首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. Eimeria vermiformis sp. n. and E. papillata sp. n. are described from the mouse Mus musculus. The sporulated oocysts of E. vermiformis are 18–26 by 15–21 μ (mean 23.1 by 18.4 μ); its sporocysts are 11–14 by 6–10 μ (mean 12.8 by 7.9 p). The sporulated oocysts of E. papillata are 18–26 by 16–24 μ (mean 22.4 by 19.2 μ); its sporocysts are 10–13 by 6–9 μ (mean 11.2 by 8.0 μ). A substiedal body is present in E. papillata sporocysts. Patent infections were produced in white laboratory mice with both species. Fourteen species of Eimeria have now been described from the genus Mus.  相似文献   

2.
3.
The 28S rDNA from nine species of the genus Syphacia collected in Japan was sequenced, and the phylogenetic relationship was inferred from multiple sequence alignment of 28S rDNA by the MAFFT program. Phylogenetic tree indicates that S. petrusewiczi, which was the only species belonging to the subgenus Seuratoxyuris, has diverged earlier than other rodent pinworms examined and was distantly separated from the others genetically. It was revealed that S. agraria and S. vandenbrueli, whose subgeneric status has not been specified, belonged to the subgenus Syphacia together with other 6 species. Syphacia montana from Clethrionomys, Eothenomys and Microtus was very closely related to S. obvelata from Mus, and that S. frederici from Apodemus and S. vandenbrueli from Micromys were comparatively closely related to the former two species. The phylogenetic relationship among the three species of Syphacia found in Japanese Apodemus was inconsistent with the biogeography of host rodents. The co-evolutionary relationship between pinworm species and their host rodents may not be so strict and host switching has probably occurred frequently during the course of evolution.  相似文献   

4.
Reptiles are the animals with the most described coccidian species among all vertebrates. However, the co‐evolutionary relationships in this host–parasite system have been scarcely studied. Paperna & Landsberg (South African Journal of Zoology, 24, 1989, 345) proposed the independent evolutionary origin of the Eimeria‐like species isolated from reptiles based on morphological and developmental characteristics of their oocysts. Accordingly, they suggested the reclassification of these parasites in two new genera, Choleoeimeria and Acroeimeria. The validity of the genera proposed to classify reptilian Eimeria species remained unresolved due to the lack of species genetically characterized. In this study, we included 18S rRNA gene sequences from seven Eimeria‐like species isolated from five different lizard host families. The phylogenetic analyses confirmed the independent evolutionary origin of the Eimeria‐like species infecting lizards. Within this group, most species were placed into two monophyletic clades. One of them included the species with ellipsoidal oocysts (i.e. Choleoeimeria‐like oocysts), whereas the species with more spheroidal oocysts (i.e. Acroeimeria‐like oocysts) were included in the second one. This result supports the taxonomic validity of the genera Acroeimeria and Choleoeimeria.  相似文献   

5.
Deep sympatric intraspecific divergence in mtDNA may reflect cryptic species or formerly distinct lineages in the process of remerging. Preliminary results from DNA barcoding of Scandinavian butterflies and moths showed high intraspecific sequence variation in the autumnal moth, Epirrita autumnata. In this study, specimens from different localities in Norway and some samples from Finland and Scotland, with two congeneric species as outgroups, were sequenced with mitochondrial and nuclear markers to resolve the discrepancy found between mtDNA divergence and present species‐level taxonomy. We found five COI sub‐clades within the E. autumnata complex, most of which were sympatric and with little geographic structure. Nuclear markers (ITS2 and Wingless) showed little variation and gave no indications that E. autumnata comprises more than one species. The samples were screened with primers for Wolbachia outer surface gene (wsp) and 12% of the samples tested positive. Two Wolbachia strains were associated with different mtDNA sub‐clades within E. autumnata, which may indicate indirect selection/selective sweeps on haplotypes. Our results demonstrate that deep mtDNA divergences are not synonymous with cryptic speciation and this has important implications for the use of mtDNA in species delimitation, like in DNA barcoding.  相似文献   

