共查询到20条相似文献,搜索用时 0 毫秒
1.
Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart 下载免费PDF全文
Irina V. Larina 《Journal of biophotonics》2017,10(5):735-743
Efficient separation of blood and cardiac wall in the beating embryonic heart is essential and critical for experiment‐based computational modelling and analysis of early‐stage cardiac biomechanics. Although speckle variance optical coherence tomography (SV‐OCT) relying on calculation of intensity variance over consecutively acquired frames is a powerful approach for segmentation of fluid flow from static tissue, application of this method in the beating embryonic heart remains challenging because moving structures generate SV signal indistinguishable from the blood. Here, we demonstrate a modified four‐dimensional SV‐OCT approach that effectively separates the blood flow from the dynamic heart wall in the beating mouse embryonic heart. The method takes advantage of the periodic motion of the cardiac wall and is based on calculation of the SV signal over the frames corresponding to the same phase of the heartbeat cycle. Through comparison with Doppler OCT imaging, we validate this speckle‐based approach and show advantages in its insensitiveness to the flow direction and velocity as well as reduced influence from the heart wall movement. This approach has a potential in variety of applications relying on visualization and segmentation of blood flow in periodically moving structures, such as mechanical simulation studies and finite element modelling. Picture : Four‐dimensional speckle variance OCT imaging shows the blood flow inside the beating heart of an E8.5 mouse embryo. 相似文献
2.
YAP protein is a critical regulator of mammalian embryonic development. By generating a near-infrared fusion YAP reporter mouse line, we have achieved high-resolution live imaging of YAP localization during mouse embryonic development. We have validated the reporter by demonstrating its predicted responses to blocking LATS kinase activity or blocking cell polarity. By time lapse imaging preimplantation embryos, we revealed a mitotic reset behaviour of YAP nuclear localization. We also demonstrated deep tissue live imaging in post-implantation embryos and revealed an intriguing nuclear YAP pattern in migrating cells. The YAP fusion reporter mice and imaging methods will open new opportunities for understanding dynamic YAP signalling in vivo in many different situations. 相似文献
3.
Jingyu Wang Andrew Baker Manju L Subramanian Nicole H Siegel Xuejing Chen Steven Ness Ji Yi 《Experimental biology and medicine (Maywood, N.J.)》2022,247(5):377
A dual-channel optical coherence tomography system with wavelengths in the visible and near-infrared light ranges can provide both structural and functional information for retinal microvasculature simultaneously. We applied this integrated system in an ongoing clinical study of patients with various retinal pathologies. Here, we present case study results of patients with diabetic retinopathy, central retinal vein occlusion, and sickle cell retinopathy compared to a healthy subject. For the first time, this comparison validates the system’s ability to detect structural anomalies in both en face and B-scan images with simultaneous retinal optical coherence tomography angiography and measurement of sO2 in parafoveal vessels that are around 20–30 µm in diameter. This integrated system represents a powerful instrument with potentially far-reaching clinical implications for the early detection and diagnosis of retinal vascular diseases. 相似文献
4.
全场光学相干层析成像技术(全场OCT)是研究早期胚胎形态发育的最理想成像设备,然而所采集图像难免受噪声干扰.这些噪声可模糊早期胚胎内不同组织结构的边界,从而给基于图像边界的结构划分带来干扰.为解决这一问题,本文运用中值滤波、维纳滤波、各向异性扩散算法处理全场OCT获得的早期胚胎图像,并运用信噪比、均方误差、峰值信噪比和边缘保留等指标评价图像处理效果.结果表明:经各向异性扩散算法处理的早期胚胎图像,可完整地保留原始图像信息,且边界最清晰,视觉效果最好. 相似文献
5.
Arash Dadkhah Dhruba Paudel Shuliang Jiao 《Experimental biology and medicine (Maywood, N.J.)》2021,246(20):2207
Optical coherence tomography angiography (OCTA) is a functional extension of optical coherence tomography for non-invasive in vivo three-dimensional imaging of the microvasculature of biological tissues. Several algorithms have been developed to construct OCTA images from the measured optical coherence tomography signals. In this study, we compared the performance of three OCTA algorithms that are based on the variance of phase, amplitude, and the complex representations of the optical coherence tomography signals for rodent retinal imaging, namely the phase variance, improved speckle contrast, and optical microangiography. The performance of the different algorithms was evaluated by comparing the quality of the OCTA images regarding how well the vasculature network can be resolved. Quantities that are widely used in ophthalmic studies including blood vessel density, vessel diameter index, vessel perimeter index, vessel complexity index were also compared. Results showed that both the improved speckle contrast and optical microangiography algorithms are more robust than phase variance, and they can reveal similar vasculature features while there are statistical differences in the calculated quantities. 相似文献
6.
