首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a novel intraoperative in vivo imaging approach which harnessed Cerenkov luminescence (CL) to detect primary and metastatic colorectal cancer (CRC) using clinically approved radiopharmaceuticals. In the mice and swine experiments, the proposed approach effectively improved the effect of CRC surgery. The approach is believed to be promising for utilizing CL in open surgery. Further details can be found in the article by Zeyu Zhang, Yawei Qu, Yu Cao et al. ( e201960152 )

  相似文献   


2.
Imaging the location and extent of cancer provides invaluable information before, during, and after surgery. The majority of "image-guided" methods that use, for example, positron emission tomography (PET) involve preoperative imaging and do not provide real-time information during surgery. It is now well established that the inherent optical emissions (Cerenkov radiation) from various β-emitting radionuclides can be visualized by Cerenkov luminescence imaging (CLI). Here we report the full characterization of CLI using the positron-emitting radiotracer 89Zr-DFO-trastuzumab for target-specific, quantitative imaging of HER2/neu-positive tumors in vivo. We also provide the first demonstration of the feasibility of using CLI for true image-guided, intraoperative surgical resection of tumors. Analysis of optical CLIs provided accurate, quantitative information on radiotracer biodistribution and tissue uptake that correlated well with the concordant PET images. CLI, PET, and biodistribution studies revealed target-specific uptake of 89Zr-DFO-trastuzumab in BT-474 (HER2/neu positive) versus MDA-MB-468 (HER2/neu negative) xenografts in the same mice. Competitive inhibition (blocking) studies followed by CLI also confirmed the in vivo immunoreactivity and specificity of 89Zr-DFO-trastuzumab for HER2/neu. Overall, these results strongly support the continued development of CLI as a preclinical and possible clinical tool for use in molecular imaging and surgical procedures for accurately defining tumor margins.  相似文献   

3.
Cerenkov luminescence imaging (CLI) has been successfully utilized in various fields of preclinical studies; however, CLI is challenging due to its weak luminescent intensity and insufficient penetration capability. Here, we report the design and synthesis of a type of rare-earth microparticles (REMPs), which can be dually excited by Cerenkov luminescence (CL) resulting from the decay of radionuclides to enhance CLI in terms of intensity and penetration. Methods: Yb3+- and Er3+- codoped hexagonal NaYF4 hollow microtubes were synthesized via a hydrothermal route. The phase, morphology, and emission spectrum were confirmed for these REMPs by power X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectrophotometry, respectively. A commercial CCD camera equipped with a series of optical filters was employed to quantify the intensity and spectrum of CLI from radionuclides. The enhancement of penetration was investigated by imaging studies of nylon phantoms and nude mouse pseudotumor models. Results: the REMPs could be dually excited by CL at the wavelengths of 520 and 980 nm, and the emission peaks overlaid at 660 nm. This strategy approximately doubled the overall detectable intensity of CLI and extended its maximum penetration in nylon phantoms from 5 to 15 mm. The penetration study in living animals yielded similar results. Conclusions: this study demonstrated that CL can dually excite REMPs and that the overlaid emissions in the range of 660 nm could significantly enhance the penetration and intensity of CL. The proposed enhanced CLI strategy may have promising applications in the future.  相似文献   

4.
X‐ray‐induced luminescence computed tomography (XLCT) is an emerging molecular imaging. Challenges in improving spatial resolution and reducing the scan time in a whole‐body field of view (FOV) still remain for practical in vivo applications. In this study, we present a novel XLCT technique capable of obtaining three‐dimensional (3D) images from a single snapshot. Specifically, a customed two‐planar‐mirror component is integrated into a cone beam XLCT imaging system to obtain multiple optical views of an object simultaneously. Furthermore, a compressive sensing based algorithm is adopted to improve the efficiency of 3D XLCT image reconstruction. Numerical simulations and experiments were conducted to validate the single snapshot X‐ray‐induced luminescence computed tomography (SS‐XLCT). The results show that the 3D distribution of the nanophosphor targets can be visualized much faster than conventional cone beam XLCT imaging method that was used in our comparisons while maintaining comparable spatial resolution as in conventional XLCT imaging. SS‐XLCT has the potential to harness the power of XLCT for rapid whole‐body in vivo molecular imaging of small animals.  相似文献   