6.
Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata.  相似文献   

7.
The degree of host specificity, its phylogenetic conservativeness and origin are virtually unknown in Eimeria. This situation is largely due to the inadequate sample of eimerian molecular data available for reliable phylogenetic analyses. In this study, we extend the data set by adding 71 new sequences of coccidia infecting 16 small-mammal genera, mostly rodents. According to the respective feasibility of PCR gene amplification, the new samples are represented by one or more of the following genes: nuclear 18S rRNA, plastid ORF 470, and mitochondrial COI. Phylogenetic analyses of these sequences confirm the previous hypothesis that Eimeria, in its current morphology-based delimitation, is not a monophyletic group. Several samples of coccidia corresponding morphologically to other genera are scattered among the Eimeria lineages. More importantly, the distribution of eimerians from different hosts indicates that the clustering of eimerian species is influenced by their host specificity, but does not arise from a cophylogenetic/cospeciation process; while several clusters are specific to a particular host group, inner topologies within these clusters do not reflect host phylogeny. This observation suggests that the host specificity of Eimeria is caused by adaptive rather than cophylogenetic processes.  相似文献   

8.
Host‐parasite interaction studies across hybrid zones often focus on host genetic variation, treating parasites as homogeneous. ‘Intimately’ associated hosts and parasites might be expected to show similar patterns of genetic structure. In the literature, factors such as no intermediate host and no free‐living stage have been proposed as ‘intimacy’ factors likely constraining parasites to closely follow the evolutionary history of their hosts. To test whether the whipworm, Trichuris muris, is intimately associated with its house mouse host, we studied its population genetics across the European house mouse hybrid zone (HMHZ) which has a strong central barrier to gene flow between mouse taxa. T. muris has a direct life cycle and nonmobile free stage: if these traits constrain the parasite to an intimate association with its host we expect a geographic break in the parasite genetic structure across the HMHZ. We genotyped 205 worms from 56 localities across the HMHZ and additionally T. muris collected from sympatric woodmice (Apodemus spp.) and allopatric murine species, using mt‐COX1, ITS1‐5.8S‐ITS2 rDNA and 10 microsatellites. We show four haplogroups of mt‐COX1 and three clear ITS1‐5.8S‐ITS2 clades in the HMHZ suggesting a complex demographic/phylogeographic history. Microsatellites show strong structure between groups of localities. However, no marker type shows a break across the HMHZ. Whipworms from Apodemus in the HMHZ cluster, and share mitochondrial haplotypes, with those from house mice. We conclude Trichuris should not be regarded as an ‘intimate’ parasite of the house mouse: while its life history might suggest intimacy, passage through alternate hosts is sufficiently common to erase signal of genetic structure associated with any particular host taxon.  相似文献   

9.
In this study, we used sequences of two mitochondrial genes, cytochrome c oxidase I (COI) and 16S rRNA, and one nuclear gene, 28S rRNA, to test the monophyly of the sea star genus Echinaster, and understand the phylogenetic relationships among species and subgenera within this genus. Phylogenetic analyses based on Bayesian inference and maximum likelihood methods revealed three clades with high values of genetic divergence among them (K2P distances for COI over 23%). One of the clades grouped all Echinaster (Othilia) species, and the other two clades included Echinaster (non‐Othilia) species and Henricia species, respectively. Although the relationships among Henricia, Othilia, and Echinaster could not be completely clarified, the Othilia clade was a well‐supported group with shared diagnostic morphological characters. Moreover, the approximately unbiased test applied to the phylogenetic reconstruction rejected the hypothesis of the genus Echinaster as a monophyletic group. According to these results, we suggest the revalidation of Othilia as a genus instead of a subgenus within Echinaster. Our study clarifies important points about the phylogenetic relationships among species of Echinaster. Other important systematic questions about the taxonomic classification of Echinaster and Henricia still remain open, but this molecular study provides bases for future research on the topic.  相似文献   

