首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnitude and extent of global change during the Cenozoic is remarkable, yet the impacts of these global changes on the biodiversity and evolutionary dynamics of species diversification remain poorly understood. To investigate this question, we combine paleontological and neontological data for the angiosperm order Fagales, an ecologically important clade of about 1370 species of trees with an exceptional fossil record. We show differences in patterns of accumulation of generic diversity, species richness, and turnover rates for Fagales. Generic diversity evolved rapidly since the Late Cretaceous and peaked during the Eocene or Oligocene. Turnover rates were high during periods of extreme global climate change, but relatively low when the climate remained stable. Species richness accumulated gradually throughout the Cenozoic, possibly at an accelerated pace after the Middle Miocene. Species diversification occurred in new environments: Quercoids radiating in Oligocene subtropical seasonally arid habitats, Casuarinaceae in Australian pyrophytic biomes, and Betula in Late Neogene holarctic habitats. These radiations were counterbalanced by regional extinctions in Late Neogene mesic warm‐temperate forests. Thus, the overall diversification at species level is linked to regional radiations of clades with appropriate ecologies exploiting newly available habitats.  相似文献   

2.
Dipodoidea are a diverse rodent group whose earliest known record is from the Middle Eocene. The evolution and diversification of this superfamily have been documented by fossils and comparative morphology, but have not yet been studied from the perspective of molecular phylogeny. This study is the first attempt to reconstruct an extensive phylogeny of Dipodidae and estimate divergence times based on a nuclear gene coding for interphotoreceptor retinoid-binding protein. We found that there is a wide measure of agreement with the fossil record. Each of the three ecological groups of the extant Dipodoidea (sicistines, zapodines, and jerboas) has its distinctive distribution; the distribution patterns have been shaped by the dispersal events. The key events of paleogeographic distribution coincided with major paleoenvironmental events in the Cenozoic. The first important diversification phase occurred during the period from the Oligocene to Early Miocene, when global climate underwent major changes beginning with the Eocene/Oligocene boundary. The second adaptive radiation occurred within jerboas and was associated with the expansion of open habitat starting with the late Middle Miocene. The diversification of jerboas can be correlated with habitat changes in response to global and regional climatic events.  相似文献   

3.
There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing.  相似文献   

4.
Using molecular phylogenetic data and methods we inferred divergence times and diversification patterns for the weevil subfamily Ceutorhynchinae in the context of host‐plant associations and global climate over evolutionary time. We detected four major diversification shifts that correlate with both host shifts and major climate events. Ceutorhynchinae experienced an increase in diversification rate at ~53 Ma, during the Early Eocene Climate Optimum, coincident with a host shift to Lamiaceae. A second major diversification phase occurred at the end of the Eocene (~34 Ma). This contrasts with the overall deterioration in climate equability at the Eocene‐Oligocene boundary, but tracks the diversification of important host plant clades in temperate (higher) latitudes, leading to increased diversification rates in the weevil clades infesting temperate hosts. A third major phase of diversification is correlated with the rising temperatures of the Late Oligocene Warming Event (~26.5 Ma); diversification rates then declined shortly after the Middle Miocene Climate Transition (~14.9 Ma). Our results indicate that biotic and abiotic factors together explain the evolution of Ceutorhynchinae better than each of these drivers viewed in isolation.  相似文献   

5.
The palaeoenvironmental reconstruction of central Tibet is key to understanding the uplift history of the Tibetan Plateau, which had a profound influence on Cenozoic global climate and biotic change. Here we report an amber layer from the lower part of the Dingqing Formation (late Oligocene) in Lunpola of central Tibet, which is the first record of amber from Tibet. Herein we find that Lunpola amber is derived from dipterocarp trees, as determined by gas chromatography-mass spectrometry, which are restricted to and dominant in Asian rainforest nowadays. This amber forest represents the northernmost dipterocarp forest and is consistent with the hypothesis of out-of-India dispersal of Asian dipterocarps. The Lunpola amber most probably was derived from the lower part of the Niubao Formation (early–middle Eocene) and suggests a tropical/subtropical wet forest was present in central Tibet at least before the late Oligocene (probably early–middle Eocene).  相似文献   

