首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The natural abundance of 15N was examined in soil profiles from forests and pastures of the Brazilian Amazon Basin to compare tropical forests on a variety of soil types and to investigate changes in the sources of nitrogen to soils following deforestation for cattle ranching. Six sites in the state of Rondônia, two sites in Pará and one in Amazonas were studied. All sites except one were chronosequences and contained native forest and one or more pastures ranging from 2 to 27 years old. Forest soil 15N values to a depth of 1 m ranged from 8 to 23 and were higher than values typically found in temperate forests. A general pattern of increasing 15N values with depth near the soil surface was broadly similar to patterns in other forests but a decrease in 15N values in many forest profiles between 20 and 40 cm suggests that illuviation of 15N-depleted nitrate may influence total soil 15N values in deeper soil where total N concentrations are low. In four chronosequences in Rondônia, the 15N values of surface soil from pastures were lower than in the original forest and 15N values were increasingly depleted in older pastures. Inputs of atmospheric N by dinitrogen fixation could be an important N source in these pastures. Other pastures in Amazonas and Pará and Rondônia showed no consistent change from forest values. The extent of fractionation that leads to 15N enrichment in soils was broadly similar over a wide range of soil textures and indicated that similar processes control N fractionation and loss under tropical forest over a broad geographic region. Forest 15N profiles were consistent with conceptual models that explain enrichment of soil 15N values by selective loss of 14N during nitrification and denitrification.  相似文献   

3.
4.
The amount of carbon released to the atmosphere as a result of deforestation is determined, in part, by the amount of carbon held in the biomass of the forests converted to other uses. Uncertainty in forest biomass is responsible for much of the uncertainty in current estimates of the flux of carbon from land‐use change. In the present contribution several estimates of forest biomass are compared for the Brazilian Amazon, based on spatial interpolations of direct measurements, relationships to climatic variables, and remote sensing data. Three questions were posed: First, do the methods yield similar estimates? Second, do they yield similar spatial patterns of distribution of biomass? And, third, what factors need most attention if we are to predict more accurately the distribution of forest biomass over large areas? The answer to the first two questions is that estimates of biomass for Brazil's Amazonian forests (including dead and belowground biomass) vary by more than a factor of two, from a low of 39 PgC to a high of 93 PgC. Furthermore, the estimates disagree as to the regions of high and low biomass. The lack of agreement among estimates confirms the need for reliable determination of aboveground biomass over large areas. Potential methods include direct measurement of biomass through forest inventories with improved allometric regression equations, dynamic modelling of forest recovery following observed stand‐replacing disturbances, and estimation of aboveground biomass from airborne or satellite‐based instruments sensitive to the vertical structure plant canopies.  相似文献   

5.
Following an intense occupation process that was initiated in the 1960s, deforestation rates in the Brazilian Amazon have decreased significantly since 2004, stabilizing around 6000 kmyr?1 in the last 5 years. A convergence of conditions contributed to this, including the creation of protected areas, the use of effective monitoring systems, and credit restriction mechanisms. Nevertheless, other threats remain, including the rapidly expanding global markets for agricultural commodities, large‐scale transportation and energy infrastructure projects, and weak institutions. We propose three updated qualitative and quantitative land‐use scenarios for the Brazilian Amazon, including a normative ‘Sustainability’ scenario in which we envision major socio‐economic, institutional, and environmental achievements in the region. We developed an innovative spatially explicit modelling approach capable of representing alternative pathways of the clear‐cut deforestation, secondary vegetation dynamics, and the old‐growth forest degradation. We use the computational models to estimate net deforestation‐driven carbon emissions for the different scenarios. The region would become a sink of carbon after 2020 in a scenario of residual deforestation (~1000 kmyr?1) and a change in the current dynamics of the secondary vegetation – in a forest transition scenario. However, our results also show that the continuation of the current situation of relatively low deforestation rates and short life cycle of the secondary vegetation would maintain the region as a source of CO2even if a large portion of the deforested area is covered by secondary vegetation. In relation to the old‐growth forest degradation process, we estimated average gross emission corresponding to 47% of the clear‐cut deforestation from 2007 to 2013 (using the DEGRAD system data), although the aggregate effects of the postdisturbance regeneration can partially offset these emissions. Both processes (secondary vegetation and forest degradation) need to be better understood as they potentially will play a decisive role in the future regional carbon balance.  相似文献   

