首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major uncertainty in automated radio‐telemetry studies of small birds is the detection range of receiving antennas. We compared simultaneous daytime detections (± 30 s) by automated and manual radio‐telemetry to assess detection probability and the proportion of transmissions detected for birds on migratory stopover as a function of distance, foraging guild (Black‐throated Blue Warblers, Setophaga caerulescens, and Yellow‐rumped Warblers, Dendroica coronata coronata, represented mid‐canopy foliage gleaners and White‐throated Sparrows, Zonotrichia albicollis, represented a ground forager), habitat type, meteorological variables, tower antenna number (1–4), and the position of a bird relative to the receiving antenna's bearing (offset angle). Our study was conducted at a migratory stopover site in southern Ontario, Canada. Most detections were in dense to sparse forest, and all individuals were within 1.03 km of the automated receiving station. Daily detection probability was near 100% for both foraging guilds. However, within 30 s before and after a manual radio‐telemetry location was made, detection probability and the proportion of transmissions detected by automated radio‐telemetry declined with distance, was higher for warblers than sparrows, and was lowest for 90° offset angles. Our results suggest that when research goals do not require detections with high temporal frequency, e.g., estimation of departure date or daily departure probability, our study design had an effective detection range of at least 1 km. However, where temporal precision is required, e.g., to investigate movements and changes in activity levels during stopover, detection range was ~300 m for ground‐foraging sparrows and 600 m for mid‐canopy foraging warblers, which is much lower than the presumed detection range of antennas under optimal conditions (15 km). This corresponds to a spatial area of coverage for forest‐dwelling birds of ~0.3–1.1 km2. Our results suggest that to optimally configure an automated radio‐telemetry array at the regional scale, investigators should carefully consider detection range and its underlying covariates, including species type, the habitat matrix, and the orientation of antennas relative to preferred habitat.  相似文献   

2.
In this study, we aimed to research the effects of class‐I HDACs and glucose on differentiation of pancreatic islet derived mesenchymal stem cells (PI‐MSCs) to beta cells. Beta cell differentiation determined by flow cytometric analysis and gene expression levels of PDX1, PAX4, PAX6, NKX6.1, NGN3, INS2, and GLUT2. As a result the valproic acid, is an inhibitor of class‐I HDACs, caused the highest beta cell differentiation in PI‐MSCs. However, the cells in this group were at early stages of differentiation. Glucose co‐administration to this group carried the differentiation to higher levels, but these newly formed beta cells were not functional. Moreover, reduction in the levels of pluripotency factors that Oct3/4, c‐Myc, and Nanog were parallel to beta cell differentiation. Also, the levels of HDAC1 and acetylated H3/H4 were increased and methylated H3 was decreased by VPA treatment. In addition, we have detected over expression in genes of miR‐18a‐5p, miR‐19b‐5p, miR‐30d‐3p, miR‐124, miR‐146a‐5p, miR‐184, miR‐335, and miR‐433‐5p in parallel to beta cell differentiation. As the conclusion, this study is important for understanding the epigenetic mechanism that controls the beta cell differentation and it suggests new molecules that can be used for diagnosis, and treatment of diabetes. J. Cell. Biochem. 119: 455–467, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
Fish morphology is often constrained by a trade‐off between optimizing steady vs. unsteady swimming performance due to opposing effects of caudal peduncle size. Lotic environments tend to select for steady swimming performance, leading to smaller caudal peduncles, whereas predators tend to select for unsteady swimming performance, leading to larger caudal peduncles. However, it is unclear which aspect of performance should be optimized across heterogeneous flow and predation environments and how this heterogeneity may affect parallel phenotypic evolution. We investigated this question among four Gambusia species in north‐eastern Mexico, specifically the riverine G. panuco, the spring endemics G. alvarezi and G. hurtadoi, and a fourth species, G. marshi, found in a variety of habitats with varying predation pressure in the Cuatro Ciénegas Basin and Río Salado de Nadadores. We employed a geometric morphometric analysis to examine how body shapes of both male and female fish differ among species and habitats and with piscivore presence. We found that high‐predation and low‐predation species diverged morphologically, with G. marshi exhibiting a variable, intermediate body shape. Within G. marshi, body morphology converged in high‐predation environments regardless of flow velocity, and fish from high‐predation sites had larger relative caudal peduncle areas. However, we found that G. marshi from low‐predation environments diverged in morphology between sub‐basins of Cuatro Ciénegas, indicating other differences among these basins that merit further study. Our results suggest that a morphological trade‐off promotes parallel evolution of body shape in fishes colonizing high‐predation environments and that changing predation pressure can strongly impact morphological evolution in these species.  相似文献   