6.
Yufa Luo  Shuqiang Li 《Ecography》2018,41(2):414-423
Stedocys spitting spiders (Araneae: Scytodidae) inhabit subterranean environments and have poor dispersal abilities. The Cenozoic Indian–Eurasian collision affected the regional biota of this genus, which occurs in parts of Indochina. Phylogeographical pattern of Stedocys based on multigene DNA sequence datasets reveals how tectonic history drove four biological splits. The first split dates to the late Paleocene–Eocene and involves the Truong Son Mountain Range and Mekong River. The other splits associate with the Eocene–Oligocene transition, including the Tonkin (Beibu) Gulf, the Ma River, and the Red River. These events indicate four early uplifts of the Himalayas and Tibetan Plateau. Our results cannot reject the hypothesis that uplifting of the Himalayas and Tibetan Plateau region due to crustal thickening and the lateral extrusion of Indochina occurred synchronously during the Paleocene–Oligocene transition in reaction to the Indian–Eurasian collision. Species of Stedocys cluster into groups I and II. Their evolution involves one dispersal and four vicariance events, which formed the following five Indochinese clades: Hainan clade (I‐1); western Yunnan and central Laos clade (I‐2); central Vietnam clade (I‐3); northern Vietnam and southwestern China clade (I‐4); and Thailand clade (II‐1). The lateral extrusion of Indochina is the driver of these events. The drifting of Hainan Island to its present location owes to its southeastern movement from continental Vietnam and Guangxi, China around the Eocene–Oligocene boundary. This biogeographical pattern highlights the significant role geography plays in shaping evolutionary history in southeastern Asia. It also illuminates how the timing of geological events drives the distributions of species.  相似文献   

7.
Phylogeographic studies have made a significant contribution to the interpretation of genetic lineage distribution in response to climate changes, such as during glaciation events of the Neogene. However, the effects of ancient landscapes associated with global sea level rises, tectonic processes, and climatology driving lineage evolution have been largely overlooked. These effects can be tested in widespread lineages of cold‐tolerant species that have endured cooling, and thus, phylogeographic patterns may reflect large‐scale processes that were not reset by the ice ages. We hereby combine geological evidence from marine sedimentary basins, Andean orogeny, and climatology with molecular dating and statistical phylogeography to infer how geological and climatic processes affected the distribution of lineages in cold‐tolerant Nothofagus species during the Cenozoic. A total of 239 populations along the entire range of all species within the genus Nothofagus (N. antarctica, N. betuloides, N. dombeyi, N. nitida, and N. pumilio) were sampled and analyzed by sequencing three non‐coding regions of the chloroplast. We found 30 chloroplast DNA haplotypes that were geographically structured. Molecular dating calibrated with fossils revealed that ancestral lineages appeared in Eocene/Oligocene, whereas most divergences took place during the Miocene; in turn, Bayesian skyline plots showed that population expansion occurred in the Early Pleistocene (1.5–1 million years ago). Lineage divergence from all wide‐ranging Nothofagus was spatially and temporally concordant with episodic marine transgressions and warmer times in Patagonia during Eocene/Miocene Epochs. Long‐lasting stable raised areas preserved haplotype diversity throughout Patagonia, from where cold‐tolerant taxa expanded their ranges during pre‐Quaternary times. The detailed study of such ancient divergences is novel and allows us to infer the effects of geological processes on distribution patterns of ancient lineages, that is, phylogeology.  相似文献   