6.
7.
Biome models of the global climate-vegetation relationships indicate that most of the Brazilian Amazon has potential for being covered by tropical forests. From current land-use processes observed in the region, however, substantial deforestation and fire activity have been verified in large portions of the region, particularly along the Arc of Deforestation. In a first attempt to evaluate the long-term potential for tropical-forest degradation due to deforestation and fires in the Brazilian Amazon, we analysed large-scale data on fire activity and climate factors that drive the distribution of tropical forests in the region. The initial analyses and results from this study lead to important details on the relations between these quantities and have important implications for building future parameterizations of the vulnerability of tropical forests in the region.  相似文献   

8.
Carapa guianensis is a timber species found in Central America and the north of South America. We have developed microsatellite primers which will allow analysis of gene flow and population genetic structure in natural populations of this tree species. Polymorphism of five microsatellite loci was evaluated using a total of 12 adult trees from a natural population. An average of 4.2 alleles per locus was detected, and expected heterozygosity ranging from 0.397 to 0.806. These loci are being used for genetic population analysis in a managed forest in the state of Pará, in Amazonian Brazil, as part of the Dendrogene project.  相似文献   

9.
10.
From a genomic library enriched for AG/TC repeats, eight polymorphic microsatellite markers were developed for Ceiba pentandra, a pan‐tropical forest tree. Polymorphism was evaluated using a panel of 74 adult trees. Using automated fluorescence detection, a total of 112 alleles was detected with an average of 14 alleles per locus. All microsatellite loci showed very high levels of genetic information content, with expected heterozygosity ranging from 0.814 to 0.895. These microsatellite markers represent a powerful tool to investigate refined questions of mating systems, gene flow, family structure and population dynamics in natural populations of C. pentandra.  相似文献   

11.
Climbers play different roles in forest biology and ecology and are the first to be eliminated during forest clearing but little is known about the species composition, distribution and relationship with tree species of this group of plants of tropical forest. This study thus investigated the species composition, abundance and tree relationship of climbers along altitudinal gradient in four 0.06 ha plots in a secondary forest at Ile‐Ife, Nigeria. All trees ≥10 cm g.b.h were examined for the presence of climbers in the plots. There were 49 climber species consisting of 35 liana and fourteen vine species distributed over 41 genera and 28 families in the forest. Lianas contributed 34% and vines 13.7% of the plant species in the forest. Climber basal area, density, number of species, genera and families increased with altitude. Forty‐two per cent (42%) of the trees in the forest carried climbers. There was significant positive correlation (P ≤ 0.05) between girth sizes of host trees of 31–50 cm with the girths of climbers on them indicating that trees of these girth sizes are highly susceptible to climber infestation. Tree species host density and size are important factors in determining the presence of climbers on a tree.  相似文献   

12.
Here we present a functional-structural plant model that integrates the growth of metamers into a growing, three-dimensional tree structure, and study the effects of different constraints and strategies on tree performance in different canopies. The tree is a three-dimensional system of connected metamers, and growth is defined by the flush probability of metamers. Tree growth was simulated for different canopy light environments. The result suggest that: the constraints result in an exponential, logistic and decay phase; a mono-layered-leaf crown results from self-shading in a closed canopy; a strong apical control results in slender trees like tall stature species; the interaction between weak apical control and light response results in a crown architecture and performance known from short stature species in closed forest; correlated leaf traits explain interspecific differences in growth, survival and adult stature. The model successfully unravels the interaction effects of different constraints and strategies on tree growth in different canopy light environments.  相似文献   