4.
Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame‐to‐frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB‐based image processing package well‐suited to quantitative analysis of high‐throughput live‐cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine‐learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame‐to‐frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell‐cycle dynamics in bacteria as well as cell‐contact mediated phenomena. This package has a range of built‐in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution.  相似文献   

5.

With the advent of modern genetic engineering methods, microcultivation systems have become increasingly important tools for accelerated strain phenotyping and bioprocess engineering. While these systems offer sophisticated capabilities to screen batch processes, they lack the ability to realize fed-batch processes, which are used more frequently in industrial bioprocessing. In this study, a novel approach to realize a feedback-regulated enzyme-based slow-release system (FeedER), allowing exponential fed-batch for microscale cultivations, was realized by extending our existing Mini Pilot Plant technology with a customized process control system. By continuously comparing the experimental growth rates with predefined set points, the automated dosage of Amyloglucosidase enzyme for the cleavage of dextrin polymers into d-glucose monomers is triggered. As a prerequisite for stable fed-batch operation, a constant pH is maintained by automated addition of ammonium hydroxide. We show the successful application of FeedER to study fed-batch growth of different industrial model organisms including Corynebacterium glutamicum, Pichia pastoris, and Escherichia coli. Moreover, the comparative analysis of a C. glutamicum GFP producer strain, cultivated under microscale batch and fed-batch conditions, revealed two times higher product yields under slow growing fed-batch operation. In summary, FeedER enables to run 48 parallel fed-batch experiments in an automated and miniaturized manner, and thereby accelerates industrial bioprocess development at the screening stage.

  相似文献   

6.
The TNF receptor family member BAFFR is essential for providing mature B cells with pro‐survival signals and has recently been claimed to transduce these, though not exclusively, via a Syk‐dependent signaling hub that feeds into ERK/AKT activation. In this issue of The EMBO Journal, Hobeika et al (2015) describe a synergistic pro‐survival scenario involving BAFFR and CD19, which remains functional under Syk null conditions and is able to maintain mature B‐cell survival. The authors hence propose a BAFFR‐/CD19‐driven mechanism to act in parallel with homeostatic NF‐κB/AKT activation in non‐stimulated B cells.  相似文献   

7.
8.
Five new oleanane‐type saponins, hirsutosides A – E, were isolated from the leaves of Glochidion hirsutum (Roxb .) Voigt . Their structures were elucidated as 21β‐benzoyloxy‐3β,16β,23,28‐tetrahydroxyolean‐12‐ene 3‐O‐β‐d ‐glucopyranoside ( 1 ), 21β‐benzoyloxy‐3β,16β,23,28‐tetrahydroxyolean‐12‐ene 3‐O‐β‐d ‐glucopyranosyl‐(1 → 3)‐β‐d ‐glucopyranoside ( 2 ), 21β‐benzoyloxy‐3β,16β,23,28‐tetrahydroxyolean‐12‐ene 3‐O‐6‐acetyl‐[β‐d ‐glucopyranosyl‐(1 → 3)]‐β‐d ‐glucopyranoside ( 3 ), 21β‐benzoyloxy‐3β,16β,23,28‐tetrahydroxyolean‐12‐ene 3‐O‐β‐d ‐glucopyranosyl‐(1 → 3)‐〈‐l ‐arabinopyranoside ( 4 ), and 21β‐benzoyloxy‐3β,16β,23‐trihydroxyolean‐12‐ene‐28‐al 3‐O‐β‐d ‐glucopyranosyl‐(1 → 3)‐α‐l ‐arabinopyranoside ( 5 ). All isolated compounds were evaluated for cytotoxic activities on four human cancer cell lines, HepG‐2, A‐549, MCF‐7, and SW‐626 using the SRB assay. Compounds 1 , 2 , 4 , and 5 showed significant cytotoxic activities against all human cancer cell lines with IC50 values ranging from 3.4 to 10.2 μm . Compound 3 containing acetyl group at glc C(6″) exhibited weak cytotoxic activity with IC50 values ranging from 47.0 to 54.4 μm .  相似文献   

