首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Woody plant expansion and infilling in grasslands and savannas are occurring across a broad range of ecosystems around the globe and are commonly attributed to fire suppression, livestock grazing, nutrient enrichment and/or climate variability. In the western Great Plains, ponderosa pine (Pinus ponderosa) woodlands are expanding across broad geographical and environmental gradients. The objective of this study was to reconstruct the establishment of ponderosa pine in woodlands in the west‐central Great Plains and to identify whether it was mediated by climate variability. Location Our study took place in a 400‐km wide region from the base of the Front Range Mountains (c. 105° W) to the central Great Plains (c. 100° W) and from Nebraska (43° N) to northern New Mexico (36° N), USA. Methods Dates for establishment of ponderosa pine were reconstructed with tree rings in 11 woodland sites distributed across the longitudinal and latitudinal gradients of the study area. Temporal trends in decadal pine establishment were compared with summer Palmer Drought Severity Index (PDSI). Annual trends in pine establishment from 1985 to 2005 were compared with seasonal PDSI, temperature and moisture availability. Results Establishment of ponderosa pine occurred in the study area in all but one decade (1770s) between the 1750s and the early 2000s, with over 35% of establishment in the region occurring after 1980. Pine establishment was highly variable among sites. Across the region, decadal pine establishment was persistently low from 1940 to 1960, when PDSI was below average. Annual pine establishment from 1985 to 2005 was positively correlated with summer PDSI and inversely correlated with minimum spring temperatures. Main conclusions Most ponderosa pine woodlands pre‐date widespread Euro‐American settlement of the region around c. ad 1860 and currently have stable tree populations. High variability in the timing of establishment of pine among sites highlights the multiplicity of factors that can drive woodland dynamics, including land use, fire history, CO2 enrichment, tree population dynamics and climate. Since the 1840s, the influence of climate was most notable across the study area during the mid‐20th century, when the establishment of pine was suppressed by two significant droughts. The past sensitivity of establishment of ponderosa pine to drought suggests that woodland expansion will be negatively affected by predicted increases in temperature and drought in the Great Plains.  相似文献   

2.
The relationship between body size and temperature of mammals is poorly resolved, especially for large keystone species such as bison (Bison bison). Bison are well represented in the fossil record across North America, which provides an opportunity to relate body size to climate within a species. We measured the length of a leg bone (calcaneal tuber, DstL) in 849 specimens from 60 localities that were dated by stratigraphy and 14C decay. We estimated body mass (M) as M = (DstL/11.49)3. Average annual temperature was estimated from δ18O values in the ice cores from Greenland. Calcaneal tuber length of Bison declined over the last 40,000 years, that is, average body mass was 37% larger (910 ± 50 kg) than today (665 ± 21 kg). Average annual temperature has warmed by 6°C since the Last Glacial Maximum (~24–18 kya) and is predicted to further increase by 4°C by the end of the 21st century. If body size continues to linearly respond to global temperature, Bison body mass will likely decline by an additional 46%, to 357 ± 54 kg, with an increase of 4°C globally. The rate of mass loss is 41 ± 10 kg per°C increase in global temperature. Changes in body size of Bison may be a result of migration, disease, or human harvest but those effects are likely to be local and short‐term and not likely to persist over the long time scale of the fossil record. The strong correspondence between body size of bison and air temperature is more likely the result of persistent effects on the ability to grow and the consequences of sustaining a large body mass in a warming environment. Continuing rises in global temperature will likely depress body sizes of bison, and perhaps other large grazers, without human intervention.  相似文献   