8.
Adaptation to cool environments is a common feature in the core group of the grass subfamily Pooideae (Triticeae and Poeae). This suggest an ancient evolutionary origin of low temperature stress tolerance dating back prior to the initiation of taxonomic divergence of core Pooideae species. Viewing the Pooideae evolution in a palaeo‐climatic perspective reveals that taxonomic divergence of the core Pooideae group initiated shortly after a global super‐cooling period at the Eocene–Oligocene boundary (~33.5–26 Ma). This global climate cooling altered distributions of plants and animals and must have imposed selection pressure for improved low temperature stress responses. Lineage‐specific gene family expansions are known to be involved in adaptation to new environmental stresses. In Pooideae, two gene families involved in low temperature stress response, the C‐repeat binding factor (CBF) and fructosyl transferase (FT) gene families, has undergone lineage‐specific expansions. We investigated the timing of these gene family expansions by molecular dating and found that Pooideae‐specific expansion events in CBF and FT gene families took place during Eocene–Oligocene super‐cooling period. We hypothesize that the E–O super‐cooling exerted selection pressure for improved low temperature stress response and frost tolerance in a core Pooideae ancestor, and that those individuals with multiple copies of CBF and FT genes were favoured.  相似文献   

9.
British Tertiary mammals are best represented in the Eocene and earliest Oligocene epochs. Additional occurrences are from the Miocene and Late Pliocene. The Eocene is marked by the occurrence of various extinct orders as well as the appearances of some of the earliest and must primitive artiodactyls and perissodactyls. The appearances in the Early Eocene and Early Oligocene represent major dispersal events, reflecting penecontemporaneous palaeogeographic changes. In the intervening timespan Britain was part of an European island, sharing its endemic terrestrial fauna. From the late Middle Eocene to earliest Oligocene, the British record is detailed enough to trace successive changes in the patterns of diversity and faunal turnover, which may relate to changing climate as well as to the dispersal events. It has been shown that changes in patterns of ecological diversity through the Eocene and earliest Oligocene match vegetational changes judged from plant fossils. They suggest a gradual transition from closed forest in the Early Eocene to a more open environment with reedmarsh and wooded patches by the end of the epoch.  相似文献   

10.
Animal richness, community composition, and phylogenetic community structure (PCS) vary across the modern landscape. Animal communities vary from phylogenetically clustered (i.e. higher relatedness amongst co‐occurring species than is expected by chance) to phylogenetically even (i.e. co‐occurring taxa are more distantly related than expected by chance), which is explained by abiotic or climatic filtering and competitive exclusion, respectively. Under this model, the contribution of historical origination and extinction events to modern animal PCS remains relatively unknown. Because origination and extinction determine the make‐up of the terrestrial community, the study of historical changes in animal PCS is tantamount to understanding formation of modern communities. In the present study, we test the effects of macroevolution and climate changes on ‘hoofed mammals’ (i.e. perissodactyl and artiodactyl) PCS from the late Cenozoic of North America because they experience large, phylogenetically dispersed extinctions of browsing species and phylogenetically dispersed originations of grazing species associated with the evolution of grassland ecosystems during the late Miocene. We show that the loss of numerically dominant nonhypsodont (putatively browsing and mixed feeding) clades and phylogenetically dispersed origination of less speciose clades following the mid Miocene climatic optimum led to an increase in phylogenetic evenness at the regional scale that is well explained by global climate changes. Phylogenetic evenness and a reduced richness during the late Cenozoic may have facilitated reduced niche overlap among co‐occurring hoofed mammal species as global climates cooled. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 485–494.  相似文献   

