首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
  总被引:3,自引:0,他引:3  
We present a theoretical approach to the optimization of crypsis in heterogeneous habitats. Our model habitat consists of two different microhabitats, and the optimal combination of crypsis in the microhabitats is supposed to maximize the probability of escaping detection by a predator. The probability of escaping detection for a prey is a function of: (i)degree of crypsis, (ii) probability of occurrence in the microhabitats and (iii) probability of encountering a predator in the microhabitats. Because crypsis is background-specific there is a trade-off between crypsis in two visually different microhabitats. Depending on the nature of the trade-off, the optimal coloration is either a compromise between the requirements of the differing microhabitats or entirely adapted to only one of them. An increased risk of predation in one of the microhabitats favours increased crypsis in that microhabitat. Because the trade-off constrains possible optimal solutions, it is not possible to predict the optimal coloration only from factors (i)-(iii). However, habitat choice may fundamentally change the situation. If minimizing predation risk does not incur any costs, the prey should exclusively prefer the microhabitat where it has a lower probability of encountering a predator and better crypsis. The implications of these results for variation in cryptic coloration and polymorphism are discussed.  相似文献   

2.
    
Motion is a crucial part of the natural world, yet our understanding of how animals avoid predation whilst moving remains rather limited. Although several theories have been proposed for how antipredator defence may be facilitated during motion, there is often a lack of supporting empirical evidence, or conflicting findings. Furthermore, many studies have shown that motion often ‘breaks’ camouflage, as sudden movement can be detected even before an individual is recognised. Whilst some static camouflage strategies may conceal moving animals to a certain extent, more emphasis should be given to other modes of camouflage and related defences in the context of motion (e.g. flicker fusion camouflage, active motion camouflage, motion dazzle, and protean motion). Furthermore, when motion is involved, defence strategies are not necessarily limited to concealment. An animal can also rely on motion to mislead predators with regards to its trajectory, location, size, colour pattern, or even identity. In this review, we discuss the various underlying antipredator strategies and the mechanisms through which they may be linked to motion, conceptualising existing empirical and theoretical studies from two perspectives – concealing and misleading effects. We also highlight gaps in our understanding of these antipredator strategies, and suggest possible methodologies for experimental designs/test subjects (i.e. prey and/or predators) and future research directions.  相似文献   

3.
    
Many organisms appear to mimic inanimate objects such as twigs, leaves, stones, and bird droppings. Such adaptations are considered to have evolved because their bearers are misidentified as either inedible objects by their predators, or as innocuous objects by their prey. In the past, this phenomenon has been classified by some as Batesian mimicry and by others as crypsis, but now is considered to be conceptually different from both, and has been termed ‘masquerade’. Despite the debate over how to classify masquerade, this phenomenon has received little attention from evolutionary biologists. Here, we discuss the limited empirical evidence supporting the idea that masquerade functions to cause misidentification of organisms, provide a testable definition of masquerade, and suggest how masquerade evolved and under what ecological conditions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 1–8.  相似文献   

4.
One of the oldest theories of animal camouflage predicts that apparently conspicuous markings enhance concealment. Such 'distraction' marks are hypothesized to work by drawing the viewer's attention away from salient features, such as the body outline, that would otherwise reveal the animal. If distraction marks enhance concealment, then they offer a route for animals to combine camouflage markings with conspicuous signalling strategies, such as warning signals. However, the theory has never been tested and remains controversial. By using camouflaged artificial prey presented to wild avian predators, we test whether distractive markings enhance concealment. In contrast to predictions, we find that markings, both circular and irregular shapes, increase predation compared with unmarked targets. Markings became increasingly costly as their contrast against the prey increased. Our experiments failed to find any empirical support for the hypothesis that distraction markings are an important aspect of camouflage in animals.  相似文献   

5.
Disruptive patterning is a potentially universal camouflage technique that is thought to enhance concealment by rendering the detection of body shapes more difficult. In a recent series of field experiments, artificial moths with markings that extended to the edges of their 'wings' survived at higher rates than moths with the same edge patterns inwardly displaced. While this result seemingly indicates a benefit to obscuring edges, it is possible that the higher density markings of the inwardly displaced patterns concomitantly reduced their extent of background matching. Likewise, it has been suggested that the mealworm baits placed on the artificial moths could have created differential contrasts with different moth patterns. To address these concerns, we conducted controlled trials in which human subjects searched for computer-generated moth images presented against images of oak trees. Moths with edge-extended disruptive markings survived at higher rates, and took longer to find, than all other moth types, whether presented sequentially or simultaneously. However, moths with no edge markings and reduced interior pattern density survived better than their high-density counterparts, indicating that background matching may have played a so-far unrecognized role in the earlier experiments. Our disruptively patterned non-background-matching moths also had the lowest overall survivorship, indicating that disruptive coloration alone may not provide significant protection from predators. Collectively, our results provide independent support for the survival value of disruptive markings and demonstrate that there are common features in human and avian perception of camouflage.  相似文献   

