首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on chelation‐enhanced fluorescence, a new fluorescent coumarin derivative probe 3(1‐(7‐hydroxy‐4‐methylcoumarin)ethylidene)hydrazinecarbodithioate for Hg2+, Ag+ and Ag nanoparticles is reported. Fluorescent probe acts as a rapid and highly selective “off–on” fluorescent probe and fluorescence enhancement by factors 5 to12 times was observed upon selective complexation with Hg2+, Ag+ and Ag nanoparticles. The molar ratio plots indicated the formation of 1:1 complexes between Hg2+ and Ag+ with the probe. The linear response range covers a concentration range 0.1 × 10–5–1.9 × 10–5 mol/L, 0.1 × 10–5–2.3 × 10–5 mol/L and 0.146 × 10–12–2.63 × 10–12 mol/L for Hg2+, Ag+ and Ag nanoparticles, respectively. The interference effect of some anions and cations was also tested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A new near‐infrared fluorescence sensor PDI‐PD for Ag+ ions was successfully prepared and its structure characterized by 1H nuclear magnetic resonance (NMR), 13C NMR and high‐resolution mass spectrometry; matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (HRMS MALDI‐TOF). The probe exhibited rapid, sensitive, and selective two‐channel fluorescence responses towards Ag+ ions and protons. The probe has a marked high binding affinity and high sensitivity for Ag+, with a detection limit of 1.4 × 10?6 M. An approximately five‐fold enhanced core emission at 784 nm was attributed to fluorescence resonance energy transfer (FRET). The enhanced core emission of the probe with Ag+ ions based on photo‐induced electron transfer and FRET is discussed. In addition, the probe presented a visible colour change. All experimental results demonstrated that PDI‐PD is an efficient tool for the selective, sensitive and rapid detection of Ag+ ions and protons using two‐channel fluorescence responses.  相似文献   

3.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

4.
An easy hydrothermal synthesis strategy was applied to synthesize green‐yellow emitting nitrogen‐doped carbon dots (N‐CDs) using 1,2‐diaminobenzene as the carbon source, and dicyandiamide as the dopant. The nitrogen‐doped CDs resulted in improvement in the electronic characteristics and surface chemical activities. N‐CDs exhibited bright fluorescence emission and could response to Ag+ selectively and sensitively. Other ions produced nearly no interference. A N‐CDs based fluorescent probe was then applied to sensitively determine Ag+ with a detection limit of 5 × 10?8 mol/L. The method was applied to the determination of Ag+ dissolved in water. Finally, negligibly cytotoxic, excellently biocompatibile, and highly fluorescent carbon dots were applied for HepG2 cell imaging and the quenched fluorescence by adding Ag+, which indicated its potential applications.  相似文献   

5.
Lili Li  Hui Li  Gang Liu  Shouzhi Pu 《Luminescence》2017,32(8):1473-1481
A new photochromic diarylethene based on benzophenone hydrazone has been synthesized. Its photochromic and fluorescent properties changed upon alternating irradiation with UV /Vis light and adding Cu2+/EDTA in methanol, which showed that the diarylethene could be served as a colorimetric and fluorescent chemosensor for selective detection of Cu2+ based on internal charge transfer processes. The colorimetric and turn‐off fluorescent selective detection of Cu2+ was attributed to the 2:1 complex of the diarylethene and Cu2+. The binding constant (Ka ) was 1.53 × 104 L mol?1 and the limit of detection of the diarylethene for Cu2+ was calculated to be 1.45 × 10?6 mol L?1. In addition, the metal‐responsive photochromic behavior of diarylethene was applied successfully to the construction of a molecular logic circuit.  相似文献   

6.
The reduction of nuclear fast red (NFR) stain by sodium tetrahydroboron was catalyzed in the presence of silver ions (Ag+). The fluorescence properties of reduced NFR differed from that of NFR. The product showed fluorescence emission at 480 nm with excitation at 369 nm. Furthermore, the fluorescence intensity of the mixture increased strongly in the presence of Ag+ and Britton–Robinson buffer at pH 4.78. There was a good linear relationship between increased fluorescence intensity (ΔI) and Ag+ concentration in the range 5.0 × 10?9 to 5.0 × 10?8 M. The correlation coefficient was 0.998, and the detection limit (3σ/k) was 1.5 × 10?9 M. The colour of the reaction system changed with variation in Ag+ concentration over a wide range. Based on the colour change, a visual semiquantitative detection method for recognition and sensing of Ag+ was developed for the range 1.0 × 10?8 to 5.0 × 10?4 M, with an indicator that was visible to the naked eye. Therefore, a sensitive, simple method for determination of Ag+ was developed. Optimum conditions for Ag+ detection, the effect of other ions and the analytical application of Ag+ detection of synthesized sample were investigated.  相似文献   

