10.
A series of 3‐(substituted aroyl)‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT‐26, HeLa, MGC80‐3, NCI‐H460 and SGC‐7901 cells (IC50 = 8.2 – 31.7 μm ); 3g , 3n and 3a were the most potent compounds against CHO (IC50 = 8.2 μm ), HCT‐15 (IC50 = 21 μm ) and MCF‐7 cells (IC50 = 18.7 μm ), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC50 > 100 μm ). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents.  相似文献   

11.
Over the recent few years rutin has gained wider attention in exhibiting inhibitory potential against several oncotargets for inducing apoptotic and antiproliferative activity in several human cancer cells. Several deregulated signaling pathways are implicated in cancer pathogenesis. Therefore we have inclined our research towards exploring the anticancerous efficacy of a very potent phytocompound for modulating the incontinent expression of these two crucial E6 and E7 oncogenes. Further, inhibitory efficacy of rutin against human papillomavirus (HPV)-E6 and E7 oncoproteins in cervical cancer has not been elucidated yet. This research addresses the growth inhibitory efficacy of rutin against E6 and E7 oncoproteins in HeLa cells, which is known to inactivate several tumor suppressor proteins such as p53 and pRB. Rutin treatment exhibited reduced cell viability with increased cell accumulation in G0/G1 phase of cell cycle in HeLa cell lines. Additionally, rutin treatment has also led to down-regulation of E6 and E7 expression associated with an increased expression of p53 and pRB levels. This has further resulted in enhanced Bax expression and decreased Bcl-2 expression releasing cytochrome c into cytosol followed by caspase cascade activation with cleavage of caspase-3, caspase-8 and caspase-9. Further, in silico studies have also supported our in vitro findings by exhibiting significant binding energy against selected target oncoproteins. Therefore, our research findings might recommend rutin as one of the potent drug candidate in cervical cancer management via targeting two crucial oncoproteins associated with viral progression.  相似文献   

12.
An efficient synthetic strategy to 3‐methylidene‐2,3‐dihydroquinolin‐4(1H)‐ones variously substituted in position 2 has been developed. The title compounds were synthesized in the reaction sequence involving reaction of diethyl methylphosphonate with methyl 2‐(tosylamino)benzoate, condensation of thus formed diethyl 2‐oxo‐2‐(2‐N‐tosylphenyl)ethylphosphonate with various aldehydes followed by successful application of the obtained 3‐(diethoxyphosphoryl)‐1,2‐dihydroquinolin‐4‐ols as Horner–Wadsworth–Emmons reagents for the olefination of formaldehyde. Also, enantioselective approach to the target compounds has been evaluated using 3‐dimenthoxyphosphoryl group as a chiral auxiliary. Single X‐ray crystal analysis of (2S)‐3‐(dimenthoxyphosphoryl)‐2‐phenyl‐1‐tosyldihydroquinolin‐4‐ol revealed the presence of strong resonance‐assisted hydrogen bond (RAHB). The obtained 3‐methylidene‐2,3‐dihydroquinolin‐4(1H)‐ones were then tested for their cytotoxic activity against two leukemia cell lines NALM‐6 and HL‐60 and a breast cancer MCF‐7 cell line. All compounds showed very high cytotoxic activity with the IC50 values mostly below 1 μm in all three cancer cell lines. The selected analogs were also tested on human umbilical vein endothelial cells (HUVEC) and on human mammary gland/breast cells (MCF‐10A) to evaluate their influence on normal cells. Since one of the most serious problems in cancer chemotherapy is the development of drug resistance, the mRNA levels and activity of ABCB1 transporter considered to be the most important factor engaged in drug resistance, were evaluated in MCF‐7 cells treated with two selected analogs. Both compounds were strong ABCB1 transporter inhibitors that could prevent efflux of anticancer drugs from cancer cells.  相似文献   

13.
The monoclonal antibody (mAb) CO17‐1A specifically binds to the tumor‐associated cell surface glycoprotein GA733 in colorectal cancer cells. Thus, mAb CO17‐1A has the potential to act as an immune therapeutic protein against colorectal cancer. Recently, it was shown that the baculovirus insect cell expression system produces anti‐colorectal cancer mAb CO17‐1A. In this study, the colorectal cancer antibody mAb CO17‐1A fused to the endoplasmic reticulum (ER) retention signal sequence (KDEL), and the (mAb CO17‐1AK) was expressed in Spodoptera frugiperda Sf9 insect cells. The yield, cell cytotoxicity, and in vitro anti‐tumor activity of mAb CO17‐1AK were verified. Western blotting was performed to confirm that both heavy and light chains of mAb CO17‐1A were expressed in Sf9 insect cells. The insect‐derived mAb (mAbI) CO17‐1A was purified using a protein G affinity column. An in vitro wound healing assay was conducted to determine the inhibition activity of mAb CO17‐1A during tumor cell migration, showing that mAbI CO17‐1AK was effective as mammalian‐derived mAb CO17‐1A (mAbM CO17‐1A). These results suggest that the insect cell expression system can produce and properly assemble mAbs that inhibit tumor cell migration.  相似文献   