6.
Even if an animal matches its surroundings perfectly in colour and texture, any mismatch between the spatial phase of its pattern and that of the background, or shadow created by its three-dimensional relief, is potentially revealing. Nevertheless, for camouflage to be fully broken, the shape must be recognizable. Disruptive coloration acts against object recognition by the use of high-contrast internal colour boundaries to break up shape and form. As well as the general outline, characteristic features such as eyes and limbs must also be concealed; this can be achieved by having the colour patterns on different, but adjacent, body parts aligned to match each other (i.e. in phase). Such 'coincident disruptive coloration' ensures that there is no phase disjunction where body parts meet, and causes different sections of the body to blend perceptually. We tested this theory using field experiments with predation by wild birds on artificial moth-like targets, whose wings and (edible pastry) bodies had colour patterns that were variously coincident or not. We also carried out an experiment with humans searching for analogous targets on a computer screen. Both experiments show that coincident disruptive coloration is an effective mechanism for concealing an otherwise revealing body form.  相似文献   

7.
    
Warning (aposematic) and cryptic colorations appear to be mutually incompatible because the primary function of the former is to increase detectability, whereas the function of the latter is to decrease it. Disruptive coloration is a type of crypsis in which the color pattern breaks up the outline of the prey, thus hindering its detection. This delusion can work even when the prey's pattern elements are highly contrasting; thus, it is possible for an animal's coloration to combine both warning and disruptive functions. The coloration of the wood tiger moth (Parasemia plantaginis) is such that the moth is conspicuous when it rests on vegetation, but when it feigns death and drops to the grass‐ and litter‐covered ground, it is hard to detect. This death‐feigning behavior therefore immediately switches the function of its coloration from signaling to camouflage. We experimentally tested whether the forewing patterning of wood tiger moths could function as disruptive coloration against certain backgrounds. Using actual forewing patterns of wood tiger moths, we crafted artificial paper moths and placed them on a background image resembling a natural litter and grass background. We manipulated the disruptiveness of the wing pattern so that all (marginal pattern) or none (nonmarginal pattern) of the markings extended to the edge of the wing. Paper moths, each with a hidden palatable food item, were offered to great tits (Parus major) in a large aviary where the birds could search for and attack the “moths” according to their detectability. The results showed that prey items with the disruptive marginal pattern were attacked less often than prey without it. However, the disruptive function was apparent only when the prey was brighter than the background. These results suggest that warning coloration and disruptive coloration can work in concert and that the moth, by feigning death, can switch the function of its coloration from warning to disruptive.  相似文献   

8.
Many animals decorate themselves through the accumulation of environmental material on their exterior. Decoration has been studied across a range of different taxa, but there are substantial limits to current understanding. Decoration in non-humans appears to function predominantly in defence against predators and parasites, although an adaptive function is often assumed rather than comprehensively demonstrated. It seems predominantly an aquatic phenomenon—presumably because buoyancy helps reduce energetic costs associated with carrying the decorative material. In terrestrial examples, decorating is relatively common in the larval stages of insects. Insects are small and thus able to generate the power to carry a greater mass of material relative to their own body weight. In adult forms, the need to be lightweight for flight probably rules out decoration. We emphasize that both benefits and costs to decoration are rarely quantified, and that costs should include those associated with collecting as well as carrying the material.  相似文献   

9.
    