10.
Lungworms from the genus Rhabdias are common parasites of amphibians and reptiles distributed worldwide. To assess the diversity of Rhabdias spp., we performed molecular analyses of 35 specimens sampled in different regions of Brazil. Molecular analyses were based on the internal transcribed spacer (ITS), large subunit (28S) ribosomal and the cytochrome oxidase I (COI) mitochondrial genes. DNA sequence divergence was compared among ribosomal and mitochondrial genes, analyses using the general mixed Yule‐coalescent (GMYC) method based on the COI gene were used to identify possible cryptic diversity, and phylogenetic analyses using concatenated ITS and 28S ribosomal genes were used to test the monophyly of Rhabdiasidae. We revealed five morphospecies: R. cf. stenocephala, R. breviensis, R. pseudosphaerocephala and two new species, Rhabdias sp.4 and Rhabdias sp.5. DNA sequence levels of divergence among genes ITS, 28S and COI were compared, and the efficiency of the molecular markers to identify species (ITS and COI) and lineages (COI) was tested. GMYC was assigned to 17 well‐supported clades (i.e., 17 species), and cryptic diversity was detected in the Neotropical region as evidenced by the multiple lineages in R. breviensis and R. pseudosphaerocephala. In addition, our results suggest evidence for host–parasite cophylogeny in the R. pseudosphaerocephala complex and dispersal events among their populations. Phylogenetic analyses supported the monophyly of Rhabdiasidae and improved the resolution of main clades. Rhabdias breviensis is closely related to Rhabdias cf. africanus, Rhabdias cf. stenocephala, R. pseudosphaerocephala, Rhabdias sp.4 and Rhabdias sp.5 grouping together in a main clade with Neotropical‐related species. The large geographical distribution appeared to be a phylogenetic pattern among the species of Rhabdias from the neotropics.  相似文献   

11.
Climate and host demographic cycling often shape both parasite genetic diversity and host distributions, processes that transcend a history of strict host–parasite association. We explored host associations and histories based on an evaluation of mitochondrial and nuclear sequences to reveal the underlying history and genetic structure of a pinworm, Rauschtineria eutamii, infecting ten species of western North American chipmunks (Rodentia:Tamias, subgenus Neotamias). Rauschtineria eutamii contains divergent lineages influenced by the diversity of hosts and variation across the complex topography of western North America. We recovered six reciprocally monophyletic R. eutamii mitochondrial clades, largely supported by a multilocus concordance tree, exhibiting divergence levels comparable with intraspecific variation reported for other nematodes. Phylogenetic relationships among pinworm clades suggest that R. eutamii colonized an ancestral lineage of western chipmunks and lineages persisted during historical isolation in diverging Neotamias species or species groups. Pinworm diversification, however, is incongruent and asynchronous relative to host diversification. Secondarily, patterns of shallow divergence were shaped by geography through events of episodic colonization reflecting an interaction of taxon pulses and ecological fitting among assemblages in recurrent sympatry. Pinworms occasionally infect geographically proximal host species; however, host switching may be unstable or ephemeral, as there is no signal of host switching in the deeper history of R. eutamii.  相似文献   

12.
In a few homoiothermic host species, Eimeria spp. in a schizogonic stage, a gamogonic stage, or as resting sporozoites infect nonepithelial tissues. However, epithelium serves as a critical site in the cycle of these and all other species known from warm-blooded hosts. Eimeria funduli, infecting at least four different killifishes, undergoes both schizogony and gamogony in non-epithelial hepatic and pancreatic cells and requires an invertebrate host to complete its cycle. Oocysts are not released from the living fish into the environment. The cycle for this species, or aspects of it, may exemplify those found in several piscine species infecting nonepithelial (and possibly epithelial) cells. Eimeriu funduli differs from most species of Eimeria infecting homoiotherms in other respects, some of which may also characterize traits for piscine and other poikilotherm eimerians in general. Endogenous development is affected by temperature and host-age, sporogony occurs in the host, and infections occur in several related fishes. The presence of an intermediate host in at least E. funduli and the presence of sporozoites in macrophages of several eimerians of homoiotherms, as well as other features, suggest a closer relationship between eimeriids and Lankesterella, Schellackia, and even the Haemosporina than previously assumed.  相似文献   

13.

Background

The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host.

Results

The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria.