5.
In molecular imaging, positron emission tomography (PET) and optical imaging (OI) are two of the most important and thus most widely used modalities1-3. PET is characterized by its excellent sensitivity and quantification ability while OI is notable for non-radiation, relative low cost, short scanning time, high throughput, and wide availability to basic researchers. However, both modalities have their shortcomings as well. PET suffers from poor spatial resolution and high cost, while OI is mostly limited to preclinical applications because of its limited tissue penetration along with prominent scattering optical signals through the thickness of living tissues.Recently a bridge between PET and OI has emerged with the discovery of Cerenkov Luminescence Imaging (CLI)4-6. CLI is a new imaging modality that harnesses Cerenkov Radiation (CR) to image radionuclides with OI instruments. Russian Nobel laureate Alekseyevich Cerenkov and his colleagues originally discovered CR in 1934. It is a form of electromagnetic radiation emitted when a charged particle travels at a superluminal speed in a dielectric medium7,8. The charged particle, whether positron or electron, perturbs the electromagnetic field of the medium by displacing the electrons in its atoms. After passing of the disruption photons are emitted as the displaced electrons return to the ground state. For instance, one 18F decay was estimated to produce an average of 3 photons in water5. Since its emergence, CLI has been investigated for its use in a variety of preclinical applications including in vivo tumor imaging, reporter gene imaging, radiotracer development, multimodality imaging, among others4,5,9,10,11. The most important reason why CLI has enjoyed much success so far is that this new technology takes advantage of the low cost and wide availability of OI to image radionuclides, which used to be imaged only by more expensive and less available nuclear imaging modalities such as PET.Here, we present the method of using CLI to monitor cancer drug therapy. Our group has recently investigated this new application and validated its feasibility by a proof-of-concept study12. We demonstrated that CLI and PET exhibited excellent correlations across different tumor xenografts and imaging probes. This is consistent with the overarching principle of CR that CLI essentially visualizes the same radionuclides as PET. We selected Bevacizumab (Avastin; Genentech/Roche) as our therapeutic agent because it is a well-known angiogenesis inhibitor13,14. Maturation of this technology in the near future can be envisioned to have a significant impact on preclinical drug development, screening, as well as therapy monitoring of patients receiving treatments.  相似文献   

6.
223Radium (223Ra) is widely used in nuclear medicine to treat patients with osseous metastatic prostate cancer. In clinical practice 223Ra cannot be imaged directly; however, gamma photons produced by its short‐lived daughter nuclides can be captured by conventional gamma cameras. In this work, we show that 223Ra and its short‐lived daughter nuclides can be detected with optical imaging techniques. The light emission of 223Ra was investigated in vitro using different setups in order to clarify the mechanism of light production. The results demonstrate that the luminescence of the 223Ra chloride solution, usually employed in clinical treatments, is compatible with Cerenkov luminescence having an emission spectrum that is almost indistinguishable from CR one. This study proves that luminescence imaging can be successfully employed to detect 223Ra in vivo in mice by imaging whole body 223Ra biodistribution and more precisely its uptake in bones.   相似文献   

7.
Effective intraoperative tumor margin assessment is needed to reduce re‐excision rates in breast‐conserving surgery (BCS). Mapping the attenuation coefficient in optical coherence tomography (OCT) throughout a sample to create an image (attenuation imaging) is one promising approach. For the first time, three‐dimensional OCT attenuation imaging of human breast tissue microarchitecture using a wide‐field (up to ~45 × 45 × 3.5 mm) imaging system is demonstrated. Representative results from three mastectomy and one BCS specimen (from 31 specimens) are presented with co‐registered postoperative histology. Attenuation imaging is shown to provide substantially improved contrast over OCT, delineating nuanced features within tumors (including necrosis and variations in tumor cell density and growth patterns) and benign features (such as sclerosing adenosis). Additionally, quantitative micro‐elastography (QME) images presented alongside OCT and attenuation images show that these techniques provide complementary contrast, suggesting that multimodal imaging could increase tissue identification accuracy and potentially improve tumor margin assessment.  相似文献   