9.
Species belonging to the potentially harmful diatom genus Pseudo‐nitzschia, isolated from 16 localities (31 sampling events) in the coastal waters of south‐eastern Australia, were examined. Clonal isolates were characterized by (i) light and transmission electron microscopy; (ii) phylogenies, based on sequencing of nuclear‐encoded ribosomal deoxyribonucleic acid (rDNA) regions and, (iii) domoic acid (DA) production as measured by liquid chromatography–mass spectrometry (LC‐MS/MS). Ten taxa were unequivocally confirmed as Pseudo‐nitzschia americana, P. arenysensis, P. calliantha, P. cuspidata, P. fraudulenta, P. hasleana, P. micropora, P. multiseries, P. multistriata, and P. pungens. An updated taxonomic key for south‐eastern Australian Pseudo‐nitzschia is presented. The occurrence of two toxigenic species, P. multistriata (maximum concentration 11 pg DA per cell) and P. cuspidata (25.4 pg DA per cell), was documented for the first time in Australia. The Australian strains of P. multiseries, a consistent producer of DA in strains throughout the world, were nontoxic. Data from 5,888 water samples, collected from 31 oyster‐growing estuaries (2,000 km coastline) from 2005 to 2009, revealed 310 regulatory exceedances for “Total Pseudo‐nitzschia,” resulting in six toxic episodes. Further examination of high‐risk estuaries revealed that the “P. seriata group” had highest cell densities in the austral summer, autumn, or spring (species dependent), and lowest cell densities in the austral winter, while the “P. delicatissima group” had highest in winter and spring.  相似文献   

10.
The burgeoning pipeline for new biologic drugs has increased the need for high‐throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250‐mL automated mini bioreactor (ambr250?) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24‐bioreactor ambr250? system with 10‐factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory‐scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late‐stage characterization. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1388–1395, 2015  相似文献   

11.
A cell line named PVRSV1D11 secreting monoclonal antibody (McAb) against the prokaryotically expressed coat protein (CP) of Prunus necrotic ringspot virus (PNRSV) was developed using hybridoma technology including animal immunization, cell fusion, cell line culture and enzyme‐linked immunosorbent assay (ELISA)‐based for screening. The specificity, titre and detection sensitivity of the McAb were determined by indirect ELISA to establish optimal conditions. The antibody reacted strongly with PNRSV and showed no cross‐reactions with the proteins of Plum pox virus, Prunus dwarf virus, Apple stem pitting virus, Apple stem grooving virus, Apple mosaic virus or Apple chlorotic leafspot virus. The ascites developed with PNRSV1D11 cell line showed high absorbance until it was diluted to over 6.6 × 107 fold. The McAb belonged to IgG2a isotype and was diluted by 1.28 × 105 folds as an optimal detection concentration. The detection sensitivity of the monoclonal antibody was 11.7 ng/ml protein of PNRSV. The results indicated that the McAb against the CP of PNRSV is suitable for PNRSV detection in the plants and for monitoring the dynamics of the virus by using indirect ELISA.  相似文献   

12.
We identified and investigated the potential toxicity of oceanic Pseudo‐nitzschia species from Ocean Station Papa (OSP), located in a high‐nitrate, low‐chlorophyll (HNLC) region of the northeast (NE) subarctic Pacific Ocean. Despite their relatively low abundances in the indigenous phytoplankton assemblage, Pseudo‐nitzschia species richness is high. The morphometric characteristics of five oceanic Pseudo‐nitzschia isolates from at least four species are described using SEM and TEM. The species identified are Pseudo‐nitzschia dolorosa Lundholm et Moestrup, P. granii Hasle, P. heimii Manguin, and P. cf. turgidula (Hust.) Hasle. Additional support for the taxonomic classifications based on frustule morphology is provided through the sequencing of the internal transcribed spacer 1 (ITS1) rDNA. Pseudo‐nitzschia species identification was also assessed by the construction of ITS1 clone libraries and using automated ribosomal intergenic spacer analysis (ARISA) for environmental samples collected during the Subarctic Ecosystem Response to Iron Enrichment Study (SERIES), conducted in close proximity to OSP in July of 2002. Based on ITS1 sequences, the presence of P. granii, P. heimii, P. cf. turgidula, and at least five other putative, unidentified Pseudo‐nitzschia ITS1 variants was confirmed within iron‐enriched phytoplankton assemblages at OSP. None of the oceanic isolates produced detectable levels of particulate domoic acid (DA) when in prolonged stationary phase due to silicic acid starvation. The lack of detectable concentrations of DA suggests that either these strains produce very little or no toxin, or that the physiological conditions required to promote particulate DA production were not met and thus differ from their coastal, toxigenic congeners.  相似文献   