7.
Ultrastructural and physiological responses of Prorocentrum mariae-lebouriae (Parke & Ballantine) Faust are reported for cultures maintained at growth irradiances (Ig) ranging from 20.6 to 0.3 E m?2.d?1 and following downward shifts in light intensity. We tested the hypothesis that Prorocentrum grown under light regimes that elicit different responses in photosynthesis and pigmentation exhibit distinctive cell ultrastructures. Prorocentrum from high-light conditions had high saturation intensities for photosynthesis (Ik) and low levels of Chl a, Chl c and peridinin-cell?1 These cultures were morphologically distinguished by a large starch volume fraction (Vv), small chloroplast Vv and fewer thylakoids lamella?1. Ik values were lower and pigment concentrations higher in low-light treatments, and cells showed reduced starch Vv, large chloroplast Vv, and higher numbers of thylakoids · lamella ?1. Cells grown under extremely low-light conditions appeared stressed as indicated by the absence of starch reserves and the presence of large vacuoles within the cytoplasm. Results for presence of large vacuoles within the cytoplasm. Results for quantiative electron microscopy, photosynthesis-irradiance (P-I) relations and cell pigmentation indicate that photoadaptation in P. mariae-lebouriae involves a strategy that encompasses changes in both the “size” and “number” of photosynthetic units.  相似文献   

8.
We studied the seasonal variation in carbon dioxide, water vapour and energy fluxes in a broad‐leafed semi‐arid savanna in Southern Africa using the eddy covariance technique. The open woodland studied consisted of an overstorey dominated by Colophospermum mopane with a sparse understorey of grasses and herbs. Measurements presented here cover a 19‐month period from the end of the rainy season in March 1999 to the end of the dry season September 2000. During the wet season, sensible and latent heat fluxes showed a linear dependence on incoming solar radiation (I) with a Bowen ratio (β) typically just below unity. Although β was typically around 1 at low incoming solar radiation (150 W m?2) during the dry season, it increased dramatically with I, typically being as high as 4 or 5 around solar noon. Thus, under these water‐limited conditions, almost all available energy was dissipated as sensible, rather than latent heat. Marked spikes of CO2 release occurred at the onset of the rainfall season after isolated rainfall events and respiration dominated the balance well into the rainfall season. During this time, the ecosystem was a constant source of CO2 with an average flux of 3–5 μmol m?2 s?1 to the atmosphere during both day and night. But later in the wet season, for example, in March 2000 under optimal soil moisture conditions, with maximum leaf canopy development (leaf area index 0.9–1.3), the peak ecosystem CO2 influx was as much as 10 μmol m?2 s?1. The net ecosystem maximum photosynthesis at this time was estimated at 14 μmol m?2 s?1, with the woodland ecosystem a significant sink for CO2. During the dry season, just before leaf fall in August, maximum day‐ and night‐time net ecosystem fluxes were typically ?3 μmol m?2 s?1 and 1–2 μmol m?2 s?1, respectively, with the ecosystem still being a marginal sink. Over the course of 12 months (March 1999–March 2000), the woodland was more or less carbon neutral, with a net uptake estimated at only about 1 mol C m?2 yr?1. The annual net photosynthesis (gross primary production) was estimated at 32.2 mol m?2 yr?1.  相似文献   