8.
Breast conserving surgery (BCS) offering similar surgical outcomes as mastectomy while retaining breast cosmesis is becoming increasingly popular for the management of early stage breast cancers. However, its association with reoperation rates of 20% to 40% following incomplete tumor removal warrants the need for a fast and accurate intraoperative surgical margin assessment tool that offers cellular, structural and molecular information of the whole specimen surface to a clinically relevant depth. Biophotonic technologies are evolving to qualify as such an intraoperative tool for clinical assessment of breast cancer surgical margins at the microscopic and macroscopic scale. Herein, we review the current research in the application of biophotonic technologies such as photoacoustic imaging, Raman spectroscopy, multimodal multiphoton imaging, diffuse optical imaging and fluorescence imaging using medically approved dyes for breast cancer detection and/or tumor subtype differentiation toward intraoperative assessment of surgical margins in BCS specimens, and possible challenges in their route to clinical translation.  相似文献   

9.
Plasmon‐enhanced gold nanorod (AuNR) with high photothermal conversion efficiency is a promising light‐controllable nanodrug delivery system for cancer therapy. Understanding the mechanism for the light‐controllable drug release of AuNR delivery systems is important for the development of nanomedicine. In this study, the rhodamine B (RB) released from AuNR‐RB nanodelivery system was quantitated and visualized by using two‐photon luminescence (TPL) imaging combined with correlation spectroscopy. The photofragmentation of AuNR induced by femtosecond pulsed laser was revealed by TPL correlation spectroscopy when the laser energy was above the thermal damage threshold of AuNR, and the RB released from this nanodrug delivery system was visualized by TPL imaging. Furthermore, the photofragmentation‐induced release of RB from AuNR‐RB nanodelivery system was visualized in living MCF‐7 breast cancer cells by TPL imaging combined with correlation spectroscopy. These results provided a novel optical approach to quantify the release of drugs from gold nanocarriers in complex biological media.  相似文献   

10.

Objective

Brown adipose tissue (BAT), a specialized tissue for thermogenesis, plays important roles for metabolism and energy expenditure. Recent studies validated BAT’s presence in human adults, making it an important re-emerging target for various pathologies. During this validation, PET images with 18F-FDG showed significant uptake of 18F-FDG by BAT under certain conditions. Here, we demonstrated that Cerenkov luminescence imaging (CLI) using 18F-FDG could be utilized for in vivo optical imaging of BAT in mice.

Methods

Mice were injected with 18F-FDG and imaged 60 minutes later with open filter and 2 minute acquisition. In vivo activation of BAT was performed by norepinephrine and cold treatment under isoflurane or ketamine anesthesia. Spectral unmixing and 3D imaging reconstruction were conducted with multiple-filter CLI images.

Results

1) It was feasible to use CLI with 18F-FDG to image interscapular BAT in mice, with the majority of the signal (>85%) at the interscapular site originating from BAT; 2) The method was reliable because excellent correlations between in vivo CLI, ex vivo CLI, and ex vivo radioactivity were observed; 3) CLI could be used for monitoring BAT activation under different conditions; 4) CLI signals from the group under short-term isoflurane anesthesia were significantly higher than that from the group under long-term anesthesia; 5) The CLI spectrum of 18F-FDG with a peak at 640 nm in BAT after spectral unmixing reflected the actual context of BAT; 6) Finally 3D reconstruction images showed excellent correlation between the source of the light signal and the location and physical shape of BAT.

Conclusion

CLI with 18F-FDG is a feasible and reliable method for imaging BAT in mice. Compared to PET imaging, CLI is significantly cheaper, faster for 2D planar imaging and easier to use. We believe that this method could be used as an important tool for researchers investigating BAT.  相似文献   

11.
We introduce a simple new approach for time‐resolved multiplexed analysis of complex systems using near‐infrared (NIR) dyes, applicable to in vitro and in vivo studies. We show that fast and precise in vitro quantification of NIR fluorophores' short (subnanosecond) lifetime and stoichiometry can be done using phasor analysis, a computationally efficient and user‐friendly representation of complex fluorescence intensity decays obtained with pulsed laser excitation and time‐gated camera imaging. We apply this approach to the study of binding equilibria by Förster resonant energy transfer using two different model systems: primary/secondary antibody binding in vitro and ligand/receptor binding in cell cultures. We then extend it to dynamic imaging of the pharmacokinetics of transferrin engagement with the transferrin receptor in live mice, elucidating the kinetics of differential transferrin accumulation in specific organs, straightforwardly differentiating specific from nonspecific binding. Our method, implemented in a freely‐available software, has the advantage of time‐resolved NIR imaging, including better tissue penetration and background‐free imaging, but simplifies and considerably speeds up data processing and interpretation, while remaining quantitative. These advances make this method attractive and of broad applicability for in vitro and in vivo molecular imaging and could be extended to applications as diverse as image‐guided surgery or optical tomography.   相似文献   

