首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome editing technologies are powerful tools for studying gene function and for crop improvement. The technologies rely on engineered endonucleases to generate double stranded breaks (DSBs) at target loci. The DSBs are repaired through the error-prone non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways in cells, resulting in mutations and sequence replacement, respectively. In the widely used CRISPR/Cas9 system, the endonuclease Cas9 is targeted by a CRISPR small RNA to DNA sequence of interest. In this review, we describe the four available types of genome editing tools, ZFN, TALEN, CRISPR/Cas9 and CRISPR/Cpf1, and show their applications in functional genomics research and precision molecular breeding of crops.  相似文献   

2.
Cells employ potentially mutagenic DNA repair mechanisms to avoid the detrimental effects of chromosome breaks on cell survival. While classical non‐homologous end‐joining (cNHEJ) is largely error‐free, alternative end‐joining pathways have been described that are intrinsically mutagenic. Which end‐joining mechanisms operate in germ and embryonic cells and thus contribute to heritable mutations found in congenital diseases is, however, still largely elusive. Here, we determined the genetic requirements for the repair of CRISPR/Cas9‐induced chromosomal breaks of different configurations, and establish the mutational consequences. We find that cNHEJ and polymerase theta‐mediated end‐joining (TMEJ) act both parallel and redundant in mouse embryonic stem cells and account for virtually all end‐joining activity. Surprisingly, mutagenic repair by polymerase theta (Pol θ, encoded by the Polq gene) is most prevalent for blunt double‐strand breaks (DSBs), while cNHEJ dictates mutagenic repair of DSBs with protruding ends, in which the cNHEJ polymerases lambda and mu play minor roles. We conclude that cNHEJ‐dependent repair of DSBs with protruding ends can explain de novo formation of tandem duplications in mammalian genomes.  相似文献   

3.
4.
基因组编辑技术可以对DNA或RNA进行精准改造,极大地促进了生命科学的发展。CRISPR/Cas9系统在靶位点诱导DNA发生双链或单链损伤,细胞对损伤部位采用无供体模板的非同源末端连接(non-homologous end joining,NHEJ)或有供体模板的同源重组(homologous recombination,HR)修复。基于HR的基因组编辑策略通常被用于获得DNA的精准改造,而NHEJ在动物DNA损伤修复中起主导作用。为了提升HR效率,研究人员设计了多种方案,包括CRISPR/Cas9系统优化和DNA修复通路调控等。从DNA损伤修复途径、Cas9变体选择、sgRNA设计、供体模板设计、DNA修复途径相关蛋白功能调控、供体模板募集效率提升、细胞周期调控及编辑细胞生存效率提升等方面详细综述了相关研究成果,发现尚未开发出放之四海而皆准的HR提升策略,基于HR的基因组编辑需要针对具体案例制定个体化策略。旨在为动物基因组编辑中提升CRISPR/Cas9介导的HR效率研究提供理论参考,为动物基因功能分析、基因治疗和经济动物基因编辑育种提供帮助。  相似文献   

5.
植物基因组编辑及衍生技术最新研究进展   总被引:2,自引:0,他引:2  
单奇伟  高彩霞 《遗传》2015,37(10):953-973
  相似文献   

6.
The ability to address the CRISPR‐Cas9 nuclease complex to any target DNA using customizable single‐guide RNAs has now permitted genome engineering in many species. Here, we report its first successful use in a nonvascular plant, the moss Physcomitrella patens. Single‐guide RNAs (sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation confers resistance to 2‐fluoroadenine. Transformation of moss protoplasts with these sgRNAs and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of them resulting from alternative end‐joining (alt‐EJ)‐driven repair. We further demonstrate that, in the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene integration events occur by homology‐driven repair (HDR) at the target locus but also that Cas9‐induced double‐strand breaks are repaired with almost equal frequencies by mutagenic illegitimate recombination. Finally, we establish that a significant fraction of HDR‐mediated gene targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that CRISPR‐induced HDR is only partially mediated by the classical homologous recombination pathway.  相似文献   