1. Changing between white and yellow body colour in certain crab spider species has been interpreted as an adaptation for matching the background colour where they hunt and thereby remaining cryptic to prey and/or their own predators. The potential costs and benefits of colour change in female Misumenoides formosipes Walckenaer were investigated via assessment of prey opportunities and capture success, in conjunction with the tendency for and rate of colour change on different backgrounds. 2. It was tested whether being matched or mismatched to their background affected foraging by moving females between white and yellow inflorescences. Female colour was quantified in digital photos using the Lab colour space component of Adobe photoshop , providing the first empirical assessment of the rate of colour change for a crab spider species. 3. Insect visits (potential prey) on inflorescences with and without spiders and prey capture success with females matched and mismatched to their background were quantified. 4. Yellow females abandoned white inflorescences, whereas white females remained on and underwent colour change on yellow inflorescences. This difference supported the notion that the costs of colour change differ depending on the starting colour. Female departures from white flowers were apparently not due to a lack of insect visitation, as white inflorescences had higher visitation rates than did yellow inflorescences, even in the presence of spiders. 5. An increase in the prey capture success of females who transitioned from white to yellow body colour on a yellow background supported the hypothesis that colour matching functions to deceive prey.  相似文献   

10.
    
3种常见草原草本植物的再生能力随土地利用强度的变异在人工管理的草原上,植物种群受到放牧、刈割和施肥的强烈选择。以往的许多研究表明,这可能会导致性状平均值的进化性变化,但是人们对响应土地利用的表型可塑性的进化了解甚少。在本研究中,我们旨在阐明表型可塑性(特别是在生物量去除后的再生能力)与草原管理强度本身及其时间变化水平之间的关系。我们通过野外同质园实验,检测了来自高强度刈割和放牧地点的植物是否在生物量去除后有更强的再生能力。我们选用了源自欧洲温带草原的3种常见的植物物种,其种子材料来自沿土地利用强度梯度的58–68个种群,对应的土地利用方式由粗放式管理(仅有轻度的放牧)过渡到非常集约式管理(多达每年4次收割)。研究结果表明,3个物种当中的两种在刈割后的再生能力存在显著的种群差异。虽然再生能力的变异与种群原生地的平均土地利用强度无关,但是我们发现长叶车前(Plantago lanceolata)的再生能力与土地利用强度的时间变化相关。在过去11年中,经历了较小环境条件变化的植物在刈割之后有较强的生殖生物量再生能力。因此,尽管平均的放牧和刈割强度可能不会对再生能力造成选择,但是土地利用所导致的环境异质性的时间稳定性可能会造成某些物种再生能力的进化。  相似文献   

11.
Many animals possess camouflage markings that reduce the riskof detection by visually hunting predators. A key aspect ofcamouflage involves mimicking the background against which theanimal is viewed. However, most animals experience a wide varietyof backgrounds and cannot change their external appearance tomatch each selectively. We investigate whether such animalsshould adopt camouflage specialized with respect to one backgroundor adopt a compromise between the attributes of multiple backgrounds.We do this using a model consisting of predators that hunt preyin patches of 2 different types, where prey adopt the camouflagethat minimizes individual risk of predation. We show that theoptimal strategy of the prey is affected by a number of factors,including the relative frequencies of the patch types, the traveltime of predators between patches, the mean prey number in eachpatch type, and the trade-off function between the levels ofcrypsis in the patch types. We find evidence that both specialistand compromise strategies of prey camouflage are favored underdifferent model parameters, indicating that optimal concealmentmay not be as straightforward as previously thought.  相似文献   

12.
Populations of the Bornean gliding lizard, Draco cornutus, differ markedly in the colour of their gliding membranes. They also differ in local vegetation type (mangrove forest versus lowland rainforest) and consequently, the colour of falling leaves (red and brown/black in mangrove versus green, brown and black in rainforest). We show that the gliding membranes of these lizards closely match the colours of freshly fallen leaves in the local habitat as they appear to the visual system of birds (their probable predators). Furthermore, gliding membranes more closely resembled colours of local fallen leaves than standing foliage or fallen leaves in the other population''s habitat. This suggests that the two populations have diverged in gliding membrane coloration to match the colours of their local falling leaves, and that mimicking falling leaves is an adaptation that functions to reduce predation by birds.  相似文献   

13.
    
Camouflage conceals animals from predators and depends on the interplay between the morphology and behaviour of animals. Behavioural elements of animals, such as the choice of a resting spot or posture, are important for effective camouflage, as well as the animals’ cryptic appearance. To date, the type of sensory input that mediates resting site choice remains poorly understood. Previously, we showed that bark‐like moths perceive and rely on bark structure to seek out cryptic resting positions and body orientations on tree trunks. In the present study, we investigated the sensory organs through which moths perceive the structure of bark when positioning their bodies in adaptive resting orientations. We amputated (or blocked) each one of the hypothetical sensory organs in moths (antennae, forelegs, wings, and eyes) and tested whether they were still able to perceive bark structure properly and adopt adaptive resting orientations. We found that visual information or stimulation is crucial for adaptively orienting their bodies when resting and tactile information from wings may play an additional role. The present study reveals multimodal information use by moths to achieve visual camouflage and highlights the sensory mechanism that is responsible for the adaptive behaviour of cryptic insects. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 900–904.  相似文献   

14.
    