3.
Prehistoric climate and landscape features play large roles structuring wildlife populations. The amphibians of the northern Great Plains of North America present an opportunity to investigate how these factors affect colonization, migration, and current population genetic structure. This study used 11 microsatellite loci to genotype 1,230 northern leopard frogs (Rana pipiens) from 41 wetlands (30 samples/wetland) across North Dakota. Genetic structure of the sampled frogs was evaluated using Bayesian and multivariate clustering methods. All analyses produced concordant results, identifying a major east–west split between two R. pipiens population clusters separated by the Missouri River. Substructuring within the two major identified population clusters was also found. Spatial principal component analysis (sPCA) and variance partitioning analysis identified distance, river basins, and the Missouri River as the most important landscape factors differentiating R. pipiens populations across the state. Bayesian reconstruction of coalescence times suggested the major east–west split occurred ~13–18 kya during a period of glacial retreat in the northern Great Plains and substructuring largely occurred ~5–11 kya during a period of extreme drought cycles. A range‐wide species distribution model (SDM) for R. pipiens was developed and applied to prehistoric climate conditions during the Last Glacial Maximum (21 kya) and the mid‐Holocene (6 kya) from the CCSM4 climate model to identify potential refugia. The SDM indicated potential refugia existed in South Dakota or further south in Nebraska. The ancestral populations of R. pipiens in North Dakota may have inhabited these refugia, but more sampling outside the state is needed to reconstruct the route of colonization. Using microsatellite genotype data, this study determined that colonization from glacial refugia, drought dynamics in the northern Great Plains, and major rivers acting as barriers to gene flow were the defining forces shaping the regional population structure of R. pipiens in North Dakota.  相似文献   

4.
5.
Although drought is known to negatively impact grassland functioning, the timing and magnitude of these impacts within a growing season remain unresolved. Previous small-scale assessments indicate grasslands may only respond to drought during narrow periods within a year; however, large-scale assessments are now needed to uncover the general patterns and determinants of this timing. We combined remote sensing datasets of gross primary productivity and weather to assess the timing and magnitude of grassland responses to drought at 5 km2 temporal resolution across two expansive ecoregions of the western US Great Plains biome: the C4-dominated shortgrass steppe and the C3-dominated northern mixed prairies. Across over 700,000 pixel-year combinations covering more than 600,000 km2, we studied how the driest years between 2003–2020 altered the daily and bi-weekly dynamics of grassland carbon (C) uptake. Reductions to C uptake intensified into the early summer during drought and peaked in mid- and late June in both ecoregions. Stimulation of spring C uptake during drought was small and insufficient to compensate for losses during summer. Thus, total grassland C uptake was consistently reduced by drought across both ecoregions; however, reductions were twice as large across the more southern and warmer shortgrass steppe. Across the biome, increased summer vapor pressure deficit (VPD) was strongly linked to peak reductions in vegetation greenness during drought. Rising VPD will likely exacerbate reductions in C uptake during drought across the western US Great Plains, with these reductions greatest during the warmest months and in the warmest locations. High spatiotemporal resolution analyses of grassland response to drought over large areas provide both generalizable insights and new opportunities for basic and applied ecosystem science in these water-limited ecoregions amid climate change.  相似文献   

6.
Climate change is predicted to result in increased occurrence and intensity of drought in many regions worldwide. By increasing plant physiological stress, drought is likely to affect the floral resources (flowers, nectar and pollen) that are available to pollinators. However, little is known about impacts of drought at the community level, nor whether plant community functional composition influences these impacts. To address these knowledge gaps, we investigated the impacts of drought on floral resources in calcareous grassland. Drought was simulated using rain shelters and the impacts were explored at multiple scales and on four different experimental plant communities varying in functional trait composition. First, we investigated the effects of drought on nectar production of three common wildflower species (Lathyrus pratensis, Onobrychis viciifolia and Prunella vulgaris). In the drought treatment, L. pratensis and P. vulgaris had a lower proportion of flowers containing nectar and O. viciifolia had fewer flowers per raceme. Second, we measured the effects of drought on the diversity and abundance of floral resources across plant communities. Drought reduced the abundance of floral units for all plant communities, irrespective of functional composition, and reduced floral species richness for two of the communities. Functional diversity did not confer greater resistance to drought in terms of maintaining floral resources, probably because the effects of drought were ubiquitous across component plant communities. The findings indicate that drought has a substantial impact on the availability of floral resources in calcareous grassland, which will have consequences for pollinator behaviour and populations.  相似文献   