12.
We report on wide‐field time‐correlated single photon counting (TCSPC)‐based fluorescence lifetime imaging microscopy (FLIM) with lightsheet illumination. A pulsed diode laser is used for excitation, and a crossed delay line anode image intensifier, effectively a single‐photon sensitive camera, is used to record the position and arrival time of the photons with picosecond time resolution, combining low illumination intensity of microwatts with wide‐field data collection. We pair this detector with the lightsheet illumination technique, and apply it to 3D FLIM imaging of dye gradients in human cancer cell spheroids, and C. elegans.  相似文献   

13.
We describe the synthesis and development of new reactive DOTA-metal complexes for covalently targeting engineered receptors in vivo, which have superior tumor uptake and clearance properties for biomedical applications. These probes are found to clear efficiently through the kidneys and minimally through other routes, but bind persistently in the tumor target. We also explore the new technique of Cerenkov luminescence imaging to optically monitor radiolabeled probe distribution and kinetics in vivo. Cerenkov luminescence imaging uniquely enables sensitive noninvasive in vivo imaging of a β(-) emitter such as (90)Y with an optical imager.  相似文献   

14.
The main objective of this work was the development of a novel 2D dosimetry approach for small animal external radiotherapy using radioluminescence imaging (RLI) with a commercial complementary metal oxide semiconductor detector. Measurements of RLI were performed on the small animal image‐guided platform SmART, RLI data were corrected for perspective distortion using Matlab. Four irradiation fields were tested and the planar 2D dose distributions and dose profiles were compared against dose calculations performed with a Monte Carlo based treatment planning system and gafchromic film. System linearity and RLI image noise against dose were also measured. The maximum difference between beam size measured with RLI and nominal beam size was less than 8% for all the tested beams. The image correction procedure was able to reduce perspective distortion. A novel RLI approach for quality assurance of a small animal irradiator was presented and tested. Results are in agreement with MC dose calculations and gafchromic film measurements.  相似文献   

15.
Multispectral and hyperspectral imaging (HSI) are emerging optical imaging techniques with the potential to transform the way surgery is performed but it is not clear whether current systems are capable of delivering real‐time tissue characterization and surgical guidance. We conducted a systematic review of surgical in vivo label‐free multispectral and HSI systems that have been assessed intraoperatively in adult patients, published over a 10‐year period to May 2018. We analysed 14 studies including 8 different HSI systems. Current in‐vivo HSI systems generate an intraoperative tissue oxygenation map or enable tumour detection. Intraoperative tissue oxygenation measurements may help to predict those patients at risk of postoperative complications and in‐vivo intraoperative tissue characterization may be performed with high specificity and sensitivity. All systems utilized a line‐scanning or wavelength‐scanning method but the spectral range and number of spectral bands employed varied significantly between studies and according to the system's clinical aim. The time to acquire a hyperspectral cube dataset ranged between 5 and 30 seconds. No safety concerns were reported in any studies. A small number of studies have demonstrated the capabilities of intraoperative in‐vivo label‐free HSI but further work is needed to fully integrate it into the current surgical workflow.   相似文献   

16.
Triple‐negative breast cancer (TNBC) is an aggressive subset of breast cancer that is more common in African‐American and Hispanic women. Early detection followed by intensive treatment is critical to improving poor survival rates. The current standard to diagnose TNBC from histopathology of biopsy samples is invasive and time‐consuming. Imaging methods such as mammography and magnetic resonance (MR) imaging, while covering the entire breast, lack the spatial resolution and specificity to capture the molecular features that identify TNBC. Two nonlinear optical modalities of second harmonic generation (SHG) imaging of collagen, and resonance Raman spectroscopy (RRS) potentially offer novel rapid, label‐free detection of molecular and morphological features that characterize cancerous breast tissue at subcellular resolution. In this study, we first applied MR methods to measure the whole‐tumor characteristics of metastatic TNBC (4T1) and nonmetastatic estrogen receptor positive breast cancer (67NR) models, including tumor lactate concentration and vascularity. Subsequently, we employed for the first time in vivo SHG imaging of collagen and ex vivo RRS of biomolecules to detect different microenvironmental features of these two tumor models. We achieved high sensitivity and accuracy for discrimination between these two cancer types by quantitative morphometric analysis and nonnegative matrix factorization along with support vector machine. Our study proposes a new method to combine SHG and RRS together as a promising novel photonic and optical method for early detection of TNBC.  相似文献   