9.
In this work, plasmonic Au/SnO2/g‐C3N4 (Au/SO/CN) nanocomposites have been successfully synthesized and applied in the H2 evolution as photocatalysts, which exhibit superior photocatalytic activities and favorable stability without any cocatalyst under visible‐light irradiation. The amount‐optimized 2Au/6SO/CN nanocomposite capable of producing approximately 770 μmol g?1 h?1 H2 gas under λ > 400 nm light illumination far surpasses the H2 gas output of SO/CN (130 μmol g?1), Au/CN (112 μmol g?1 h?1), and CN (11 μmol g?1 h?1) as a contrast. In addition, the photocatalytic activity of 2Au/6SO/CN maintains unchanged for 5 runs in 5 h. The enhanced photoactivity for H2 evolution is attributed to the prominently promoted photogenerated charge separation via the excited electron transfer from plasmonic Au (≈520 nm) and CN (470 nm > λ > 400 nm) to SO, as indicated by the surface photovoltage spectra, photoelectrochemical IV curves, electrochemical impedance spectra, examination of formed hydroxyl radicals, and photocurrent action spectra. Moreover, the Kelvin probe test indicates that the newly aligned conduction band of SO in the fabricated 2Au/6SO/CN is indispensable to assist developing a proper energy platform for the photocatalytic H2 evolution. This work distinctly provides a feasible strategy to synthesize highly efficient plasmonic‐assisted CN‐based photocatalysts utilized for solar fuel production.  相似文献   

10.
A novel colorimetric probe RP1 was synthesized using rhodamine derivatives and heterocyclic compounds for the purpose of detecting Cu2+. RP1 showed good selectivity, high sensitivity and affinity toward Cu2+ over other competing ions in CH3OH–H2O (1/1, v/v) solution. Absorbance intensity showed a good linear fit between probe R1 and Cu2+ over the concentration range 1–8 μM and the association constant was also calculated to be 1.145 × 105 M?1. The sensing mechanism was deduced using Job's plot, Fourier transform infrared spectroscopy, and density functional theory studies. In addition, the colorimetric experiment indicated that probe RP1 could be made into test paper to detect Cu2+ with a colour change from colourless to pink.  相似文献   

11.
1. Excretion of nitrogen (N) and phosphorus (P) is a direct and potentially important role for aquatic consumers in nutrient cycling that has recently garnered increased attention. The ecosystem‐level significance of excreted nutrients depends on a suite of abiotic and biotic factors, however, and few studies have coupled measurements of excretion with consideration of its likely importance for whole‐system nutrient fluxes. 2. We measured rates and ratios of N and P excretion by shrimps (Xiphocaris elongata and Atya spp.) in two tropical streams that differed strongly in shrimp biomass because a waterfall excluded predatory fish from one site. We also made measurements of shrimp and basal resource carbon (C), N and P content and estimated shrimp densities and ecosystem‐level N and P excretion and uptake. Finally, we used a 3‐year record of discharge and NH4‐N concentration in the high‐biomass stream to estimate temporal variation in the distance required for excretion to turn over the ambient NH4‐N pool. 3. Per cent C, N, and P body content of Xiphocaris was significantly higher than that of Atya. Only per cent P body content showed significant negative relationships with body mass. C:N of Atya increased significantly with body mass and was higher than that of Xiphocaris. N : P of Xiphocaris was significantly higher than that of Atya. 4. Excretion rates ranged from 0.16–3.80 μmol NH4‐N shrimp?1 h?1, 0.23–5.76 μmol total dissolved nitrogen (TDN) shrimp?1 h?1 and 0.002–0.186 μmol total dissolved phosphorus (TDP) shrimp?1 h?1. Body size was generally a strong predictor of excretion rates in both taxa, differing between Xiphocaris and Atya for TDP but not NH4‐N and TDN. Excretion rates showed statistically significant but weak relationships with body content stoichiometry. 5. Large between‐stream differences in shrimp biomass drove differences in total excretion by the two shrimp communities (22.3 versus 0.20 μmol NH4‐N m?2 h?1, 37.5 versus 0.26 μmol TDN m?2 h?1 and 1.1 versus 0.015 μmol TDP m?2 h?1), equivalent to 21% and 0.5% of NH4‐N uptake and 5% and <0.1% of P uptake measured in the high‐ and low‐biomass stream, respectively. Distances required for excretion to turn over the ambient NH4‐N pool varied more than a hundredfold over the 3‐year record in the high‐shrimp stream, driven by variability in discharge and NH4‐N concentration. 6. Our results underscore the importance of both biotic and abiotic factors in controlling consumer excretion and its significance for nutrient cycling in aquatic ecosystems. Differences in community‐level excretion rates were related to spatial patterns in shrimp biomass dictated by geomorphology and the presence of predators. Abiotic factors also had important effects through temporal patterns in discharge and nutrient concentrations. Future excretion studies that focus on nutrient cycling should consider both biotic and abiotic factors in assessing the significance of consumer excretion in aquatic ecosystems.  相似文献   