Camouflage – adaptations that prevent detection and/or recognition – is a key example of evolution by natural selection, making it a primary focus in evolutionary ecology and animal behaviour. Most work has focused on camouflage as an anti‐predator adaptation. However, predators also display specific colours, patterns and behaviours that reduce visual detection or recognition to facilitate predation. To date, very little attention has been given to predatory camouflage strategies. Although many of the same principles of camouflage studied in prey translate to predators, differences between the two groups (in motility, relative size, and control over the time and place of predation attempts) may alter selection pressures for certain visual and behavioural traits. This makes many predatory camouflage techniques unique and rarely documented. Recently, new technologies have emerged that provide a greater opportunity to carry out research on natural predator–prey interactions. Here we review work on the camouflage strategies used by pursuit and ambush predators to evade detection and recognition by prey, as well as looking at how work on prey camouflage can be applied to predators in order to understand how and why specific predatory camouflage strategies may have evolved. We highlight that a shift is needed in camouflage research focus, as this field has comparatively neglected camouflage in predators, and offer suggestions for future work that would help to improve our understanding of camouflage.  相似文献   

15.
High-contrast markings, called distractive or dazzle markings, have been suggested to draw and hold the attention of a viewer, thus hindering detection or recognition of revealing prey characteristics, such as the body outline. We tested this hypothesis in a predation experiment with blue tits (Cyanistes caeruleus) and artificial prey. We also tested whether this idea can be extrapolated to the background appearance and whether high-contrast markings in the background would improve prey concealment. We compared search times for a high-contrast range prey (HC-P) and a low-contrast range prey (LC-P) in a high-contrast range background (HC-B) and a low-contrast range background (LC-B). The HC-P was more difficult to detect in both backgrounds, although it did not match the LC-B. Also, both prey types were more difficult to find in the HC-B than in the LC-B, in spite of the mismatch of the LC-P. In addition, the HC-P was more difficult to detect, in both backgrounds, when compared with a generalist prey, not mismatching either background. Thus, we conclude that distractive prey pattern markings and selection of microhabitats with distractive features may provide an effective way to improve camouflage. Importantly, high-contrast markings, both as part of the prey coloration and in the background, can indeed increase prey concealment.  相似文献   

16.
    
Countershading, or dorsal pigmentary darkening (DPD), describes a form of vertically varying coloration, where an animal typically has a dark dorsal surface and a paler ventral side, and is widespread among mammals, birds, reptiles, fishes and insects. DPD is thought to confer concealment from predators and, in terrestrial systems, there is good evidence that the dark–light transition in body coloration acts to conceal the body's shadow. Surprisingly few studies of DPD have been conducted in aquatic environments, and thus it is not known whether the mechanisms of concealment are similar to those that operate in terrestrial habitats. In this study, we determined the role of the light environment and predation risk in determining DPD in wild‐caught populations of a freshwater fish, the western rainbowfish (Melanotaenia australis). We also examined the underlying mechanisms of DPD for concealment by testing the assumptions of background matching and self‐shadow concealment. In a subsequent experiment, we determined whether any observed variation in DPD was maintained when the visual background was manipulated in the laboratory (to induce a change in body coloration). We found that both the amount of downwelling irradiance and the level of predation risk at the collection site affected skin darkness (dorsal, ventral and overall), whereas the ratio of dorsoventral coloration (DPD) was not affected by the parameters considered. The laboratory experiment revealed that fish changed their body coloration to match their visual background, and did so by altering the relative ratio of dorsoventral skin darkness. In contrast with research on terrestrial animals, our findings suggest that the most likely method of achieving crypsis is through background matching, rather than self‐shadow concealment. It is thus possible that differences in the optical characteristics of terrestrial and aquatic environments, and/or variation in the angles at which prey are typically viewed and attacked, have resulted in divergent mechanisms of using DPD to attain crypsis. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 915–928.  相似文献   

17.
    