13.
The objective of this study was to identify the effects of local geomorphometry on the abundance, richness and floristic composition of tree species in the central Brazilian Amazon. Forty‐six 0.25‐ha plots in different phyto‐ecologic sites were sampled, and their trees were inventoried. Geomorphometric data (elevation, slope, aspect, plan and profile curvatures) were derived from Shuttle Radar Topography Mission data. A detrended correspondence analysis (DCA) was used to examine the floristic distribution patterns among plots. In addition, geomorphometric variables were submitted to multiple regression analysis to identify the variables influencing floristic composition (represented by the first DCA component), abundance and species richness. Correlation analyses between the number of individuals from each species and the first DCA component were performed to evaluate the contribution of each species. Analysis of the results could not confirm an effect of geomorphometry alone on species richness and abundance, although floristic composition was significantly influenced by profile curvature and elevation. Despite the relatively low variation in altitude at the study site, species were found to be sensitive to terrain peculiarities such as elevation and profile curvature, which can constrain particular ecologic niches and contribute to the spatial distribution patterns of species.  相似文献   

14.
Regeneration of the Brazilian Caatinga forest may be restricted by the naturally low diversity and density of fruit-eating animals, which has been aggravated by local faunal extinction induced by human activities. We made a preliminary evaluation of the potential seed-dispersal role of capuchin (Cebus apella libidinosus) and howler monkeys (Alouatta caraya) in Serra da Capivara National Park. The monkeys dispersed at least 26 species. Alouatta dispersed larger seeds than Cebus, and the two species apparently dispersed seeds in different local habitats. Seed dispersal by monkeys potentially makes a significant contribution to Caatinga regeneration.  相似文献   

15.
Forest succession was studied in four plots in former grasslands at the Ngogo study area in Kibale National Park, Uganda. The plots were located in areas that had been protected from fire for 0.58, 25, 9 and ≈30 years for plots 1, 2, 3 and 4, respectively. Species richness reflected the length of time that the plot had been protected from fire; it was highest in plot 4 and lowest in plot 1. Species density, stem density and basal area were all highest in plot 4 and lowest in plot 1. The species densities of plots 2 and 3 were not different. Similarly, plots 2 and 4 did not differ with regard to stem density or basal area. Animal seed dispersers played a vital role in the colonization of grasslands by forest tree species.  相似文献   

16.
西双版纳热带季节雨林的树种组成和群落结构动态   总被引:2,自引:0,他引:2  
胡跃华  曹敏  林露湘 《生态学报》2010,30(4):949-957
研究了西双版纳热带季节雨林1 hm2(hectare)动态监测样地1993年与2007年之间树种组成和群落结构的变化。对样地中胸径≥5 cm的乔木进行了每木调查。目前其树种组成的热带分布科、属所占比例分别为91%和94%,具有较高比例的热带植物区系性质。在1993年与2007年两次调查之间,树种数量由145种增至179种,仅有1到2个个体的稀有树种所占比例从54%降为51.1%。从森林的垂直结构来看,A、B、C三层的个体死亡率分别为12.8%、12.9%和19.0%,各层树木的增长率分别为-8.5%、-1.4%和44.8%。与此相对应,C层小径级的树木所占比例有较大提高。虽然小径级的树木在种类和数量上比例增大,但个体数量和种类组成相对稳定的A、B层优势树种变化不大,维持了群落结构的稳定性。14 a间,群落中新增加的具有先锋性质的树种不超过5个。1993年时,A、B两层尚有先锋树种存在,2007年已经从A、B两层中退出。因此,从14 a间树种组成和群落结构的变化来看,虽然具有树木的死亡和增补,但其物种成分和群落结构的总体格局没有明显的变化,处于动态平衡过程中。  相似文献   