13.
We developed an automated quantification workflow for PRM‐enabled detection of D3‐Leu labeled apoA‐I in high‐density lipoprotein (HDL) isolated from humans. Subjects received a bolus injection of D3‐Leu and blood was drawn at eight time points over three days. HDL was isolated and separated into six size fractions for subsequent proteolysis and PRM analysis for the detection of D3‐Leu signal from ~0.03 to 0.6% enrichment. We implemented an intensity‐based quantification approach that takes advantage of high‐resolution/accurate mass PRM scans to identify the D3‐Leu 2HM3 ion from non‐specific peaks. Our workflow includes five modules for extracting the targeted PRM peak intensities (XPIs): Peak centroiding, noise removal, fragment ion matching using Δm/z windows, nine intensity quantification options, and validation and visualization outputs. We optimized the XPI workflow using in vitro synthesized and clinical samples of D0/D3‐Leu labeled apoA‐I. Three subjects’ apoA‐I enrichment curves in six HDL size fractions, and LCAT, apoA‐II and apoE from two size fractions were generated within a few hours. Our PRM strategy and automated quantification workflow will expedite the turnaround of HDL apoA‐I metabolism data in clinical studies that aim to understand and treat the mechanisms behind dyslipidemia.  相似文献   

14.
Four new tirucallane triterpenoids, (21S,23R,24R)‐21,23‐epoxy‐21,24‐dihydroxy‐25‐methoxytirucall‐7‐en‐3‐one ( 2 ), (3S,21S,23R,24S)‐21,23‐epoxy‐21,25‐dimethoxytirucall‐7‐ene‐3,24‐diol ( 8 ), (21S,23R,24R)‐21,23‐epoxy‐24‐hydroxy‐21‐methoxytirucalla‐7,25‐dien‐3‐one ( 11 ), and (21S,23R,24R)‐21,23‐epoxy‐21,24‐dihydroxytirucalla‐7,25‐dien‐3‐one ( 12 ), along with 16 known analogues, 1 , 3  –  7 , 9  –  10 , and 13  –  20 , were isolated from the fruits of Melia azedarach. Their structures were elucidated by spectroscopic methods including 1D‐ and 2D‐NMR techniques and mass spectrometry. These compounds were evaluated for their cytotoxicities against HepG2 (liver), SGC7901 (stomach), K562 (leukemia), and HL60 (leukemia) cancer cell lines. Compound 20 exhibited potent cytotoxicity against HepG2 and SGC7901 cancer cells with the IC50 values of 6.9 and 6.9 μm , respectively.  相似文献   

15.
About 5 per cent of follicular lymphoma (FL) cases are double‐hit (DH) lymphomas. Double‐hit follicular lymphoma (DHFL) cell lines can improve our understanding and drug development on FL. But there are only few DHFL cell lines. Here, we established a new MYC/BCL2 DHFL cell line, FL‐SJC. The cells were obtained from the hydrothorax of a patient with MYC/BCL2 DHFL and cultured for 140 passages in vitro. FL‐SJC cells demonstrated CD19++, CD20+, CD22++, HLA‐DR+, CD10+, CD38+, Lambda+ CD23, CD5 and Kappa. The chromosome karyotypic analysis confirmed the co‐existence of t(8;22)(q24;q11) and t(14;18)(q32;q21), as well as additional abnormalities involving chromosomes 2 and 3. Fluorescence in situ hybridization analysis (FISH) showed IGH/BCL2 fusion gene and the MYC rearrangement. In addition, the FL‐SJC cells displayed KMT2D/MLL2 and CREBBP gene mutations. After subcutaneous inoculation of FL‐SJC cells, the SCID mice developed solid tumour masses within 6‐8 weeks. FL‐SJC cells were proven to be free of Epstein‐Barr (EB) virus infection and be multidrug‐resistant. In a conclusion, the FL‐SJC cell line has been identified as a novel MYC/BCL2 double‐hit follicular lymphoma that can be used as a potentially available tool for the clinical and basic research, together with the drug development for MYC/BCL2 DHFL.  相似文献   

