首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of wnt/β‐catenin signalling in the response to acute myocardial infarction (AMI) remains controversial. The membrane receptor adaptor protein Disabled‐2 (Dab2) is a tumour suppressor protein and has a critical role in stem cell specification. We recently demonstrated that down‐regulation of Dab2 regulates cardiac protein expression and wnt/β‐catenin activity in mesenchymal stem cells (MSC) in response to transforming growth factor‐β1 (TGF‐β1). Although Dab2 expression has been shown to have effects in stem cells and tumour suppression, the molecular mechanisms regulating this expression are still undefined. We identified putative binding sites for miR‐145 in the 3′‐UTR of Dab2. In MSC in culture, we observed that TGF‐β1 treatment led to rapid and sustained up‐regulation of pri–miR‐145. Through gain and loss of function studies we demonstrate that miR‐145 up‐regulation was required for the down‐regulation of Dab2 and increased β‐catenin activity in response to TGF‐β1. To begin to define how Dab2 might regulate wnt/β‐catenin in the heart following AMI, we quantified myocardial Dab2 as a function of time after left anterior descending ligation. There was no significant Dab2 expression in sham‐operated myocardium. Following AMI, Dab2 levels were rapidly up‐regulated in cardiac myocytes in the infarct border zone. The increase in cardiac myocyte Dab2 expression correlated with the rapid and sustained down‐regulation of myocardial pri–miR‐145 expression following AMI. Our data demonstrate a novel and critical role for miR‐145 expression as a regulator of Dab2 expression and β‐catenin activity in response to TGF‐β1 and hypoxia.  相似文献   

2.
In our search to improve the stability and cellular absorption of tea polyphenols, we synthesized 3‐O‐(3,4,5‐trimethoxybenzoyl)‐(?)‐epicatechin (TMECG), which showed high antiproliferative activity against melanoma. TMECG downregulates dihydrofolate reductase (DHFR) expression in melanoma cells and we detail the sequential mechanisms that result from this even. TMECG is specifically activated in melanoma cells to form a stable quinone methide (TMECG‐QM). TMECG‐QM has a dual action on these cells. First, it acts as a potent antifolate compound, disrupting folate metabolism and increasing intracellular oxidized folate coenzymes, such as dihydrofolate, which is a non‐competitive inhibitor of dihydropterine reductase, an enzyme essential for tetrahydrobiopterin (H4B) recycling. Such inhibition results in H4B deficiency, endothelial nitric oxide synthase (eNOS) uncoupling and superoxide production. Second, TMECG‐QM acts as an efficient superoxide scavenger and promotes intra‐cellular H2O2 accumulation. Here, we present evidence that TMECG markedly reduces melanoma H4B and NO bioavailability and that TMECG action is abolished by the eNOS inhibitor Nω‐nitro‐L ‐arginine methyl ester or the H2O2 scavenger catalase, which strongly suggests H2O2‐dependent DHFR downregulation. In addition, the data presented here indicate that the simultaneous targeting of important pathways for melanoma survival, such as the folate cycle, H4B recycling, and the eNOS reaction, could represent an attractive strategy for fighting this malignant skin pathology. J. Cell. Biochem. 110: 1399–1409, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
5.
In this study the interaction mechanism between newly synthesized 4‐(3‐acetyl‐5‐(acetylamino)‐2‐methyl‐2, 3‐dihydro‐1,3,4‐thiadiazole‐2‐yl) phenyl benzoate (thiadiazole derivative) anticancer active drug with calf thymus DNA was investigated by using various optical spectroscopy techniques along with computational technique. The absorption spectrum shows a clear shift in the lower wavelength region, which may be due to strong hypochromic effect in the ctDNA and the drug. The results of steady state fluorescence spectroscopy show that there is static quenching occurring while increasing the thiadiazole drug concentration in the ethidium bromide‐ctDNA system. Also the binding constant (K), thermo dynamical parameters of enthalpy change (ΔH°), entropy change (ΔS°) Gibbs free energy change (ΔG°) were calculated at different temperature (293 K, 298 K) and the results are in good agreement with theoretically calculated MMGBSA binding analysis. Time resolved emission spectroscopy analysis clearly explains the thiadiazole derivative competitive intercalation in the ethidium bromide‐ctDNA system. Further, molecular docking studies was carried out to understand the hydrogen bonding and hydrophobic interaction between ctDNA and thiadiazole derivative molecule. In addition the docking and molecular dynamics charge distribution analysis was done to understand the internal stability of thiadiazole derivative drug binding sites of ctDNA. The global reactivity of thiadiazole derivative such as electronegativity, electrophilicity and chemical hardness has been calculated.  相似文献   