Conclusions

Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-696) contains supplementary material, which is available to authorized users.  相似文献   

14.
Poor phylogenetic resolution and inconsistency of gene trees are major complications when attempting to construct trees of life for various groups of organisms. In this study, we addressed these issues in analyses of the genus Carpinus (hornbeams) of the Betulaceae. We assembled and annotated the chloroplast (cp) genomes (plastomes) of nine hornbeams representing main clades previously distinguished in this genus. All nine plastomes are highly conserved, with four regions, and about 158–160 kb long, including 121–123 genes. Phylogenetic analyses of whole plastome sequences, noncoding sequences, and the well‐aligned coding genes resulted in high resolution of the sampled species in contrast to the failure based on a few cpDNA markers. Phylogenetic relationships in a few clades based only on the coding genes are slightly inconsistent with those based on the noncoding and total plastome datasets. Moreover, these plastome trees are highly incongruent with those based on bi‐parentally inherited internal transcribed spacer (ITS) sequence variations. Such high inconsistencies suggest widespread occurrence of incomplete lineage sorting and hybrid introgression during diversification of these hornbeams.  相似文献   

15.
Partial (~ 780 bp) mitochondrial cytochrome c oxidase subunit I (COI) and near complete nuclear 18S rDNA (~ 1,780 bp) sequences were directly compared to assess their relative usefulness as markers for species identification and phylogenetic analysis of coccidian parasites (phylum Apicomplexa). Fifteen new COI partial sequences were obtained using two pairs of new primers from rigorously characterised (sensu Reid and Long, 1979) laboratory strains of seven Eimeria spp. infecting chickens as well as three additional sequences from cloned laboratory strains of Toxoplasma gondii (ME49 and GT1) and Neospora caninum (NC1) that were used as outgroup taxa for phylogenetic analyses. Phylogenetic analyses based on COI sequences yielded robust support for the monophyly of individual Eimeria spp. infecting poultry except for the Eimeria mitis/mivati clade; however, the lack of a phenotypically characterised strain of E. mivati precludes drawing any firm conclusions regarding this observation. Unlike in the 18S rDNA-based phylogenetic reconstructions, Eimerianecatrix and Eimeria tenella formed monophyletic clades based on partial COI sequences. A species delimitation test was performed to determine the probability of making a correct identification of an unknown specimen (sequence) based on either complete 18S rDNA or partial COI sequences; in almost all cases, the partial COI sequences were more reliable as species-specific markers than complete 18S rDNA sequences. These observations demonstrate that partial COI sequences provide more synapomorphic characters at the species level than complete 18S rDNA sequences from the same taxa. We conclude that COI performs well as a marker for the identification of coccidian taxa (Eimeriorina) and will make an excellent DNA 'barcode' target for coccidia. The COI locus, in combination with an 18S rDNA sequence as an 'anchor', has sufficient phylogenetic signal to assist in the resolution of apparent paraphylies within the coccidia and likely more broadly within the Apicomplexa.  相似文献   

16.
17.
18.
Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring.  相似文献   

19.
Parasites comprise a significant percentage of the biodiversity of the planet and are useful systems to test evolutionary and ecological hypotheses. In this study, we analyze the effect of host species identity and the immediate local species assemblage within mixed species colonies of nesting seabirds on patterns of genetic clustering within two species of multihost ectoparasitic lice. We use three genetic markers (one mitochondrial, COI, and two nuclear, EF1‐α and wingless) and maximum likelihood phylogenetic trees to test whether (1) parasites show lineage sorting based on their host species; and (2) switching of lineages to the alternate host species depends on the immediate local species assemblage of individual hosts within a colony. Specifically, we examine the genetic structure of two louse species: Eidmanniella albescens, infecting both Nazca (Sula granti) and blue‐footed boobies (Sula nebouxii), and Fregatiella aurifasciata, infecting both great (Fregata minor) and magnificent frigatebirds (Fregata magnificens). We found that host species identity was the only factor explaining the patterns of genetic structure in both parasites. In both cases, there is evident genetic differentiation depending on the host species. Thus, a revision of the taxonomy of these louse species is needed. One possible explanation of this pattern is extremely low louse migration rates between host species, perhaps influenced by fine‐scale spatial separation of host species within mixed colonies, and low parasite infrapopulation numbers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号