16.
Using an automated cell counting technique developed previously (Case et al., Ecology and Evolution 2014; 4: 3494), we explore the lifespan effects of lac‐1, a ceramide synthase gene paralogous to lag‐1 in Neurospora crassa in conjunction with the band bd (ras‐1) gene. We find that the replicative lifespan of a lac‐1KO bd double mutants is short, about one race tube cycle, and this double mutant lacks a strong ~21‐hr clock cycle as shown by race tube and fluorometer analysis of fluorescent strains including lac‐1KO. This short replicative lifespan phenotype is contrasted with a very long estimated chronological lifespan for lac‐1KO bd double mutants from 247 to 462 days based on our regression analyses on log viability, and for the single mutant lac‐1KO, 161 days. Both of these estimated lifespans are much higher than that of previously studied WT and bd single mutant strains. In a lac‐1 rescue and induction experiment, the expression of lac‐1+ as driven by a quinic acid‐dependent promoter actually decreases the median chronological lifespan of cells down to only 7 days, much lower than the 34‐day median lifespan found in control bd conidia also grown on quinic acid media, which we interpret as an effect of balancing selection acting on ceramide levels based on previous findings from the literature. Prior work has shown phytoceramides can act as a signal for apoptosis in stressed N. crassa cells. To test this hypothesis of balancing selection on phytoceramide levels, we examine the viability of WT, lag‐1KO bd, and lac‐1KO bd strains following the dual stresses of heat and glycolysis inhibition, along with phytoceramide treatments of different dosages. We find that the phytoceramide dosage–response curve is altered in the lag‐1KO bd mutant, but not in the lac‐1KO bd mutant. We conclude that phytoceramide production is responsible for the previously reported longevity effects in the lag‐1KO bd mutant, but a different ceramide may be responsible for the longevity effect observed in the lac‐1KO bd mutant.  相似文献   

17.
The biological clock affects aging through ras‐1 (bd) and lag‐1, and these two longevity genes together affect a clock phenotype and the clock oscillator in Neurospora crassa. Using an automated cell‐counting technique for measuring conidial longevity, we show that the clock‐associated genes lag‐1 and ras‐1 (bd) are true chronological longevity genes. For example, wild type (WT) has an estimated median life span of 24 days, while the double mutant lag‐1, ras‐1 (bd) has an estimated median life span of 120 days for macroconidia. We establish the biochemical function of lag‐1 by complementing LAG1 and LAC1 in Saccharomyces cerevisiae with lag‐1 in N. crassa. Longevity genes can affect the clock as well in that, the double mutant lag‐1, ras‐1 (bd) can stop the circadian rhythm in asexual reproduction (i.e., banding in race tubes) and lengthen the period of the frequency oscillator to 41 h. In contrast to the ras‐1 (bd), lag‐1 effects on chronological longevity, we find that this double mutant undergoes replicative senescence (i.e., the loss of replication function with time), unlike WT or the single mutants, lag‐1 and ras‐1 (bd). These results support the hypothesis that sphingolipid metabolism links aging and the biological clock through a common stress response  相似文献   