6.
In continuation of our previous research on the development of novel pyrazole‐4‐carboxamide with potential antifungal activity, compound SCU2028 , namely N‐[2‐[(3‐chlorophenyl)amino]phenyl]‐3‐(difluoromethyl)‐1‐methyl‐1H‐pyrazole‐4‐carboxamide, was synthesized by new method, structurally characterized by IR, HR‐ESI‐MS, 1H‐ and 13C‐NMR spectra and further identified by single‐crystal X‐ray diffraction. In pot tests, compound SCU2028 showed good in vivo antifungal activity against Rhizoctonia solani (R. solani) and IC50 value of it was 7.48 mg L?1. In field trials, control efficacy of compound SCU2028 at 200 g.a.i. ha?1 was 42.30 % on the 7th day after the first spraying and 68.10 % on the 14th day after the second spraying, only slightly lower than that of thifluzamide (57.20 % and 71.40 %, respectively). Further in vitro inhibitory activity showed inhibitory ability of compound SCU2028 was 45‐fold higher than that of bixafen and molecular docking of compound SCU2028 to SDH predicted its binding orientation in the active site of the target protein SDH. These results suggested that compound SCU2028 was a potential fungicide for control of rice sheath blight.  相似文献   

7.
8.
Aims: To provide comparative genome sequence data for two related model strains of Staphylococcus aureus (SH1000 and 8325‐4) that are used extensively in laboratory research. Methods and Results: Comparative genome sequencing was used to identify genetic differences between Staph. aureus SH1000 and the fully genome‐sequenced ancestral strain, Staph. aureus NCTC 8325. PCR amplification and DNA sequencing were employed to determine which of the genetic polymorphisms identified were also present in Staph. aureus 8325‐4, a direct derivative of 8325 and the parent strain of SH1000. Aside from known genetic differences between these strains, Staph. aureus SH1000 harboured 15 single‐nucleotide polymorphisms compared with 8325 (of which 12 were also found in 8325‐4), and a 63‐bp deletion upstream of the spa gene not present in either 8325 or 8325‐4. Conclusions: Staphylococcus aureus SH1000 and 8325‐4 contain a number of genetic polymorphisms relative to the progenitor strain of the lineage (8325) and to each other. Significance and Impact of the Study: The comparative genome sequences of SH1000 and 8325‐4 presented here define the genotypes of two key strains in staphylococcal laboratory research and reveal genetic polymorphisms that may impact their phenotypic properties.  相似文献   