7.
Drought is a major environmental constraint affecting growth and distribution of plants in the desert region of the Inner Mongolia plateau. Caragana microphylla, C. liouana, and C. korshinskii are phylogenetically close but distribute vicariously in Mongolia plateau. To gain a better understanding of the ecological differentiation between these three species, we examined the leaf gas exchange, growth, water use efficiency, biomass accumulation and allocation by subjecting their seedlings to low and high drought treatments in a glasshouse. Increasing drought stress had a significant effect on many aspects of seedling performance in all species, but the physiology and growth varied with species in response to drought. C. korshinskii exhibited lower sensitivity of photosynthetic rate and growth, lower specific leaf area, higher biomass allocation to roots, higher levels of water use efficiency to drought compared with the other two species. Only minor interspecific differences in growth performances were observed between C. liouana and C. microphylla. These results indicated that faster seedling growth rate and more efficient water use of C. korshinskii should confer increased drought tolerance and facilitate its establishment in more severe drought regions relative to C. liouana and C. microphylla.  相似文献   

8.

Background  

Hard red winter wheat (HRWW; Triticum aestivm L.) plants from genotypes selected in the Northern Great Plains of the U.S. have less tissue water after exposure to cool autumn temperatures than plants from the Southern Great Plains. It is generally assumed that the reduced tissue water content of northern compared to southern cultivars is due to an impedance to water uptake by northern plants as a result of the low autumn temperatures. We hypothesize that if low temperature impedes water uptake then less soil water would be removed by northern than by southern-selected cultivars. This hypothesis was tested by comparing plant water uptake of a northern (FR) and a southern (FS) cultivar in relation to their foliage water content at 2°C.  相似文献   

9.
Changes in climate, land management and fire regime have contributed to woody species expansion into grasslands and savannas worldwide. In the USA, Pinus ponderosa P.&C. Lawson and Juniperus virginiana L. are expanding into semiarid grasslands of Nebraska and other regions of the Great Plains. We examined P. ponderosa and J. virginiana seedling response to soil water content, one of the most important limiting factors in semiarid grasslands, to provide insight into their success in the region. Photosynthesis, stomatal conductance, maximum photochemical efficiency of PSII, maximum carboxylation velocity, maximum rate of electron transport, stomatal limitation to photosynthesis, water potential, root‐to‐shoot ratio, and needle nitrogen content were followed under gradual soil water depletion for 40 days. J. virginiana maintained lower Ls, higher A, gs, and initial Fv/Fm, and displayed a more gradual decline in Vcmax and Jmax with increasing water deficit compared to P. ponderosa. J. virginiana also invested more in roots relative to shoots compared to P. ponderosa. Fv/Fm showed high PSII resistance to dehydration in both species. Photoinhibition was observed at ~30% of field capacity. Soil water content was a better predictor of A and gs than Ψ, indicating that there are other growth factors controlling physiological processes under increased water stress. The two species followed different strategies to succeed in semiarid grasslands. P. ponderosa seedlings behaved like a drought‐avoidant species with strong stomatal control, while J. virginiana was more of a drought‐tolerant species, maintaining physiological activity at lower soil water content. Differences between the studied species and the ecological implications are discussed.  相似文献   

10.
For freshwater systems, climate change‐induced alterations to drought regimes are a considerable threat to already threatened species. This is particularly poignant for kōwaro (or Canterbury mudfish, Neochanna burrowsius), a critically endangered fish largely restricted to drying‐prone waterways on the Canterbury Plains, New Zealand. By comparing three catchment‐wide surveys (2007, 2010, 2015) within the Waianiwaniwa Valley, we assessed the scale and magnitude of population change induced by 2 years of consecutive drought (2014–15), when compared to surveys during wetter conditions (2007, 2010). The droughts triggered a catchment‐wide switch from adult‐dominated populations to populations comprised of juveniles indicated by a significant reduction in median size (~95 mm during the wet to ~60 mm after drought). In comparison, population abundances were highly variable, indicated by no significant change in catch‐per‐unit‐effort. The large variation in catch rates and connection of median size to reproductive potential mean median size will be useful to measure in monitoring to infer potential changes to population resilience, particularly during extreme events. Furthermore, because N. burrowsius could be regarded as extremophile fish, already restricted to harsh habitats, they are likely to become increasingly threatened by climate change. Thus, tools that allow for insightful comparisons between populations, such as a population resilience framework based on both abundance and body size distribution, will be increasingly important for pragmatic decision‐making for targeted conservation measures.  相似文献   