17.
The delineation of brain tumor margins has been a challenging objective in neurosurgery for decades. Despite the development of various preoperative imaging techniques, the current methodology is still insufficient for clinical practice. We present an intraoperative optical intrinsic signal imaging system for brain tumor surgery and establish a data processing procedure model to localize tumors. From the experimental result of a glioblastoma patient, we observe a relative small oscillation of ΔHbD in tumor region and speculate that vessels in tumor region have poor ability to provide oxygen. We applied the same data processing procedure on the second time data and proclaimed a successful surgery. Figure: Merged ΔHbD image captured prior and posterior to tumor removal.   相似文献   

18.

Purpose

The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchymal stem cells (MSCs), by means of the human sodium iodide symporter (hNIS) and firefly luciferase (Fluc) as reporters.

Methods

First, two multicistronic lentiviral vectors (LV) were generated for multimodal imaging: BLI, 124I PET/SPECT and CLI. Expression of the imaging reporter genes was validated in vitro using 99mTcO4 radioligand uptake experiments and BLI. Uptake kinetics, specificity and tracer elution were determined as well as the effect of the transduction process on the cell''s differentiation capacity. MSCs expressing the LV were injected intravenously or subcutaneously and imaged using small-animal PET, CLI and BLI.

Results

The expression of both imaging reporter genes was functional and specific. An elution of 99mTcO4 from the cells was observed, with 31% retention after 3 h. After labeling cells with 124I in vitro, a significantly higher CLI signal was noted in hNIS expressing murine MSCs. Furthermore, it was possible to visualize cells injected intravenously using BLI or subcutaneously in mice, using 124I small-animal PET, CLI and BLI.

Conclusions

This study identifies hNIS as a suitable reporter gene for molecular imaging with PET and CLI, as confirmed with BLI through the expression of Fluc. It supports the potential for a wider application of hNIS reporter gene imaging and future clinical applications.  相似文献   

19.
Peritoneal carcinomatosis (PC) of colorectal origin is associated with a poor prognosis. However, cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is available for a selected group of PC patients, which significantly increases overall survival rates up to 30%. As a consequence, there is substantial room for improvement. Tumor targeting is expected to improve the treatment efficacy of colorectal cancer (CRC) further through 1) more sensitive preoperative tumor detection, thus reducing overtreatment; 2) better intraoperative detection and surgical elimination of residual disease using tumor-specific intraoperative imaging; and 3) tumor-specific targeted therapeutics. This review focuses, in particular, on the development of tumor-targeted imaging agents. A large number of biomarkers are known to be upregulated in CRC. However, to date, no validated criteria have been described for the selection of the most promising biomarkers for tumor targeting. Such a scoring system might improve the selection of the correct biomarker for imaging purposes. In this review, we present the TArget Selection Criteria (TASC) scoring system for selection of potential biomarkers for tumor-targeted imaging. By applying TASC to biomarkers for CRC, we identified seven biomarkers (carcinoembryonic antigen, CXC chemokine receptor 4, epidermal growth factor receptor, epithelial cell adhesion molecule, matrix metalloproteinases, mucin 1, and vascular endothelial growth factor A) that seem most suitable for tumor-targeted imaging applications in colorectal cancer. Further cross-validation studies in CRC and other tumor types are necessary to establish its definitive value.  相似文献   

20.
A revolutionary avenue for vibrational imaging with super‐multiplexing capability can be seen in the recent development of Raman‐active bioortogonal tags or labels. These tags and isotopic labels represent groups of chemically inert and small modifications, which can be introduced to any biomolecule of interest and then supplied to single cells or entire organisms. Recent developments in the field of spontaneous Raman spectroscopy and stimulated Raman spectroscopy in combination with targeted imaging of biomolecules within living systems are the main focus of this review. After having introduced common strategies for bioorthogonal labeling, we present applications thereof for profiling of resistance patterns in bacterial cells, investigations of pharmaceutical drug‐cell interactions in eukaryotic cells and cancer diagnosis in whole tissue samples. Ultimately, this approach proves to be a flexible and robust tool for in vivo imaging on several length scales and provides comparable information as fluorescence‐based imaging without the need of bulky fluorescent tags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号