14.
The Wilms' tumor gene WT1 is overexpressed in various tumors, and the WT1 protein has been demonstrated to be an attractive target antigen for cancer immunotherapy. A WT1 protein‐derived 16‐mer peptide, WT1332 (KRYFKLSHLQMHSRKH), which was naturally generated through processing in cells and could elicit Th1‐type CD4+ helper T cell responses with an HLA‐DRB1*0405‐restriction has previously been identified by us. In the present study, it has been demonstrated that WT1332 can induce WT1332‐specific CD4+ T cell responses with the restriction of not only HLA‐DRB1*0405 but also HLA‐DRB1*1501, ‐DRB1*1502, or ‐DPB1*0901. These HLA class II‐restricted WT1332‐specific CD4+ T cell lines produced IFN‐γ but neither IL‐4 nor IL‐10 with WT1332 stimulation, thus showing a Th1‐type cytokine profile. Furthermore, HLA‐DRB1*1501 or ‐DRB1*1502‐restricted WT1332‐specific CD4+ T cell lines responded to WT1‐expressing transformed cells in an HLA‐DRB1‐restricted manner, which is consistent with our previous finding that WT1332 is a naturally processed peptide. These results indicate that the natural peptide, WT1332, is a promiscuous WT1‐specific helper epitope. WT1332 is expected to apply to cancer patients with various types of HLA class II as a WT1‐specific helper peptide in combination with HLA class I‐restricted WT1 peptides.  相似文献   

15.
WD‐repeat protein 79 (WDR79), a member of the WD‐repeat protein family, acts as a scaffold protein, participating in telomerase assembly, Cajal body formation and DNA double‐strand break repair. Here, we first report that WDR79 is frequently overexpressed in cell lines and tissues derived from non‐small cell lung cancer (NSCLC). Knockdown of WDR79 significantly inhibited the proliferation of NSCLC cells in vitro and in vivo by inducing cell cycle arrest and apoptosis. WD‐repeat protein 79 ‐induced cell cycle arrest at the G0/G1 phase was associated with the expression of G0/G1‐related cyclins and cyclin‐dependent kinase complexes. We also provide evidence that WDR79 knockdown induces apoptosis via a mitochondrial pathway. Collectively, these results suggest that WDR79 is involved in the tumorigenesis of NSCLC and is a potential novel diagnostic marker and therapeutic target for NSCLC.  相似文献   

16.
Responses to host amyloids and curli amyloid fibrils of Escherichia coli and Salmonella enterica serotype Typhimurium are mediated through Toll‐like receptor (TLR) 2. Here we show that TLR2 alone was not sufficient for mediating responses to curli. Instead, transfection experiments with human cervical cancer (HeLa) cells and antibody‐mediated inhibition of TLR signalling in human macrophage‐like (THP‐1) cells suggested that TLR2 interacts with TLR1 to recognize curli amyloid fibrils. TLR1/TLR2 also serves as a receptor for tri‐acylated lipoproteins, which are produced by E. coli and other Gram‐negative bacteria. Despite the presence of multiple TLR1/TLR2 ligands on intact bacterial cells, an inability to produce curli amyloid fibrils markedly reduced the ability of E. coli to induce TLR2‐dependent responses in vitro and in vivo. Collectively, our data suggest that curli amyloid fibrils from enterobacterial biofilms significantly contribute to TLR1/TLR2‐mediated host responses against intact bacterial cells.  相似文献   

17.
Aims: The objective of this study was to evaluate recombinant 56‐kDa outer membrane protein as a potential inhibitor to infection from Orientia tsutsugamushi. Methods and Results: The 56‐kDa protein was cloned and expressed in an Escherichia coli system, and the degree of target cell attachment to immobilized 56‐kDa protein was measured in a cell adhesion assay. The results showed that the 56‐kDa protein has an ability to attach HeLa cells. Furthermore, treatment of target cells with a truncated 56‐kDa 1–418 (amino acid residues) protein inhibited target cell infection by O. tsutsugamushi, demonstrated with an indirect immunofluorescence antibody assay. Conclusions: The truncated 56‐kDa protein (a.a. 1–418) plays an important role in O. tsutsugamushi infection, and the 56‐kDa protein could be useful and effective in the inhibition of O. tsutsugamushi attachment and infection. Significance and Impact of the Study: The attachment of the 56‐kDa protein to target cells was directly determined by in vitro adherence test, and the invasion of target cells by O. tsutsugamushi was inhibited by treating the target cells with a truncated 56‐kDa protein.  相似文献   