11.
Many prior studies have uncovered evidence for local adaptation using reciprocal transplant experiments. However, these studies are rarely conducted for a long enough time to observe succession and competitive dynamics in a community context, limiting inferences for long‐lived species. Furthermore, the genetic basis of local adaptation and genetic associations with climate has rarely been identified. Here, we report on a long‐term (6‐year) experiment conducted under natural conditions focused on Andropogon gerardii, the dominant grass of the North American Great Plains tallgrass ecosystem. We focus on this foundation grass that comprises 80% of tallgrass prairie biomass and is widely used in 20,000 km2 of restoration. Specifically, we asked the following questions: (a) Whether ecotypes are locally adapted to regional climate in realistic ecological communities. (b) Does adaptive genetic variation underpin divergent phenotypes across the climate gradient? (c) Is there evidence of local adaptation if the plants are exposed to competition among ecotypes in mixed ecotype plots? Finally, (d) are local adaptation and genetic divergence related to climate? Reciprocal gardens were planted with 3 regional ecotypes (originating from dry, mesic, wet climate sources) of Andropogon gerardii across a precipitation gradient (500–1,200 mm/year) in the US Great Plains. We demonstrate local adaptation and differentiation of ecotypes in wet and dry environments. Surprisingly, the apparent generalist mesic ecotype performed comparably under all rainfall conditions. Ecotype performance was underpinned by differences in neutral diversity and candidate genes corroborating strong differences among ecotypes. Ecotype differentiation was related to climate, primarily rainfall. Without long‐term studies, wrong conclusions would have been reached based on the first two years. Further, restoring prairies with climate‐matched ecotypes is critical to future ecology, conservation, and sustainability under climate change.  相似文献   

12.
Stress priming by exposing plants to a mild or moderate drought could enhance plant tolerance to subsequent heat stress. Lipids play vital roles in stress adaptation, but how lipidomic profiles change, affecting the cross‐stress tolerance, is largely unknown. The objectives of this study were to perform lipidomics, to analyse the content, composition, and saturation levels of lipids in leaves of tall fescue (Festuca arundinacea) following drought priming and subsequent heat stress, and to identify major lipids and molecular species associated with priming‐enhanced heat tolerance. Plants were initially exposed to drought for 8 days by withholding irrigation and subsequently subjected to 25 days of heat stress (38/33°C day/night) in growth chambers. Drought‐primed plants maintained significantly higher leaf relative water content, chlorophyll content, photochemical efficiency, and lower electrolyte leakage than nonprimed plants under heat stress. Drought priming enhanced the accumulation of phospholipids and glycolipids involved in membrane stabilization and stress signalling (phosphatidic acid, phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, and digalactosyl diacylglycerol) during subsequent exposure to heat stress. The reprogramming of lipid metabolism for membrane stabilization and signalling in response to drought priming and subsequent exposure to heat stress could contribute to drought priming‐enhanced heat tolerance in cool‐season grass species.  相似文献   

13.
Drought‐induced tree mortality is occurring across all forested continents and is expected to increase worldwide during the coming century. Regional‐scale forest die‐off influences terrestrial albedo, carbon and water budgets, and land‐surface energy partitioning. Although increased temperatures during drought are widely identified as a critical contributor to exacerbated tree mortality associated with “global‐change‐type drought”, corresponding changes in vapor pressure deficit (D) have rarely been considered explicitly and have not been disaggregated from that of temperature per se. Here, we apply a detailed mechanistic soil–plant–atmosphere model to examine the impacts of drought, increased air temperature (+2°C or +5°C), and increased vapor pressure deficit (D; +1 kPa or +2.5 kPa), singly and in combination, on net primary productivity (NPP) and transpiration and forest responses, especially soil moisture content, leaf water potential, and stomatal conductance. We show that increased D exerts a larger detrimental effect on transpiration and NPP, than increased temperature alone, with or without the imposition of a 3‐month drought. Combined with drought, the effect of increased D on NPP was substantially larger than that of drought plus increased temperature. Thus, the number of days when NPP was zero across the 2‐year simulation was 13 or 14 days in the control and increased temperature scenarios, but increased to approximately 200 days when D was increased. Drought alone increased the number of days of zero NPP to 88, but drought plus increased temperature did not increase the number of days. In contrast, drought and increased D resulted in the number of days when NPP = 0 increasing to 235 (+1 kPa) or 304 days (+2.5 kPa). We conclude that correct identification of the causes of global change‐type mortality events requires explicit consideration of the influence of D as well as its interaction with drought and temperature.  相似文献   