12.
Ag+ resistance was initially found on the Salmonella enetrica serovar Typhimurium multi‐resistance plasmid pMG101 from burns patients in 1975. The putative model of Ag+ resistance, encoded by the sil operon from pMG101, involves export of Ag+ via an ATPase (SilP), an effluxer complex (SilCFBA) and a periplasmic chaperon of Ag+ (SilE). SilE is predicted to be intrinsically disordered. We tested this hypothesis using structural and biophysical studies and show that SilE is an intrinsically disordered protein in its free apo‐form but folds to a compact structure upon optimal binding to six Ag+ ions in its holo‐form. Sequence analyses and site‐directed mutagenesis established the importance of histidine and methionine containing motifs for Ag+‐binding, and identified a nucleation core that initiates Ag+‐mediated folding of SilE. We conclude that SilE is a molecular sponge for absorbing metal ions.  相似文献   

13.
Many laboratories have solely used the Wilson isolate to physiologically characterize the harmful algal bloom (HAB) dinoflagellate Karenia brevis (C. C. Davis) G. Hansen et Moestrup. However, analysis of one isolate may lead to misinterpretations when extrapolating measurements to field populations. In this study, pulse‐amplitude‐modulated chlorophyll fluorometer (PAM‐FL) relative electron transport rate (ETR), Fv/Fm, and chl were compared with traditional techniques, such as 14C photosynthesis versus irradiance (P–E) curves, DCMU [3‐(3′,4′‐dichlorophenyl)‐1,1‐dimethyl urea] Fv/Fm, and extracted chl. The DCMU and PAM‐FL values of Fv/Fm (r2 = 0.51) and chl (r2 = 0.58) were in good agreement. There was no correlation between 14C and PAM‐FL α, Pmax, and β parameters because PAM‐FL ETR was only a relative measurement. The PAM‐FL techniques were then used to investigate P–E curves, quantum yield of PSII (Fv/Fm), and chl from 10 K. brevis isolates to determine whether one or all isolates would better represent the species. Comparisons were made with a radial photosynthetron, which allowed for controlled conditions of light and temperature. Isolate α, Pmax, and β varied between 0.097 and 0.204 μmol e? · m?2 · s?1 · (μmol quanta · m?2 · s?1)?1, 80.41 and 241 μmol e? · m?2 · s?1, and 0.005 and 0.160 μmol e? · m?2 · s?1 · (μmol quanta · m?2 · s?1)?1, respectively. Either carbon limitation and/or bacterial negative feedback were implicated as the cause of the P–E parameter variability. Furthermore, these results directly contradicted some literature suggestions that K. brevis is a low‐light‐adapted dinoflagellate. Results showed that K. brevis was more than capable of utilizing and surviving in light conditions that may be present on cloudless days off Florida.  相似文献   

14.
Herein, we report the selective binding of Ag+ ion by the anthracene‐based chalcone receptor 1. Receptor 1 behaves as a selective and sensitive chemosensor for the recognition of Ag+ over other heavy and transition metal ions without any interference and is capable of detecting the metal ion down to 0.15 × 10?6 M. Receptor 1 on binding with Ag+ ions exhibits a ratiometric fluorescence enhancement, which is due to the inhibition of photoinduced electron transfer along with the intramolecular charge transfer mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Knowledge concerning the effects of several abiotic factors on the physiology of carrageenophytes is essential both in ecological and economic standpoints, to ensure their sufficient supply for the sustainability of seaweed‐based industries. This paper presents the photosynthetic characteristics of farmed carrageenophytes, E ucheuma denticulatum and K appaphycus alvarezii [brown (BRN) and green (GRN) color morphotypes] from Sulawesi Utara (Sulawesi Island), Indonesia, as determined by examining their photosynthetic response across different temperatures and irradiances using dissolved oxygen measurements and pulse‐amplitude modulated fluorometer. Net photosynthesis–irradiance ( P E ) curves at 26°C revealed that net photosynthetic rates of the three seaweeds gradually increased until the estimated saturation irradiances ( E k ) of 58 μmol photons m? 2 s?1 (49–68 μmol photons m? 2 s?1, 95% Bayesian prediction intervals; BPI) for E . denticulatum, and 158 and 143 μmol photons m? 2 s?1 (134–185 and 99–203 μmol photons m? 2 s?1, 95% BPI) for BRN and GRN K . alvarezii, respectively; and that no photoinhibition was observed at the highest irradiance of 1000 μmol photons m? 2 s?1. All seaweed samples exhibited photosynthetic tolerance to high PAR as shown by their recovery in maximum quantum yields (Fv / Fm ) following chronic exposures; as well as tolerance over a broad range of temperature, which is from 19 to 33°C for E . denticulatum, 20–29°C for BRN K . alvarezii, and 17–32°C for GRN K . alvarezii. Temperature responses of these carrageenophytes indicated that they were well‐adapted to the annual seawater temperatures in the cultivation site; however, they are also likely close to threshold levels for thermal inhibition, given the decline in Fv / Fm above 30°C.  相似文献   