11.
The pattern of the evolutionary radiation of modern birds (Neornithes) has been debated for more than 10 years. However, the early fossil record of birds from the Paleogene, in particular, the Lower Eocene, has only recently begun to be used in a phylogenetic context to address the dynamics of this major vertebrate radiation. The Cretaceous-Paleogene (K-P) extinction event dominates our understanding of early modern bird evolution, but climate change throughout the Eocene is known to have also played a major role. The Paleocene and Lower Eocene was a time of avian diversification as a result of favourable global climatic conditions. Deteriorations in climate beginning in the Middle Eocene appear to be responsible for the demise of previously widespread avian lineages like Lithornithiformes and Gastornithidae. Other groups, such as Galliformes display replacement of some lineages by others, probably related to adaptations to a drier climate. Finally, the combination of slowly deteriorating climatic conditions from the Middle Eocene onwards, appears to have slowed the evolutionary rate in Europe, as avian faunas did not differentiate markedly until the Oligocene. Taking biotic factors in tandem with the known Paleogene fossil record of Neornithes has recently begun to illuminate this evolutionary event. Well-preserved fossil taxa are required in combination with ever-improving phylogenetic hypotheses for the inter-relationships of modern birds founded on morphological characters. One key avifauna of this age, synthesised for the first time herein, is the Lower Eocene Fur Formation of Denmark. The Fur birds represent some of the best preserved (often in three dimensions and with soft tissues) known fossil records for major clades of modern birds. Clear phylogenetic assessment of these fossils will prove critical for future calibration of the neornithine evolutionary timescale. Some early diverging clades were clearly present in the Paleocene as evidenced directly by new fossil material alongside the phylogenetically constrained Lower Eocene taxa. A later Oligocene radiation of clades other than Passeriformes is not supported by available fossil data.  相似文献   

12.
Cenozoic palaeoceanography of the Maude Rise, Weddell Sea, Antarctica, has been investigated using Palaeocene to Quaternary deep-sea ostracod faunas from 23 samples of ODP Site 689. The abundance of ostracods is high enough only during the Palaeogene (Palaeocene-Oligocene) to allow palaeoceanographical inferences based on changes in diversity, dominance, endemism and faunal turnover (first and last occurrences). The abundance is particularly high throughout the Palaeocene and Eocene, but declines irreversibly near the Eocene/Oligocene boundary. The diversity increases more or less continuously from the Early Palaeocene to the Middle Eocene, and then it generally decreases throughout the remaining part of the Palaeogene (Middle Eocene-Oligocene); an exception is a positive peak in the Shannon-Weaver index in a single sample in the Late Oligocene. No positive peaks in diversity and taxa originations (first occurrences) at c. 40-38 Ma, occurs at Site 689; so the site provides no evidence for the establishment of the psychrosphere at this time. This corroborates similar regional results from an earlier study of benthonic foraminifera. Explanations for this may be related to Late Eocene-Early Oligocene changes in sedimentology and clay-mineralogy (associated with the progressive cooling of the Antarctica) which could have negatively affected abundance and diversity locally at Site 689. Alternatively, by this time, the ostracod fauna could also have been subjected to selective removal (with possible local extinction) of taxa (due to increased ventilation) or to thanatocoenosis dissolution (due to a decrease in temperature and availability of CaCO3). A further possibility may be related to the fact that Site 689 was at intermediate water depths and may have remained within older water masses near the Eocene/Oligocene boundary. Failing these explanations, the results could indicate that the Late Eocene-Early Oligocene palaeoenvironmental changes in the world oceans were more gradual and occurred over a longer time interval than the global ostracod data show, at least at southern high latitudes.  相似文献   