14.
Aim Recent work indicates that desert assemblages have elevated beta (β) diversity (between‐locality turnover of species composition). This study compares β diversities between the Great Basin and the Great Plains of the western USA over the last 17 Myr. Today, the Great Basin is a topographically diverse desert scrubland to woodland and the Great Plains are low‐relief temperate grassland, but 17 Ma they were more similar in topography, climate and land cover. A georeferenced database of mammal occurrences, complied from several sources, is used to test two hypotheses for the elevation of Great Basin β diversity: (1) that tectonic change of the topography has driven increased habitat packing in high‐ and low‐elevation habitats, and (2) that climatic cycling in the Pleistocene has driven faunas from neighbouring provinces to overlap in the region. Location The Great Basin of the USA, centred on Nevada, and the central Great Plains of the USA, centred on Nebraska. Methods Mammalian faunal lists compiled from published records and the records of many museums, available online, were partitioned into time‐slices ranging from the recent to 17 Myr old. Beta diversity was calculated for each time‐slice in two ways: multiplicative β diversity using first‐order jackknife richness, and additive beta diversity using Simpson's evenness. Results Beta diversity is elevated in Nevada relative to Nebraska today. Beta diversity has been higher in the Great Basin since the Pleistocene and possibly since the late Early Hemphillian (c. 7 Ma). Beta diversity in the Late Barstovian (c. 13.5 Ma) of the Great Plains was higher even than β diversity in the Great Basin of today. Main conclusions The elevated β diversity in the Hemphillian supports the tectonic change hypothesis. The patterns of β diversity in the Recent, Pleistocene and Hemphillian all suggest that local‐scale processes are important. The β diversity of the Late Barstovian Great Plains supports other studies indicating increased primary productivity or species packing.  相似文献   

15.
Switchgrass (Panicum virgatum L.), a highly productive perennial grass, has been recommended as one potential source for cellulosic biofuel feedstocks. Previous studies indicate that planting perennial grasses (e.g., switchgrass) in high‐topographic‐relief cropland waterway buffers can improve local environmental conditions and sustainability. The main advantages of this land management practice include (i) reducing soil erosion and improving water quality because switchgrass requires less tillage, fertilizers, and pesticides; and (ii) improving regional ecosystem services (e.g., improving water infiltration, minimizing drought and flood impacts on production, and serving as carbon sinks). In this study, we mapped high‐topographic‐relief cropland waterway buffers with high switchgrass productivity potential that may be suitable for switchgrass development in the eastern Great Plains (EGP). The US Geological Survey (USGS) Compound Topographic Index map, National Land Cover Database 2011, USGS irrigation map, and a switchgrass biomass productivity map derived from a previous study were used to identify the switchgrass potential areas. Results show that about 16 342 km2 (c. 1.3% of the total study area) of cropland waterway buffers in the EGP are potentially suitable for switchgrass development. The total annual estimated switchgrass biomass production for these suitable areas is approximately 15 million metric tons. Results from this study provide useful information on EGP areas with good cellulosic switchgrass biomass production potential and synergistic substantial potential for improvement of ecosystem services.  相似文献   