17.
Despite the Amazon Forest being the largest tropical forest in the world, and cradle of rubber trees (Hevea brasiliensis), no studies have aimed to report the occurrence of mites associated with native trees from this ecosystem. Our survey investigates the phytoseiid mites associated with five species of native rubber trees from nine sites of the Amazon Forest, and also presents a major review of phytoseiid species from natural vegetation in Brazil. We found a total of 1305 mites, belonging to 30 species, of which seven were new to science, Amblydromalus akiri sp. nov., Amblyseius chicomendesi sp. nov., Amblyseius duckei sp. nov., Amblyseius manauara sp. nov., Iphiseiodes katukina sp. nov., Iphiseiodes raucuara sp. nov. and Typhlodromips igapo sp. nov.; beyond two new records for Brazil, Iphiseiodes kamahorae and Amblyseius martus. Our results emphasize the importance of Amazon native trees as an unexplored source of predator mites, which in turn may be further studied as biological control agents of pest mites on rubber trees. The impressive diversity, endemism and rate of new species found highlight the importance of studies on arthropod communities associated with the Amazon vegetation.  相似文献   

18.
19.
Mating system and pollen flow are two key elements to understand the genetic structure of tree species. Mating and pollen-dispersal patterns of a low-density population of bat pollinated Hymanea courbaril were examined before logging in a 546-ha plot in the Brazilian Amazon. The multilocus genotypes of nine microsatellite loci were determined for 130 adult-trees and 367 seeds collected from 20 seed-trees. Mating system analysis, using mixed-mating model and paternity analysis showed that the studied population is perfectly outcrossed ( tm = 1.002), and probably self-incompatible. However, significant deviations from random mating were detected for mating among relatives ( tm − ts = 0.096, P < 0.05) and correlated matings ( rp = 0.289, P < 0.05), indicating inbreeding in the population and that part of offspring are full-sibs (28.9%). Inbreeding was reflected in the positive and significant fixation index observed in adult trees ( F = 0.137, P < 0.05), although no significant inbreeding was detected in offspring ( F = 0.074, P > 0.05). The effective number of pollen donors mating with each seed-tree was determined to be low ( Nep ≈ 4). The average of pollen flow distance was measured inside of the plot by both paternity (827 ± 429 m) and TwoGener analysis (115–363 m). However, this underestimated pollen dispersal distance, since the detected rate of pollen immigration inside of the plot was high (55%). The observed long-pollen dispersal distance is probably related to pollination by bats and the low density of reproductive trees in the site.  相似文献   

20.
A permanent plot of 30 ha (600 × 500 m2) was established for long-term ecological research on biodiversity and forest functioning in a tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats. This paper gives the results of the first census of trees in the 30 ha plot. All trees 30 cm gbh were permanently tagged with sequentially numbered aluminium tags and their girth measured. 148 tree species (in 120 genera and 49 families) were enumerated in a total sample of 13,393 individuals. Species diversity, density and dispersion patterns were determined. The mean species richness, density and basal area per hectare were 65 species, 446 stems and 36.26 m2 respectively. The Sorensen similarity index for thirty 1-ha subplots varied from 0.7 to 0.9, indicating the homogeneity in species composition of the stand. The pronounced species hierarchy has resulted in the dominance of four species that occupy four different forest storeys: Drypetes longifolia (lower storey) Reinwardtiodendron anamallayanum (middle storey), Poeciloneuron indicum (upper storey) and Dipterocarpus indicus (emergent). The forest was dominated by Euphorbiaceae in terms of richness (18 species) and abundance of species (3788 stems), and Dipterocarpaceae based on the contribution to basal area (18.4%). Species richness and density decreased with increasing girth-class. Girth class frequency of the stand exhibited an expanding population of trees. Twenty-nine tree species, analysed for spatial dispersion at 1-ha scale, exhibited both clumped and uniform patterns, except Vateria indica which was randomly distributed in one hectare. Repeat census scheduled for subsequent years, will elucidate the behaviour of the individual species and the population dynamics of the tree flora and will be useful for forest conservation and management. It will also help to monitor human activity within this forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号