18.
HLA‐G has been documented both in establishment of anti‐tumour immune responses and in tumour evasion. To investigate the clinical relevance of HLA‐G in non‐small‐cell lung cancer (NSCLC), expression status and potential significance of HLA‐G in NSCLC were analysed. In this study, HLA‐G expression in 101 NSCLC primary lesions and plasma soluble HLA‐G (sHLA‐G) from 91 patients were analysed with immunohistochemistry and ELISA, respectively. Correlations between HLA‐G status and various clinical parameters including survival time were evaluated. Meanwhile, functional analysis of transfected cell surface HLA‐G expression and plasma sHLA‐G form NSCLC patients on natural killer (NK) cell cytolysis were performed. Data revealed that HLA‐G was expressed in 41.6% (42/101) NSCLC primary lesions, while undetectable in adjacent normal lung tissues. HLA‐G expression in NSCLC lesions was strongly correlated to disease stages (P= 0.002). Plasma sHLA‐G from NSCLC patients was markedly higher than that in normal controls (P= 0.004), which was significantly associated with the disease stages (I versus IV, P= 0.025; II versus IV, P= 0.029). Patient plasma sHLA‐G level (≥median, 32.0 U/ml) had a significantly shorter survival time (P= 0.044); however, no similar significance was observed for the lesion HLA‐G expression. In vitro data showed that both cell surface HLA‐G and patient plasma sHLA‐G could dramatically decrease the NK cell cytolysis. Our findings indicated that both lesion HLA‐G expression and plasma sHLA‐G in NSCLC is related to the disease stage and can exert immunosuppression to the NK cell cytolysis, indicating that HLA‐G could be a potential therapeutic target. Moreover, plasma sHLA‐G in NSCLC patients could be used as a prognosis factor for NSCLC.  相似文献   

19.
Acquired chemoresistance represents a major obstacle in cancer treatment, the underlying mechanism of which is complex and not well understood. MiR‐425‐5p has been reported to be implicated tumorigenesis in a few cancer types. However, its role in regulating chemoresistance has not been investigated in colorectal cancer (CRC) cells. Microarray analysis was performed in isogenic chemosensitive and chemoresistant HCT116 cell lines to identify differentially expressed miRNAs. miRNA quantitative real‐time PCR was used to detect miR‐425‐5p expression levels between drug resistant and parental cancer cells. MiR‐425‐5p mimic and inhibitor were transfected, followed by CellTiter‐Glo® assay to examine drug sensitivity in these two cell lines. Western Blot and luciferase assay were performed to investigate the direct target of miR‐425‐5p. Xenograft mouse models were used to examine in vivo function of miR‐425‐5p. Our data showed that expression of miR‐425‐5p was significantly up‐regulated in HCT116‐R compared with parental HCT116 cells. Inhibition of miR‐425‐5p reversed chemoresistance in HCT116‐R cells. Programmed cell death 10 (PDCD10) is the direct target of miR‐425‐5p which is required for the regulatory role of miR‐425‐5p in chemoresistance. MiR‐425‐5p inhibitor sensitized HCT116‐R xenografts to chemo drugs in vivo. Our study demonstrated that miR‐425‐5p regulates chemoresistance of CRC cells by modulating PDCD10 expression level both in vitro and in vivo. MiR‐425‐5p may represent a new therapeutic target for the intervention of CRC.  相似文献   

20.
Background information. Caspase‐dependent and ‐independent death mechanisms are involved in apoptosis in a variety of human carcinoma cells treated with antineoplastic compounds. Our laboratory has reported that p53 is a key contributor of mitochondrial apoptosis in cervical carcinoma cells after staurosporine exposure. However, higher mitochondrial membrane potential dissipation and greater DNA fragmentation were observed in p53wt (wild‐type p53) HeLa cells compared with p53mt (mutated p53) C‐33A cells. Here, we have studied events linked to the mitochondrial apoptotic pathway. Results. Staurosporine can induce death of HeLa cells via a cytochrome c/caspase‐9/caspase‐3 mitochondrial‐dependent apoptotic pathway and via a delayed caspase‐independent pathway. In contrast with p53wt cells, p53mt C‐33A cells exhibit firstly caspase‐8 activation leading to caspase‐3 activation and Bid cleavage followed by cytochrome c release. Attenuation of PARP‐1 [poly(ADP‐ribose) polymerase‐1] cleavage as well as oligonucleosomal DNA fragmentation in the presence of z‐VAD‐fmk points toward a major involvement of a caspase‐dependent pathway in staurosporine‐induced apoptosis in p53wt HeLa cells, which is not the case in p53mt C‐33A cells. Meanwhile, the use of 3‐aminobenzamide, a PARP‐1 inhibitor known to prevent AIF (apoptosis‐inducing factor) release, significantly decreases staurosporine‐induced death in these p53mt carcinoma cells, suggesting a preferential implication of caspase‐independent apoptosis. On the other hand, we show that p53, whose activity is modulated by pifithrin‐α, isolated as a suppressor of p53‐mediated transactivation, or by PRIMA‐1 (p53 reactivation and induction of massive apoptosis), that reactivates mutant p53, causes cytochrome c release as well as mitochondrio—nuclear AIF translocation in staurosporine‐induced apoptosis of cervical carcinoma cells. Conclusions. The present paper highlights that staurosporine engages the intrinsic mitochondrial apoptotic pathway via caspase‐8 or caspase‐9 signalling cascades and via caspase‐independent cell death, as well as through p53 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号