16.
DOUCET, ERIC, PASCAL IMBEAULT, NATALIE ALMÉRAS, AND ANGELO TREMBLAY. Physical activity and low-fat diet: Is it enough to maintain weight stability in the reduced-obese individual following weight loss by drug therapy and energy restriction? Obes Res. Objective: The anthropometric and physiological effects of a physical activity (PA) and a mildly energy-restricted low-fat diet (LFD) follow-up program after a long-term dietary restriction were studied in 12 men and 8 women. Research Methods and Procedures: The dietary restriction (?700 kcal/day) was accompanied by a fenfluramine (60 mg/day) or placebo treatment for 15 weeks, whereas the mean duration of the PA-LFD follow-up was 18 weeks. Results: The long-term dietary restriction reduced body weight (?11. 9 and ?7. 6 kg, p<. 001), fat mass (FM) (?10. 6 and ?5. 8 kg, p<0. 01), resting metabolic rate (RMR) (?304 kcal/day, p<0. 01 and ?148 kcal/day, NS) in men and women, respectively. A decrease in fat-free mass (FFM) was also observed in women (?1. 8 kg, p<0. 05). The PA-LFD follow-up preserved weight stability at a reduced body weight and caused an additional significant decrease in FM for men (?3. 4 kg, p<0. 05). This part of the intervention also caused an increase in daily RMR for men (134 kcal/day, NS) to the point where this value no longer differed from the pre-energy restriction value. In contrast, RMR was further reduced in women (?200 kcal/day) to the point where it Significantly differed from initial values (p<0. 01). Resting seated heart rate was reduced by the PA-LFD follow-up in men leading it to differ significantly from both pre- and post-energy restriction values (?8. 5 and ?5. 5 bpm, p<0. 01). Discussion: In conclusion, these results suggest that a PA-LFD follow-up has the potential to permit body weight stability and may even accentuate fat loss in the reduced-obese state. Moreover, resting energy expenditure is increased under such conditions in men. These stimulating effects seem to be specific to energy metabolism since seated heart rate was either further reduced or remained stable in response to the PA-LFD follow-up.  相似文献   

17.
Old World Bluestems (OWB), introduced from Europe and Asia in the 1920s, recently have begun to raise concerns in the Great Plains. Despite suggestion in the late 1950s that OWB were weedy and negatively impacted biological diversity, they were widely introduced throughout the Great Plains for agricultural purposes. Anecdotal evidence suggests that OWB exhibit invasive characteristics that promote competitive exclusion of native species. The objective of our study was to quantify the competitive abilities of two OWB species (Caucasian bluestem; Bothriochloa bladhii (Retz.) S.T. Blake (= Bothriochloa caucasica (Trin.) C.E. Hubb.) and yellow bluestem; Bothriochloa ischaemum (L.) Keng) with three native grass species (big bluestem (Andropogon gerardii Vitman), little bluestem (Schizachyrium scoparium (Michx.) Nash), and sideoats grama (Bouteloua curtipendula (Michx.) Torr.)). A greenhouse target-neighbor study was conducted to assess both interspecific and intraspecific competition. A total of 480 pots (4.4 l) filled with native soil was used with all pair-wise combinations of species and four density treatments (six replications). Vegetative tiller height, above- and belowground biomass were measured at the end of 16 weeks. Both of the OWB significantly inhibited at least one growth parameter of the three native grass species, while most of the native species did not inhibit growth of either OWB species. Growth of B. ischaemum was enhanced when grown in association with S. scoparium. Based upon the results of our study of OWB competitive superiority and previous research, many of the characteristics possessed by OWB are found to be in common with known invasive species. Hence, we propose that two OWB are competitively superior to three common native prairie species providing them with the ability to invade and threaten the native grasslands of the Central and Southern Great Plains.  相似文献   

18.
Zhu  Kai  Huang  Chan  Phan  Thi-Thu  Yang  Li-Tao  Zhang  Bao-Qing  Xing  Yong-Xiu  Li  Yang-Rui 《Plant Molecular Biology Reporter》2021,39(3):489-500

Drought is one of the most severe stresses which limit sugarcane production in China. ATP citrate lyase (ACL) is a major enzyme responsible for the production of acetyl-CoA in cytoplasm and plays an important role in plant metabolism and stress response. In this study, sugarcane ACL gene SoACLA-1 was cloned. The plant overexpression vector of SoACLA-1 was built and transformed into sugarcane calli by Agrobacterium-mediated transformation, and PCR analysis confirmed that SoACLA-1 gene had been stably present in the T0, T1, and T2 generations of the transgenic sugarcane. In order to evaluate the drought resistance of the transgenic lines and verify the function of SoACLA-1 gene in the transgenic sugarcane, T1 generation of the SoACLA-1 transgenic sugarcane lines was used as the material to investigate the physiological and biochemical characteristics at 0 day, 3 days, 6 days, and 9 days after water stress and rewatering for 3 days. Comprehensive evaluation of four indicators (chlorophyll, malondialdehyde, proline, soluble sugar) related to drought resistance was done with membership fuzzy function method. The results showed that the drought resistance of five transgenic sugarcane lines from strong to weak, in turn, was RT2?>?RT4?>?RT3?>?RT1?>?WT, and the recovery ability after drought, in turn, was RT1?>?RT2?>?RT4?>?RT3?>?WT. The T2 generation of the SoACLA-1 transgenic sugarcane lines was used to analyze the physiological and biochemical changes and the expression of drought-related genes under water stress. The results showed that the transgenic sugarcane lines were more tolerant to drought as compared with the wild-type plants. Our findings indicated that SoACLA-1 gene plays an important role as a positive factor in response to water stress, and overexpression of SoACLA-1 can enhance drought tolerance in transgenic sugarcane plants.