7.
Ionizing radiation causes a variety of types of damage to DNA in cells, requiring the concerted action of a number of DNA repair enzymes to restore genomic integrity. The DNA base-excision repair and DNA double-strand break repair pathways are particularly important. While single base damages are rapidly excised and repaired using the opposite (undamaged) strand as a template, the correct repair of DNA double-strand breaks may present more difficulties to cellular enzymes owing to the loss of template. In the last few years evidence in support of several enzymatic pathways for the repair of such double-stranded damage has been found. At present we may distinguish at least three pathways: homologous recombination repair, non-homologous (DNA-PK-dependent) end joining, and repeat-driven end joining. This paper focuses on evidence for the first and third of these pathways, and considers in particular their relative importance in mammalian cells and implications for the fidelity of repair.  相似文献   

8.
CRISPR/Cas12a is a single effector nuclease that, like CRISPR/Cas9, has been harnessed for genome editing based on its ability to generate targeted DNA double strand breaks (DSBs). Unlike the blunt-ended DSB generated by Cas9, Cas12a generates sticky-ended DSB that could potentially aid precise genome editing, but this unique feature has thus far been underutilized. In the current study, we found that a short double-stranded DNA (dsDNA) repair template containing a sticky end that matched one of the Cas12a-generated DSB ends and a homologous arm sharing homology with the genomic region adjacent to the other end of the DSB enabled precise repair of the DSB and introduced a desired nucleotide substitution. We termed this strategy ‘Ligation-Assisted Homologous Recombination’ (LAHR). Compared to the single-stranded oligo deoxyribonucleotide (ssODN)-mediated homology directed repair (HDR), LAHR yields relatively high editing efficiency as demonstrated for both a reporter gene and endogenous genes. We found that both HDR and microhomology-mediated end joining (MMEJ) mechanisms are involved in the LAHR process. Our LAHR genome editing strategy, extends the repertoire of genome editing technologies and provides a broader understanding of the type and role of DNA repair mechanisms involved in genome editing.  相似文献   

9.
Neal JA  Meek K 《Mutation research》2011,711(1-2):73-86
DNA double-strand breaks are extremely harmful lesions that can lead to genomic instability and cell death if not properly repaired. There are at least three pathways that are responsible for repairing DNA double-strand breaks in mammalian cells: non-homologous end joining, homologous recombination and alternative non-homologous end joining. Here we review each of these three pathways with an emphasis on the role of the DNA-dependent protein kinase, a critical component of the non-homologous end joining pathway, in influencing which pathway is ultimately utilized for repair.  相似文献   

10.
CRISPR/Cas gene editing technologies have emerged as powerful tools in the study of oncogenic transformation. The system's specificity, versatility, and ease of implementation allow researchers to identify important molecular markers and pathways which grant cancers stem cell like properties. This technology has already been applied to researching specific cancers, but has seen restricted therapeutic applications due to inherent ethical and technical limitations. Active development and adaptation of the CRISPR/Cas system has produced new methods to take advantage of both non‐homologous end joining and homologous recombination repair mechanisms in attempts to remedy these limitations and improve the versatility of gene edits that can be created. Nonetheless, until issues with specificity and in vivo efficiency are resolved, utilization of CRISPR/Cas systems would be best employed in the modeling and study of various cancer genes. While it may have potential therapeutic applications to targeted cancer therapies in the future, presently CRISPR/Cas is a remarkable technique that can be utilized for easy and efficient gene editing when it comes to cancer research. J. Cell. Biochem. 119: 134–140, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.  相似文献   

12.
CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用   总被引:1,自引:0,他引:1  
殷利眷  胡斯奇  郭斐 《遗传》2015,37(5):412-418
CRISPR-Cas9基因编辑技术是基于细菌或古细菌CRISPR介导的获得性免疫系统衍生而来,由一段RNA通过碱基互补配对识别DNA,指导Cas9核酸酶切割识别的双链DNA,诱发同源重组或非同源末端链接,进而实现在目的DNA上进行编辑。病毒通过特异的受体侵染细胞,其基因组在细胞内发生复制、转录、翻译等过程完成其生活周期,某些DNA病毒或逆转录病毒基因组会整合到宿主基因组中。基因治疗是病毒感染疾病治疗的新趋势。因此,基因编辑技术在持续感染的病毒或潜伏感染病毒疾病治疗中具有重大的潜在意义。文章主要从CRISPR-Cas9作用机制以及在病毒感染疾病治疗中的应用等方面进行了综述。  相似文献   