9.
  • Heat stress decreases crop growth and yield worldwide. Spermidine (Spd) is a small aliphatic amine and acts as a ubiquitous regulator for plant growth, development and stress tolerance.
  • Objectives of this study were to determine effects of exogenous Spd on changes in endogenous polyamine (PA) and γ‐aminobutyric acid (GABA) metabolism, oxidative damage, senescence and heat shock protein (HSP) expression in white clover subjected to heat stress. Physiological and molecular methods, including colorimetric assay, high performance liquid chromatography and qRT‐PCR, were applied.
  • Results showed that exogenous Spd significantly alleviated heat‐induced stress damage. Application of Spd not only increased endogenous putrescine, Spd, spermine and total PA accumulation, but also accelerated PA oxidation and improved glutamic acid decarboxylase activity, leading to GABA accumulation in leaves under heat stress. The Spd-pretreated white clover maintained a significantly higher chlorophyll (Chl) content than untreated plants under heat stress, which could be related to the roles of Spd in up‐regulating genes encoding Chl synthesis (PBGD and Mg‐CHT) and maintaining reduced Chl degradation (PaO and CHLASE) during heat stress. In addition, Spd up‐regulated HSP70, HSP70B and HSP70‐5 expression, which might function in stabilizing denatured proteins and helping proteins to folding correctly in white clover under high temperature stress.
  • In summary, exogenous Spd treatment improves the heat tolerance of white clover by altering endogenous PA and GABA content and metabolism, enhancing the antioxidant system and HSP expression and slowing leaf senescence related to an increase in Chl biosynthesis and a decrease in Chl degradation during heat stress.
  相似文献   

10.
The 3'- and 5'-terminal nucleotides of the genome segments of an influenza A, B, and C virus were identified by directly sequencing viral RNA using two different sequencing techniques. A high degree of conservation at the 3' ends as well as at the 5' ends was observed among the genome segments of each virus and among the segments of the three different virus types. A uridine-rich region was observed from positions 17 through 22 at the 5' end of each segment. Moreover, the conserved 3' and 5'-terminal sequences showed partial and inverted complementarity. This feature results in very similar sequences at the 3' ends of the plus and minus strand RNAs and may also enable single-strand RNAs of influenza virus to form “panhandle” structures. Inverted complementary repeats may play an important role in initiation of viral RNA replication.  相似文献   

11.
Microbial β‐1,4‐galactanases are glycoside hydrolases belonging to family 53, which degrade galactan and arabinogalactan side chains in the hairy regions of pectin, a major plant cell wall component. They belong to the larger clan GH‐A of glycoside hydrolases, which cover many different poly‐ and oligosaccharidase specificities. Crystallographic complexes of Bacillus licheniformis β‐1,4‐galactanase and its inactive nucleophile mutant have been obtained with methyl‐β(1→4)‐galactotetraoside, providing, for the first time, information on substrate binding to the aglycone side of the β‐1,4‐galactanase substrate binding groove. Using the experimentally determined subsites as a starting point, a β(1→4)‐galactononaose was built into the structure and subjected to molecular dynamics simulations giving further insight into the residues involved in the binding of the polysaccharide from subsite ?4 to +5. In particular, this analysis newly identified a conserved β‐turn, which contributes to subsites ?2 to +3. This β‐turn is unique to family 53 β‐1,4‐galactanases among all clan GH‐A families that have been structurally characterized and thus might be a structural signature for endo‐β‐1,4‐galactanase specificity. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Alzheimer's disease (AD) is the most common form of dementia and displays the characteristics of chronic neurodegenerative disorders; amyloid plaques (AP) that contain amyloid β‐protein (Aβ) accumulate in AD, which is also characterized by tau phosphorylation. Epidemiological evidence has demonstrated that long‐term treatment with nonsteroidal anti‐inflammatory drugs (NSAIDs) markedly reduces the risk of AD by inhibiting the expression of cyclooxygenase 2 (COX‐2). Although the levels of COX‐2 and its metabolic product prostaglandin (PG)E2 are elevated in the brain of AD patients, the mechanisms for the development of AD remain unknown. Using human‐ or mouse‐derived glioblastoma and neuroblastoma cell lines as model systems, we delineated the signaling pathways by which COX‐2 mediates the reciprocal regulation of interleukin‐1β (IL‐1β) and Aβ between glial and neuron cells. In glioblastoma cells, COX‐2 regulates the synthesis of IL‐1β in a PGE2‐dependent manner. Moreover, COX‐2‐derived PGE2 signals the activation of the PI3‐K/AKT and PKA/CREB pathways via cyclic AMP; these pathways transactivate the NF‐κB p65 subunit via phosphorylation at Ser 536 and Ser 276, leading to IL‐1β synthesis. The secretion of IL‐1β from glioblastoma cells in turn stimulates the expression of COX‐2 in human or mouse neuroblastoma cells. Similar regulatory mechanisms were found for the COX‐2 regulation of BACE‐1 expression in neuroblastoma cells. More importantly, Aβ deposition mediated the inflammatory response of glial cells via inducing the expression of COX‐2 in glioblastoma cells. These findings not only provide new insights into the mechanisms of COX‐2‐induced AD but also initially define the therapeutic targets of AD.  相似文献   