16.
The behaviors of 15 kinds of metal ions in the thiol‐capped CdTe quantum dots (QDs)–H2O2 chemiluminescence (CL) reaction were investigated in detail. The results showed that Ag+, Cu2+ and Hg2+ could inhibit CdTe QDs and H2O2 CL reaction. A novel CL method for the selective determination of Ag+, Cu2+ and Hg2+ was developed, based on their inhibition of the reaction of CdTe QDs and H2O2. Under the optimal conditions, good linear relationships were realized between the CL intensity and the logarithm of concentrations of Ag+, Cu2+ and Hg2+. The linear ranges were from 2.0 × 10?6 to 5.0 × 10?8 mol L?1 for Ag+, from 5.0 × 10?6 to 7.0 × 10?8 mol L?1 for Cu2+ and from 2.0 × 10?5 to 1.0 × 10?7 mol L?1 for Hg2+, respectively. The limits of detection (S/N = 3) were 3.0 × 10?8, 4.0 × 10?8 and 6.7 × 10?8 mol L?1 for Ag+, Cu2+ and Hg2+, respectively. A possible mechanism for the inhibition of CdTe QDs and H2O2 CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The bloom‐forming cyanobacterium Microcystis aeruginosa (Kütz.) Kütz. 854 was cultured with 1.05 W · m?2 ultraviolet‐B radiation (UVBR) for 3 h every day, and the CO2‐concentrating mechanism (CCM) within this species as well as effects of UVBR on its operation were investigated. Microcystis aeruginosa 854 possessed at least three inorganic carbon transport systems and could utilize external HCO3? and CO2 for its photosynthesis. The maximum photosynthetic rate was approximately the same, but the apparent affinity for dissolved inorganic carbon was significantly decreased from 74.7 μmol · L?1 in the control to 34.7 μmol · L?1 in UVBR‐treated cells. At 150 μmol · L?1 KHCO3 and pH 8.0, Na+‐dependent HCO3? transport contributed 43.4%–40.2% to the photosynthesis in the control and 34.5%–31.9% in UVBR‐treated cells. However, the contribution of Na+‐independent HCO3? transport increased from 8.7% in the control to 18.3% in UVBR‐treated cells. The contribution of CO2‐uptake systems showed little difference: 47.9%–51.0% in the control and 49.8%–47.2% in UVBR‐treated cells. Thus, the rate of total inorganic carbon uptake was only marginally affected, although UVBR had a differential effect on various inorganic carbon transporters. However, the number of carboxysomes in UVBR‐treated cells was significantly decreased compared to that in the control.  相似文献   