  相似文献   

19.
Aim To reconstruct the last c. 7000 years of vegetation and climate change in an unusual region of modern Great Plains grassland and scarp woodland in south‐east Colorado (USA), and to determine the late Holocene biogeography of Colorado piñon (Pinus edulis) at its easternmost extent, using a series of radiocarbon‐dated packrat (Neotoma sp.) middens. Location The West Carrizo Canyon drains the Chaquaqua Plateau, a plateau that projects into the western extent of the southern Great Plains grasslands in south‐eastern Colorado, USA. Elevations of the study sites are 1448 to 1525 m a.s.l. Today the plateau is mostly Juniperus scopulorumP. edulis woodland. Methods Plant macrofossils and pollen assemblages were analysed from 11 14C‐dated packrat middens. Ages ranged from 5990 yr bp (6839 cal. yr bp ) to 280 yr bp (485 cal. yr bp ). Results The results presented here provide information on the establishment and expansion of JuniperusP. edulis woodland at its eastern limits. The analysis of both plant macrofossils and pollen from the 11 middens documents changes in plant communities over the last 7000 years, and the establishment of P. edulis at its easternmost limit. Though very minor amounts of P. edulis pollen occur as early as the middle Holocene, plant macrofossils were only recovered in middens dating after c. 480 cal. yr bp . Main conclusions Originally, midden research suggested a late glacial refuge to the north‐east of the Carrizo Canyon site, and a middle Holocene expansion of P. edulis. Results reported here are consistent with a late Holocene expansion, here at its eastern limits, but noted elsewhere at its northern and north‐eastern limits. In general, this late Holocene expansion is consistent with pollen data from sediments in Colorado and New Mexico, and suggests that P. edulis is still expanding its range at its present extremes. This has implications for further extension of its range due to changing climatic conditions in the future.  相似文献   

20.
Association mapping of dynamic developmental plant height in common wheat   总被引:3,自引:0,他引:3  
Zhang J  Hao C  Ren Q  Chang X  Liu G  Jing R 《Planta》2011,234(5):891-902
Drought as a major abiotic stress often occurs from stem elongation to the grain filling stage of wheat in northern China. Plant height (PH) is a suitable trait to model the dissection of drought tolerance. The purposes of the present study were to validate molecular markers for PH developmental behavior and identify elite alleles of molecular markers. After the phenotyping of 154 accessions for PH dynamic development under well-watered (WW) and drought stressed (DS) conditions, and the genotyping of 60 SSR markers from six candidate chromosome regions related to PH found in our previous linkage mapping studies, both parameters PH and drought tolerance coefficient (DTC) calculated by the conditional analysis were used for association mapping. A total of 46 significant association signals (P < 0.01) were identified in 23 markers, and phenotypic variation ranged from 7 to 50%. Among them, four markers Xgwm261-2D, Xgwm495-4B, Xbarc109-4B and Xcfd23-4D were detected under both water regimes. Furthermore, 10 markers were associated with DTC, and four with both parameters PH and DTC at the same plant development stage. The results revealed different allelic effects of associated markers; for example, the 155 bp Xgwm495-4B allele was associated with a reduced height of −11.2 cm under DS and −15.3 cm under WW, whereas the 167 bp allele exhibited increased height effects of 3.9 and 8.1 cm, respectively. This study demonstrates a strong power of joint association analysis and linkage mapping for the identification of important genes in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号