13.
14.
Breast Cancer (BCa) is the most often diagnosed cancer among women who were in the late 1940’s. Breast cancer growth is largely dependent on the expression of estrogen and progesterone receptor. Breast cancer cells may have one, both, or none of these receptors. The treatment for breast cancer may involve surgery, hormonal therapy (Tamoxifen, an aromatase inhibitor, etc.) and oral chemotherapeutic drugs. The molecular docking technique reported the findings on the potential binding modes of the 2‐(2‐bromo‐3‐nitrophenyl)‐5‐phenyl‐1,3,4‐oxadiazole derivatives with the estrogen receptor (PDB ID: 3ERT). The 1,3,4‐oxadiazole derivatives 4a – 4j have been synthesized and described by spectroscopic method. 2‐(2‐Bromo‐6‐nitrophenyl)‐5‐(4‐bromophenyl)‐1,3,4‐oxadiazole ( 4c ) was reconfirmed by single‐crystal XRD. All the compounds have been tested in combination with generic Imatinib pharmaceutical drug against breast cancer cell lines isolated from Caucasian woman MCF‐7, MDA‐MB‐453 and MCF‐10A non‐cancer cell lines. The compounds with the methoxy (in 4c ) and methyl (in 4j ) substitution were shown to have significant cytotoxicity, with 4c showing dose‐dependent activation and decreased cell viability. The mechanism of action was reported by induced apoptosis and tested by a DNA enzyme inhibitor experiment (ELISA) for Methyl Transferase. Molecular dynamics simulations were made for hit molecule 4c to study the stability and interaction of the protein?ligand complex. The toxicity properties of ADME were calculated for all the compounds. All these results provide essential information for further clinical trials.  相似文献   

15.
The 4‐nitro‐1H‐indole‐carboxaldehyde (NICA) molecule was characterized experimentally using FT‐IR, FT‐Raman and UV‐Vis spectra, and it was studied theoretically using DFT calculations. The optimized structure of the NICA molecule was determined by DFT calculations using B3LYP functional with cc‐pVTZ basis set. The electron localization function (ELF) and local orbital localizer (LOL) studies were performed to visualize the electron delocalization in the molecule. The experimental and theoretical wavenumbers of the title molecule were assigned using VEDA 4.0 program. The charge delocalization and stability of the title molecule were investigated using natural bond orbital (NBO) analysis. Frontier molecular orbitals (FMOs) and related molecular properties were calculated. UV‐Vis spectrum was calculated theoretically and validated experimentally. The reactive sites of the molecule were studied from the MEP surface and Fukui function analysis. The molecular docking analysis reveals that the NICA ligand shows better inhibitory activity against RAS, which causes lung cancer. The in vitro cytotoxic activity of the molecule against human lung cancer cell lines (A549) was determined by MTT assay. Thus, the NICA molecule can be used as a potential candidate for the development of the drug against lung cancer.  相似文献   