13.
Deep-sea drilling at high latitudes of the Southern Hemispheres has provided almost the only available data to evaluate the biogeographic development of the planktonic biota in the Southern Ocean during the Cenozoic (65 m.y. to Present Day). Paleontological investigations on Deep Sea Drilling Project (DSDP) materials have shown that the development of Cenozoic planktonic biogeography of the Southern Ocean is intimately linked with the evolution of the Southern Ocean water masses themselves. During the Cenozoic, this has included the development of the Circum-Antarctic Current system as obstructing land masses moved apart, the refrigeration and later extensive glaciation of the continent, and the development of the Antarctic Convergence (Polar Front) with related oceanic upwelling.Almost all evolution of calcareous planktonic microfossils has occurred outside of the Antarctic—Subantarctic region followed by limited migration into these water masses. Virtually no endemism occurs amongst calcareous microfossil groups at these latitudes. In contrast, conspicuous and widespread evolution has occurred within the siliceous microfossil groups especially during the Neogene. Low diversity and differences in stratigraphic ranges of Antarctic calcareous microfossils makes them only broadly useful for correlation. Relatively higher diversities within the Subantarctic provide a firmer basis for more detailed correlation, although the ranges of fossils are often different than at lower latitudes because of different paleoceanographic and paleoclimatic controls. Within the Antarctic water mass south of the Antarctic Convergence, siliceous microfossilsbiostratigraphy, oxygen isotopic stratigraphy and magnetostratigraphy, provide the only firm basis for correlation with low-latitude sequences.Eocene (55-38 Ma) sediments contain abundant calcareous microfossils even closely adjacent to the continent. Antarctic calcareous planktonic microfossils of this age exhibit relative high diversity, although this is lower than assemblages of equivalent age at middle and low latitudes. Within the Subantarctic region, Eocene planktonic foraminifera exhibit strong affinities with those in the temperate regions. Biogeographic differences exist between various sectors of the Southern Ocean related to biogeographic isolation preceding the development of the Circum-Antarctic Current. Subantarctic calcareous nannofossil assemblages of Paleocene and Eocene age exhibit higher diversity than Oligocene and Neogene assemblages. Siliceous microfossils are poorly represented or at best poorly known.One of the most dramatic changes in Southern Ocean planktonic biogeography occurred near the Eocene/Oligocene boundary (38 Ma). Since then, Antarctic planktonic foraminiferal assemblages have exhibited distinct polar characteristics, marked in particular by low diversity, and this event thus reflects the initiation of the Antarctic faunal and floral provinces. Profound paleoceanographic changes at this time, which triggered the biogeographic crisis, appear to be related to the initiation of widespread Antarctic sea-ice formation, and rapid cooling of deep and intermediate waters, in turn associated with increased Antarctic glaciation. During the Oligocene, planktonic microfossil diversity was low in all groups throughout the world's oceans. In Antarctic waters, the early Oligocene foraminiferal fauna is monospecific (Subbotina angiporoides), while in the later Oligocene two species (S. angiporoides and Catapsydrax dissimilis) were recorded. Calcareous nannofossil assemblages are of low diversity compared with the Eocene. Subantarctic foraminiferal faunas of Oligocene age display much higher diversity than those in the Antarctic, but early and middle Oligoceae faunas still exhibit the lowest diversities for the entire Cenozoic. Siliceous assemblages remain relatively inconspicuous in most regions of the Southern Ocean.The Paleogene-Neogene transition (22 Ma) is marked by a major change in the global planktonic biogeography, i.e. modern patterns developed in which permanent, steep faunal and floral diversity gradients existed between tropical and polar regions; a gradient which has persisted even during the most severe glacial episodes. Oligocene assemblages of low diversity and almost cosmopolitan distribution were replaced by distinctive belts of planktonic assemblages arranged latitudinally from the tropics to the poles. The establishment of the steep planktonic diversity gradients and latitudinal provinces near the beginning of the Neogene almost certainly were linked to the development of the Circum-Antarctic Current in the late Oligocene which effectively separated high- and low-latitude planktonic assemblages. These fundamental global circulation and biogeographic patterns have persisted through the Neogene.During the Neogene (22 Ma to Present Day), Antarctic calcareous microfossil assemblages exhibit persistent low diversity and high dominance, while Subantarctic assemblages are of much greater diversity. The beginning of the Neogene (= beginning of Miocene) heralded the development of the high-latitude siliceous microfossil assemblages towards their present-day dominant role. Siliceous biogenec productivity began to increase. These changes were linked to the initial development and later intensification of circulation associated with the Antarctic Convergence and Antarctic Divergence. The Antarctic Convergence sharply separates dominantly siliceous assemblages to the south from calcareous assemblages to the north. Radiolarian assemblages became more endemic. Relatively warm early and middle Miocene conditions are reflected by slightly higher diversity of planktonic foraminifera and by the presence, in the northern Subantarctic, of conspicuous discoasters in early Miocene sediments. In Antarctic waters, calcareous nannofossils become unimportant as biogenic elements after the middle Miocene.The latest Miocene ( 5 m.y. ago) was marked by northward movement of the Antarctic Convergence, corresponding expansion of the Antarctic water mass, and low diversity of calcareous assemblages. Pliocene planktonic foraminifera seem to be largely monospecific in Antarctic and southern Subantarctic sequences. During the Quaternary, Antarctic waters reached a maximum northward expansion and exhibit highest siliceous biogenic productivity for the Cenozoic. In the Subantarctic, Quaternary foraminiferal diversities are much higher than in Pliocene sequences. Although calcareous nannofossil diversity may be high, only a few species are abundant. Large northward shifts of Antarctic and Subantarctic water masses have occurred during the Quaternary although no southward penetrations have occurred much beyond that of the present day. Several radiolarian and foraminiferal species disappeared or appeared at or close to a number of paleomagnetic reversals during the last 4 m.y. These faunal events, which provide valuable datums, do not seem to be associated with major climatic changes.  相似文献   