13.
CRISPR/Cas基因编辑技术在植物基因功能研究和作物遗传改良方面具有重要应用价值,其主要依赖gRNA引导核酸内切酶在目标基因组位置产生双链断裂(DSBs),DSBs在通过非同源末端连接(NHEJ)或同源重组(HDR)方式进行修复时,会引起靶标位置核苷酸序列的缺失、插入或者替换,从而实现基因编辑。介绍了CRISPR/Cas基因编辑技术的作用机理及发展趋势,并对CRISPR/Cas技术在主要粮食及经济作物育种中的应用进展进行了总结,以期为农作物育种提供有益的参考。  相似文献   

14.
The CRISPR/Cas nuclease is becoming a major tool for targeted mutagenesis in eukaryotes by inducing double‐strand breaks (DSBs) at pre‐selected genomic sites that are repaired by non‐homologous end joining (NHEJ) in an error‐prone way. In plants, it could be demonstrated that the Cas9 nuclease is able to induce heritable mutations in Arabidopsis thaliana and rice. Gene targeting (GT) by homologous recombination (HR) can also be induced by DSBs. Using a natural nuclease and marker genes, we previously developed an in planta GT strategy in which both a targeting vector and targeting locus are activated simultaneously via DSB induction during plant development. Here, we demonstrate that this strategy can be used for natural genes by CRISPR/Cas‐mediated DSB induction. We were able to integrate a resistance cassette into the ADH1 locus of A. thaliana via HR. Heritable events were identified using a PCR‐based genotyping approach, characterised by Southern blotting and confirmed on the sequence level. A major concern is the specificity of the CRISPR/Cas nucleases. Off‐target effects might be avoided using two adjacent sgRNA target sequences to guide the Cas9 nickase to each of the two DNA strands, resulting in the formation of a DSB. By amplicon deep sequencing, we demonstrate that this Cas9 paired nickase strategy has a mutagenic potential comparable with that of the nuclease, while the resulting mutations are mostly deletions. We also demonstrate the stable inheritance of such mutations in A. thaliana.  相似文献   

15.

Background  

Several distinct pathways for the repair of damaged DNA exist in all cells. DNA modifications are repaired by base excision or nucleotide excision repair, while DNA double strand breaks (DSBs) can be repaired through direct joining of broken ends (non homologous end joining, NHEJ) or through recombination with the non broken sister chromosome (homologous recombination, HR). Rad50 protein plays an important role in repair of DNA damage in eukaryotic cells, and forms a complex with the Mre11 nuclease. The prokaryotic ortholog of Rad50, SbcC, also forms a complex with a nuclease, SbcD, in Escherichia coli, and has been implicated in the removal of hairpin structures that can arise during DNA replication. Ku protein is a component of the NHEJ pathway in pro- and eukaryotic cells.  相似文献   

16.
Genome integrity and genome engineering require efficient repair of DNA double-strand breaks (DSBs) by non-homologous end joining (NHEJ), homologous recombination (HR), or alternative end-joining pathways. Here we describe two complementary methods for marker-free quantification of DSB repair pathway utilization at Cas9-targeted chromosomal DSBs in mammalian cells. The first assay features the analysis of amplicon next-generation sequencing data using ScarMapper, an iterative break-associated alignment algorithm to classify individual repair products based on deletion size, microhomology usage, and insertions. The second assay uses repair pathway-specific droplet digital PCR assays (‘PathSig-dPCR’) for absolute quantification of signature DSB repair outcomes. We show that ScarMapper and PathSig-dPCR enable comprehensive assessment of repair pathway utilization in different cell models, after a variety of experimental perturbations. We use these assays to measure the differential impact of DNA end resection on NHEJ, HR and polymerase theta-mediated end joining (TMEJ) repair. These approaches are adaptable to any cellular model system and genomic locus where Cas9-mediated targeting is feasible. Thus, ScarMapper and PathSig-dPCR allow for systematic fate mapping of a targeted DSB with facile and accurate quantification of DSB repair pathway choice at endogenous chromosomal loci.  相似文献   