18.
The photosynthetic performance of macroalgae isolated in Antarctica was studied in the laboratory. Species investigated were the brown algae Himantothallus grandifolius, Desmarestia anceps, Ascoseira mirabilis, the red algae Palmaria decipiens, Iridaea cordata, Gigartina skottsbergii, and the green algae Enteromorpha bulbosa, Acrosiphonia arcta, Ulothrix subflaccida and U. implexa. Unialgal cultures of the brown and red algae were maintained at 0°C, the green algae were cultivated at 10°C. IK values were between 18 and 53 μmol m?2 s?1 characteristic or low light adapted algae. Only the two Ulothrix species showed higher IK values between 70 and 74 μmol m?2 s?1. Photosynthesis compensated dark respiration at very low photon fluence rates between 1.6 and 10.6 μmol m?2 s?1. Values of α were high: between 0.4 and 1.1 μmol O2 g?1 FW h?1 (μmol m?2 s?1)?1 in the brown and red algae and between 2.1 and 4.9 μmol O2 g?1 FW h?1 (μmol m?2 s?1)?1 in the green algal species. At 0°C Pmax values of the brown and red algae ranged from 6.8 to 19.1 μmol O2 g?1 FW h?1 and were similarly high or higher than those of comparable Arctic-cold temperate species. Optimum temperatures for photosynthesis were 5 to 10°C in A. mirabilis, 10°C in H. grandifolius, 15°C in G. skottsbergii and 20°C or higher in D. anceps and I. cordata. P: R ratios strongly decreased in most brown and red algae with increasing temperatures due to different Q10 values for photosynthesis (1.4 to 2.5) and dark respiration (2.5 to 4.1). These features indicate considerable physiological adaptation to the prevailing low light conditions and temperatures of Antarctic waters. In this respect the lower depth distribution limits and the northern distribution boundaries of these species partly depend on the physiological properties described here.  相似文献   

19.
A series of naphthaldehyde‐2‐pyridinehydrazone derivatives were discovered to display interesting ‘turn‐on’ fluorescence response to Zn2+ in 99% water/DMSO (v/v) at pH 7.0. Mechanism study indicated that different substituent groups in the naphthaldehyde moiety exhibited significant influence on the detection of Zn2+. The electron rich group resulted in longer fluorescence wavelengths but smaller fluorescence enhancement for Zn2+. Among these compounds, 1 showed the highest fluorescence enhancement of 19‐fold with the lowest detection limit of 0.17 μmol/L toward Zn2+. The corresponding linear range was at least from 0.6 to 6.0 μmol/L. Significantly, 1 showed an excellent selectivity toward Zn2+ over other metal ions including Cd2+.  相似文献   

20.
The mechanisms by which Ag+ may quench protein tryptophanyl fluorescence have been studied. A 1:1 Ag+-tryptophan complex was detected spectrophotometrically and shown to have a ka = 6.5 × 103 M?1. The complex was nonfluorescent. Ag+ and NO3? each caused collisional quenching which proceeded at nearly diffusion-controlled rates in a series of indole-containing compounds. Analysis of the rates by means of Stern-Volmer plots and lifetime measurements showed also that charge and the presence of salt influence the quenching rate constants.The fluorescence of nonsulfhydryl proteins was quenched by AgNO3 only in concentrations needed for Stern-Volmer quenching of simple indole model compounds. However, the plots for protein quenching were generally nonlinear, a reflection of the heterogeneity of tryptophanyl residues. AgNO3 quenching increased the polarization of protein fluorescence and decreased the lifetime. Rotational relaxation times were determined from Perrin plots of reciprocal polarization vs fluorescence intensity in the presence of various amounts of AgNO3.The fluorescence of the sulfhydryl proteins ovalbumin, yeast, and equine liver alcohol dehydrogenases was strongly quenched by AgNO3 in parallel with the formation of Ag+-mercaptide bonds. The quenching of fluorescence of sulfhydryl proteins was exhibited even in 8 m urea, thus ruling out conformational change as a major basis for the quenching. It was found that Ag+ mercaptide bond formation was accompanied by development of an ultraviolet absorption band. The reaction of Ag+ with cysteine, for example, could be followed spectrophotometrically. The uv absorption of different silver mercaptides varied with the compound and pH.Since the uv absorption of Ag+-mercaptides extended up to 340 nm, and was also found in Ag+-treated sulfhydryl proteins, energy transfer from excited tryptophans seemed a reasonable basis for the observed fluorescence quenching. This possibility was confirmed by calculation of Förster critical transfer distances for a variety of donor-acceptor (Ag+-mercaptide) pairs.The lifetime of sulfhydryl protein fluorescence was decreased by AgNO3, but the emission spectrum was relatively little affected, in contrast to previously reported quenching by Hg2+. Additional mechanisms of fluorescence alteration by Ag+ in proteins (e.g., “heavy atom” effect, conformational changes, enhancement of sulfhydryl quenching) are also considered.The spectral effects of Ag+ interaction with proteins have the following practical applications:determination of —SH groups; probe of accessibility of binding sites and tryptophan-sulfhydryl distances; determination of rotational relaxation times by Perrin plots of reciprocal polarization vs lifetime; kinetic studies of Ag+ interaction with proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号