14.
Trends in global and local climate history have been linked to observed macroevolutionary patterns across a variety of organisms. These climatic pressures may unilaterally or asymmetrically influence the evolutionary trajectory of clades. To test and compare signatures of changing global (Eocene‐Oligocene boundary cooling) and continental (Miocene aridification) environments on a continental fauna, we investigated the macroevolutionary dynamics of one of Australia's most diverse endemic radiations, pygopodoid geckos. We generated a time‐calibrated phylogeny (>90% taxon coverage) to test whether (i) asymmetrical pygopodoid tree shape may be the result of mass turnover deep in the group's history, and (ii) how Miocene aridification shaped trends in biome assemblages. We find evidence of mass turnover in pygopodoids following the isolation of the Australian continental plate ~30 million years ago, and in contrast, gradual aridification is linked to elevated speciation rates in the young arid zone. Surprisingly, our results suggest that invasion of arid habitats was not an evolutionary end point. Instead, arid Australia has acted as a source for diversity, with repeated outward dispersals having facilitated diversification of this group. This pattern contrasts trends in richness and distribution of other Australian vertebrates, illustrating the profound effects historical biome changes have on macroevolutionary patterns.  相似文献   

15.
The Cenozoic planktonic foraminifera (PF) (calcareous zooplankton) have arguably the most detailed fossil record of any group. The quality of this record allows models of environmental controls on macroecology, developed for Recent assemblages, to be tested on intervals with profoundly different climatic conditions. These analyses shed light on the role of long-term global cooling in establishing the modern latitudinal diversity gradient (LDG)—one of the most powerful generalizations in biogeography and macroecology. Here, we test the transferability of environment-diversity models developed for modern PF assemblages to the Eocene epoch (approx. 56–34 Ma), a time of pronounced global warmth. Environmental variables from global climate models are combined with Recent environment–diversity models to predict Eocene richness gradients, which are then compared with observed patterns. The results indicate the modern LDG—lower richness towards the poles—developed through the Eocene. Three possible causes are suggested for the mismatch between statistical model predictions and data in the Early Eocene: the environmental estimates are inaccurate, the statistical model misses a relevant variable, or the intercorrelations among facets of diversity—e.g. richness, evenness, functional diversity—have changed over geological time. By the Late Eocene, environment–diversity relationships were much more similar to those found today.  相似文献   