16.
Population divergence in geographic isolation is due to a combination of factors. Natural and sexual selection may be important in shaping patterns of population differentiation, a pattern referred to as ‘isolation by adaptation’ (IBA). IBA can be complementary to the well‐known pattern of ‘isolation by distance’ (IBD), in which the divergence of closely related populations (via any evolutionary process) is associated with geographic isolation. The barn swallow Hirundo rustica complex comprises six closely related subspecies, where divergent sexual selection is associated with phenotypic differentiation among allopatric populations. To investigate the relative contributions of selection and geographic distance to genome‐wide differentiation, we compared genotypic and phenotypic variation from 350 barn swallows sampled across eight populations (28 pairwise comparisons) from four different subspecies. We report a draft whole‐genome sequence for H. rustica, to which we aligned a set of 9493 single nucleotide polymorphisms (SNPs). Using statistical approaches to control for spatial autocorrelation of phenotypic variables and geographic distance, we find that divergence in traits related to migratory behaviour and sexual signalling, as well as geographic distance, together explain over 70% of genome‐wide divergence among populations. Controlling for IBD, we find 42% of genomewide divergence is attributable to IBA through pairwise differences in traits related to migratory behaviour and sexual signalling alone. By (i) combining these results with prior studies of how selection shapes morphological differentiation and (ii) accounting for spatial autocorrelation, we infer that morphological adaptation plays a large role in shaping population‐level differentiation in this group of closely related populations.  相似文献   

17.
18.
Parkinson's disease (PD) is generally sporadic but a number of genetic diseases have parkinsonism as a clinical feature. Two dominant genes, α‐synuclein (SNCA) and leucine‐rich repeat kinase 2 (LRRK2), are important for understanding inherited and sporadic PD. SNCA is a major component of pathologic inclusions termed Lewy bodies found in PD. LRRK2 is found in a significant proportion of PD cases. These two proteins may be linked as most LRRK2 PD cases have SNCA‐positive Lewy bodies. Mutations in both proteins are associated with toxic effects in model systems although mechanisms are unclear. LRRK2 is an intracellular signaling protein possessing both GTPase and kinase activities that may contribute to pathogenicity. A third protein, tau, is implicated as a risk factor for PD. We discuss the potential relationship between these genes and suggest a model for PD pathogenesis where LRRK2 is upstream of pathogenic effects through SNCA, tau, or both proteins.  相似文献   

19.
The trafficking of membrane proteins is dynamic and contributes to the homeostatic control of their cell surface localization and their function in signal transduction. Therefore, it is important to have sensitive techniques that allow measurement of surface expression. The current assays for such measurement are time consuming and low throughput. Here, we describe a quantitative, one‐step and potentially high‐throughput assay, using the β‐lactamase enzyme (βlac) as a reporter, for measurement of surface expression of proteins. In this assay, the βlac is fused to the extracellular portion of the plasma membrane protein of interest. To selectively measure surface expression, a cell‐impermeable substrate of βlac, nitrocefin, is used. We demonstrate the utility of the βlac assay using well‐established paradigms of internalization and molecular chaperoning, applied to two G‐protein‐coupled receptors and a monoamine transporter. Considering its simplicity and low cost, this assay could become a standard technique in the measurement of protein surface expression .   相似文献   

20.
A fundamental question in protein science is what is the intrinsic propensity for an amino acid to be in an α-helix, β-sheet, or other backbone dihedral angle (-ψ) conformation. This question has been hotly debated for many years because including all protein crystal structures from the protein database, increases the probabilities for α-helical structures, while experiments on small peptides observe that β-sheet-like conformations predominate. We perform molecular dynamics (MD) simulations of a hard-sphere model for Ala dipeptide mimetics that includes steric interactions between nonbonded atoms and bond length and angle constraints with the goal of evaluating the role of steric interactions in determining protein backbone conformational preferences. We find four key results. For the hard-sphere MD simulations, we show that (1) β-sheet structures are roughly three and half times more probable than α-helical structures, (2) transitions between α-helix and β-sheet structures only occur when the backbone bond angle τ (N–Cα–C) is greater than 110°, and (3) the probability distribution of τ for Ala conformations in the “bridge” region of-ψ space is shifted to larger angles compared to other regions. In contrast, (4) the distributions obtained from Amber and CHARMM MD simulations in the bridge regions are broader and have increased τ compared to those for hard sphere simulations and from high-resolution protein crystal structures. Our results emphasize the importance of hard-sphere interactions and local stereochemical constraints that yield strong correlations between -ψ conformations and τ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号