Variation in seed traits is a well‐known phenomenon affecting plant ecology and evolution. Here we describe, for the first time, a bimodal colour pattern of individual seeds, proposing an adaptive explanation, using Pinus halepensis as a model. Pinus halepensis disperses its seeds either by wind on hot dry days, from regular cones, or after fires, mainly from serotinous cones. Post‐dispersal seeds are exposed to strong predation by passerine birds, making crypsis important for seed survival. Individual seeds from non‐serotinous cones have a bimodal colour pattern: one side is light brown and the other black, exposing only one colour when lying on the ground. Serotinous cones from most trees have seeds with similar bimodal colour patterns, whereas seeds from serotinous cones of some trees are light brown on both sides. The dark side provides the seed with better crypsis on dark soils, whereas the light‐brown side is better adapted to light‐coloured soils, and mainly to light‐grey ash‐covered soil, which is the natural post‐fire regeneration niche of P. halepensis. The relative reflection curves of the black and brown seed colours differ, and their calculated relative chromatic distance is 5: meaning that seed‐predating passerine birds see them differently, and probably prefer seeds that present a higher contrast against the soil background. We propose that such a bimodal colour pattern of individual seeds is probably an overlooked general phenomenon mainly linked to seed dispersal in post‐fire and other heterogeneous environments. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 271–278.  相似文献   

18.
    
Countershading is a gradient of colouration in which the illuminated dorsal surfaces are darker than the unilluminated ventral surface. It is widespread in the animal kingdom and endows the body with a more uniform colour to decrease the chance of detection by predators. Although recent empirical studies support the theory of survival advantage conferred by countershading, this camouflage strategy has evolved only in some of the cryptic animals, and our understanding of the factors that affect the evolution of countershading is limited. This study examined the association between body size and countershading using lepidopteran larvae (caterpillars) as a model system. Specifically, we predicted that countershading may have selectively evolved in large-sized species among cryptic caterpillars if (1) large size constrains camouflage which facilitates the evolution of a trait reinforcing their crypsis and (2) the survival advantage of countershading is size-dependent. Phylogenetic analyses of four different lepidopteran families (Saturniidae, Sphingidae, Erebidae, and Geometridae) suggest equivocal results: countershading was more likely to be found in larger species in Saturniidae but not in the other families. The field predation experiment assuming avian predators did not support size-dependent predation in countershaded prey. Collectively, we found only weak evidence that body size is associated with countershading in caterpillars. Our results suggest that body size is not a universal factor that has shaped the interspecific variation in countershading observed in caterpillars.  相似文献   

19.
    
The existence of melanistic (black) color forms in many species represents interesting model systems that have played important roles for our understanding of selective processes, evolution of adaptations, and the maintenance of variation. A recent study reported on rapid evolutionary shifts in frequencies of the melanistic forms in replicated populations of Tetrix subulata pygmy grasshoppers; the incidence of the melanistic form was higher in recently burned areas with backgrounds blackened by fire than in nonburned areas, and it declined over time in postfire environments. Here, we tested the hypothesis that the frequency shifts of the black color variant were driven, at least in part, by changes in the selective regime imposed by visual predators. To study detectability of the melanistic form, we presented human “predators” with images of black grasshoppers and samples of the natural habitat on computer screens. We demonstrate that the protective value of black coloration differs between burnt and nonburnt environments and gradually increases in habitats that have been more blackened by fire. These findings support the notion that a black color pattern provides improved protection from visually oriented predators against blackened backgrounds and implicate camouflage and predation as important drivers of fire melanism in pygmy grasshoppers.  相似文献   

20.
    
Disruptive coloration breaks up the shape and destroys the outline of an object, hindering detection. The principle was first suggested approximately a century ago, but, although research has significantly increased, the field remains conceptually unstructured and no unambiguous definition exists. This has resulted in variable use of the term, making it difficult to formulate testable hypotheses that are comparable between studies, slowing down advancement in this field. Related to this, a range of studies do not effectively distinguish between disruption and other forms of camouflage. Here, we give a formal definition of disruptive coloration, reorganize a range of sub-principles involved in camouflage and argue that five in particular are specifically related to disruption: differential blending; maximum disruptive contrast; disruption of surface through false edges; disruptive marginal patterns; and coincident disruptive coloration. We discuss how disruptive coloration can be optimized, how it can relate to other forms of camouflage markings and where future work is particularly needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号