16.
Cedrelospermum Saporta is an extinct genus in the Ulmaceae with abundant fossil records in North America and Europe. However, so far, fossil records of this genus from Asia are sparse, which limits the interpretations of the morphological evolution and biogeographical history of the genus. Here we report well‐preserved fruits (Cedrelospermum tibeticum sp. nov.) and a leaf (Cedrelospermum sp.) of Cedrelospermum from the upper Oligocene Lunpola and Nyima basins in the Qinghai–Tibetan Plateau (QTP). This is the first fossil record of Cedrelospermum in the QTP, showing that this genus grew in this region during the late Oligocene. Cedrelospermum tibeticum fruits are double‐winged, morphologically similar to the Eocene and Oligocene double‐winged Cedrelospermum species from North America. This supports the hypothesis that Cedrelospermum migrated to Asia from North America by way of the Bering Land Bridge. Given that Cedrelospermum was a typical element of Northern Hemispheric flora in the Paleogene and Neogene, the presence of this genus indicates that the central region of the QTP was phytogeographically linked with other parts of the Northern Hemisphere during the late Oligocene. The morphological observations of C. tibeticum fruits and other double‐winged Cedrelospermum fruits suggest an evolutionary trend from obtuse to acute apex for the primary wing. Cedrelospermum tibeticum likely had warm and wet climatic requirements. This type of an environment possibly existed in the central QTP in the late Oligocene, thereby supporting the survival of C. tibeticum.  相似文献   

17.
Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low‐latitude climatic conditions have no present‐day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo‐Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change.  相似文献   

18.
The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.  相似文献   

19.
Jean Roman 《Geobios》1977,10(3):337-349
Echinolampas is a subtropical genus living in rather shallow water; one may regards it as a climatic marker. The theory of continental drift affords a rather good explanation for its distribution in space during Cenozoic era. It appears in Old Wolrd during Paleocene and it occurs in Central America during Middle Eocene; that implies it had to cross the already broad Atlantic Ocean; but at that time this ocean is not as broad at it is now. Migration along the shelf area which rimmed North Atlantic might have been impossible, owing to disruption of land connection between Europe and North America. Probably the migration occured in low latitudes and pelagic larvae were transported by one of the two equatorial currents. Diversity of the genus has much decreased during Late Eocene. The cause may be chiefly due to climatic deterioration, resulting from marine communication between North Atlantic and Arctic Ocean. Echinolampas occurs for the first time in Australia during Oligocene. One may suggest the possibility of a link between this late evidence and the quite remote position till then of Australian continent. During Miocene, the relative decrease in Echinolampas diversity in the Mediterranean Basin occurs as a result of the welding between Asia and Africa.  相似文献   

20.
Turtles are key components of modern vertebrate faunas and their diversity and distributions are likely to be affected by anthropogenic climate change. However, there is limited baseline data on turtle taxonomic richness through time or assessment of their past responses to global environmental change. We used the extensive Triassic–Palaeogene (252–223 Ma) fossil record of terrestrial and freshwater turtles to investigate diversity patterns, finding substantial variation in richness through time and between continents. Globally, turtle richness was low from their Triassic origin until the Late Jurassic. There is strong evidence for high richness in the earliest Cretaceous of Europe, becoming especially high following the Cretaceous Thermal Maximum and declining in all continents by the end-Cretaceous. At the K–Pg boundary, South American richness levels changed little while North American richness increased, becoming very high during the earliest Palaeogene (Danian). Informative data are lacking elsewhere for this time period. However, the Selandian–Thanetian interval, approximately 5 myr after the K–Pg mass extinction, shows low turtle richness in Asia, Europe and South America, suggesting that the occurrence of exceptional turtle richness in the post-extinction Paleocene fauna of North America is not globally representative. Richness decreased over the Eocene–Oligocene boundary in North America but increased to its greatest known level for Europe, implying very different responses to dramatic climatic shifts. Time series regressions suggest number of formations sampled and palaeotemperature are the primary influencers of face-value richness counts, but additional factors not tested here may also be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号