17.
Repair of DNA double‐stranded breaks (DSBs) is crucial for the maintenance of genome stability. DSBs are repaired by either error prone non‐homologous end‐joining (NHEJ) or error‐free homologous recombination. NHEJ precedes either by a classic, Lig4‐dependent process (C‐NHEJ) or an alternative, Lig4‐independent one (A‐NHEJ). Dysfunctional telomeres arising either through natural attrition due to telomerase deficiency or by removal of telomere‐binding proteins are recognized as DSBs. In this report, we studied which end‐joining pathways are required to join dysfunctional telomeres. In agreement with earlier studies, depletion of Trf2 resulted in end‐to‐end chromosome fusions mediated by the C‐NHEJ pathway. In contrast, removal of Tpp1–Pot1a/b initiated robust chromosome fusions that are mediated by A‐NHEJ. C‐NHEJ is also dispensable for the fusion of naturally shortened telomeres. Our results reveal that telomeres engage distinct DNA repair pathways depending on how they are rendered dysfunctional, and that A‐NHEJ is a major pathway to process dysfunctional telomeres.  相似文献   

18.
Cas9 is an RNA-guided double-stranded DNA nuclease that participates in clustered regularly interspaced short palindromic repeats (CRISPR)-mediated adaptive immunity in prokaryotes. CRISPR–Cas9 has recently been used to generate insertion and deletion mutations in Caenorhabditis elegans, but not to create tailored changes (knock-ins). We show that the CRISPR–CRISPR-associated (Cas) system can be adapted for efficient and precise editing of the C. elegans genome. The targeted double-strand breaks generated by CRISPR are substrates for transgene-instructed gene conversion. This allows customized changes in the C. elegans genome by homologous recombination: sequences contained in the repair template (the transgene) are copied by gene conversion into the genome. The possibility to edit the C. elegans genome at selected locations will facilitate the systematic study of gene function in this widely used model organism.  相似文献   

19.
CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against mobile genetic elements(MGEs) through uptake of invader-derived spacers. De novo adaptation samples spacers from both invaders and hosts, whereas primed adaptation shows higher specificity to sample spacers from invaders in many model systems as well as in the subtype I-F system of Zymomonas mobilis. Self-derived spacers will lead to CRISPR self-interference. However, our in vivo study demonstrated that this species used the microhomology-mediated end joining(MMEJ) pathway to efficiently repair subtype I-F CRISPR-Cas system-mediated DNA breaks guided by the self-targeting spacers. MMEJ repair of DNA breaks requires direct microhomologous sequences flanking the protospacers and leads to DNA deletions covering the protospacers. Importantly, CRISPR-mediated genomic DNA breaks failed to be repaired via MMEJ pathway in presence of higher copies of short homologous DNA. Moreover, CRISPR-cleaved exogenous plasmid DNA was failed to be repaired through MMEJ pathway, probably due to the inhibition of MMEJ by the presence of higher copies of the plasmid DNA in Z. mobilis. Our results infer that MMEJ pathway discriminates DNA damages between in the host chromosome versus mobile genetic element(MGE) DNA, and maintains genome stability post CRISPR immunity in Z. mobilis.  相似文献   

20.
DNA double-strand breaks are normal consequences of cell division and differentiation and must be repaired faithfully to maintain genome stability. Two mechanistically distinct pathways are known to efficiently repair double-strand breaks: homologous recombination and Ku-dependent non-homologous end joining. Recently, a third, less characterized repair mechanism, named microhomology-mediated end joining (MMEJ), has received increasing attention. MMEJ repairs DNA breaks via the use of substantial microhomology and always results in deletions. Furthermore, it probably contributes to oncogenic chromosome rearrangements and genetic variation in humans. Here, we summarize the genetic attributes of MMEJ from several model systems and discuss the relationship between MMEJ and 'alternative end joining'. We propose a mechanistic model for MMEJ and highlight important questions for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号