18.
The planktonic dinoflagellate Ptychodiscus noctiluca combined distinctive morphological features such as a disk‐shaped anteroposteriorly compressed cell body and an apical carina, together with a flexible and tough cell covering, suggesting intermediate characteristics between thecate and naked dinoflagellates. Ptychodiscus noctiluca was examined by light, epifluorescence, and scanning electron microscopy from specimens collected in the Mediterranean Sea and the North and South Atlantic Ocean. Ptychodiscus noctiluca showed a straight apical groove that bisected the carina, a cell covering with a polygonal surface reticulum, nucleus without capsule, sulcal intrusion in the episome, sulcal ventral flange, and yellowish‐green chloroplasts that are shared characters with Brachidinium/Karenia. The cell division was the typical binary fission of gymnodinioid dinoflagellates, although exceptionally in an oblique transversal axis. We examined the intraspecific variability during incubation experiments. In the fattened cells, termed as Ptychodiscus carinatus, chloroplasts transformed into dark granules, and the cell acquired the swollen and smaller stage, termed as P. inflatus. Ptychodiscus carinatus, P. inflatus, and Diplocystis antarctica are synonyms of P. noctiluca. Molecular phylogeny based on the SSU rDNA sequence revealed that Ptychodiscus branched within the short‐branching dinokaryotic dinoflagellates as an independent lineage with affinity to Brachidinium/Karenia and Karlodinium/Takayama in a generally poorly resolved clade. Our results indicated that the order Ptychodiscales, established for unarmored dinoflagellates with a strongly developed pellicle, has artificially grouped thecate dinoflagellates (Kolkwitziella, Herdmania), naked dinoflagellates with thick cell covering (Balechina, Cucumeridinium) and other insufficiently known unarmored genera with typical cell coverings (Brachidinium, Ceratoperidinium).  相似文献   

19.
Oncostatin M (OSM) is a pleiotropic cytokine within the interleukin six family of cytokines, which regulate cell growth and differentiation in a wide variety of biological systems. However, its action and underlying mechanisms on stem Leydig cell development are unclear. The objective of the present study was to investigate whether OSM affects the proliferation and differentiation of rat stem Leydig cells. We used a Leydig cell regeneration model in rat testis and a unique seminiferous tubule culture system after ethane dimethane sulfonate (EDS) treatment to assess the ability of OSM in the regulation of proliferation and differentiation of rat stem Leydig cells. Intratesticular injection of OSM (10 and 100 ng/testis) from post‐EDS day 14 to 28 blocked the regeneration of Leydig cells by reducing serum testosterone levels without affecting serum luteinizing hormone and follicle‐stimulating hormone levels. It also decreased the levels of Leydig cell‐specific mRNAs (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1 and Hsd11b1) and their proteins by the RNA‐Seq and Western blotting analysis. OSM had no effect on the proliferative capacity of Leydig cells in vivo. In the seminiferous tubule culture system, OSM (0.1, 1, 10 and 100 ng/mL) inhibited the differentiation of stem Leydig cells by reducing medium testosterone levels and downregulating the expression of Leydig cell‐specific genes (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1 and Hsd11b1) and their proteins. OSM‐mediated action was reversed by S3I‐201 (a STAT3 antagonist) or filgotinib (a JAK1 inhibitor). These data suggest that OSM is an inhibitory factor of rat stem Leydig cell development.  相似文献   

20.
Roughly 200 000 000 people in 74 countries infected with schistosomes all share the fact that they came in contact freshwater harbouring infected snails. The aim of the study is to characterize the microbiota of wild and laboratory‐reared snails of Biomphalaria glabrata from Pernambuco, Brazil. The microbiota of these molluscs was identified biochemically by the VITEK 2 automated microbiological system. Antimicrobial susceptibility testing was carried out by the disc diffusion method with ß‐lactam antibiotics, aminoglycosides, quinolones, folate pathway inhibitors, fenicols and tetracyclines. The results showed that all bacteria identified were gram‐negative, including 11 bacterial genera: Aeromonas, Citrobacter, Enterobacter, Cupriavidus, Rhizobium, Stenotrophomonas, Pseudomonas, Klebsiella, Acinetobacter, Vibrio and Sphingomonas. Regarding the antimicrobial susceptibility, all the isolates exhibited resistance to amoxicillin and sensitivity to meropenem (beta‐lactam antimicrobials). The microbiota of the wild snails consisted predominantly of Enterobacter cloacae, while the laboratory‐reared snails predominantly showed Citrobacter freundii and Aeromonas sobria.

Significance and Impact of the Study

Biomphalaria glabrata is a Brazilian freshwater Planorbidae of great medical relevance as an intermediate host of Schistosoma mansoni. About a month after being infected by one or more miracidia larvae of a compatible schistosome, B. glabrata sheds thousands of cercariae into the water where they seek human skin and, if successful, penetrate to establish infection, eventually taking up residence and maturing in blood vessels of the small intestine. Results obtained from this study aim at targeting novel biological control strategies for schistosomiasis such as paratransgenesis. This is the first study on the microbiota of B. glabrata from Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号