An automated framework to quantify areas of regional ischemia in retinal vascular diseases with OCT angiography 下载免费PDF全文
Neha Anegondi Lavanya Chidambara Devanshi Bhanushali Santosh G. K. Gadde Naresh K. Yadav Abhijit Sinha Roy 《Journal of biophotonics》2018,11(2)
In this observational and cross‐sectional study, capillary nonperfusion (CNP) and vascular changes in branch retinal vein occlusion (BRVO, sample size [n] = 26) and choroidal neovascularization (CNV, n = 29) were evaluated. Subjects underwent imaging using Optical coherence tomography angiography (Angiovue OCTA, RTVue XR, Optovue Inc., Fremont, California). Local fractal analysis was applied to the OCTA images of superficial, deep and choriocapillaris layer. CNP area (BRVO eyes) and vascular parameters were computed using local fractal‐based method. Sensitivity and specificity of vascular parameters were assessed with receiver operating characteristics curve. Automated CNP area showed excellent agreement with manually quantified CNP areas in both superficial (intraclass coefficient [ICC] = 0.96) and deep (ICC = 0.96) layers. BRVO eyes showed significantly altered (P < .05) vascular parameters in both superficial and deep layer as compared to normal eyes (n = 30). CNVM eyes had significantly higher capillary free zones (P < .001) as compared to normal eyes. In normal vs BRVO eyes, vessel density and spacing between the large vessels had similar area under the curve (AUC) (P > .05) in both superficial (0.97 and 0.97, respectively) and deep layer (0.99 and 0.98, respectively). Further, capillary free zones showed high AUC (0.92) in differentiating CNV eyes from normal eyes. 相似文献
7.
8.
组织通透方法采用高折射率化学试剂对生物组织进行渗透,改变组织的光学均匀性,可以有效地改善光学成像的穿透深度,受到生物医学光学研究领域的重视。利用光学相干层析成像技术,测量通透过程中不同测量深度下组织的散射特征的变化。通过采用系统信号对数的梯度值近似地表征光学散射系数,研究了通透过程中组织的散射特征随渗透时间和测量深度的动态关系。实验证明了组织通透可以有效地增加光子的穿透深度,并改善成像质量。研究发现:不同测量深度处组织的散射系数及其变化幅度、变化过程和变化趋势等均存在一定的差异性,并与组织的微观结构、其通透效果,化学试剂在组织中的渗透行为等有密切关系,有助于组织通透过程的理解,并为组织通透机制提供可能的实验依据。 相似文献
9.
Standard optical coherence tomography (OCT) in combination with software tools can be harnessed to generate vascular maps in vivo. In this study we have successfully combined a software algorithm based on correlation statistic to reveal microcirculation morphology on OCT intensity images of a mouse brain in vivo captured trans‐cranially and through a cranial window. We were able to estimate vessel geometry at bifurcation as well as along vessel segments down‐to mean diameters of about 24 μm. Our technique has potential applications in cardiovascular‐related parameter measurements such as volumetric flow as well as in assessing vascular density of normal and diseased tissue. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
As a hybrid optical microscopic imaging technology, photoacoustic microscopy images the optical absorption contrasts and takes advantage of low acoustic scattering of biological tissues to achieve high-resolution anatomical and functional imaging. When combined with other imaging modalities, photoacoustic microscopy-based multimodal technologies can provide complementary contrast mechanisms to reveal complementary information of biological tissues. To achieve intrinsically and precisely registered images in a multimodal photoacoustic microscopy imaging system, either the ultrasonic transducer or the light source can be shared among the different imaging modalities. These technologies are the major focus of this minireview. It also covered the progress of the recently developed penta-modal photoacoustic microscopy imaging system featuring a novel dynamic focusing technique enabled by OCT contour scan. 相似文献
11.
Fan Fan Jisheng Zhang Lianqing Zhu Zongqing Ma Jiang Zhu 《Journal of biophotonics》2021,14(11):e202100171
Optical coherence tomography angiography (OCTA) can map the microvascular networks of the cerebral cortices with micrometer resolution and millimeter penetration. However, the high scattering of the skull and the strong noise in the deep imaging region will distort the vasculature projections and decrease the OCTA image quality. Here, we proposed a deep learning-based segmentation method based on a U-Net convolutional neural network to extract the cortical region from the OCT image. The vascular networks were then visualized by three OCTA algorithms. The image quality of the vasculature projections was assessed by two metrics, including the peak signal-to-noise ratio (PSNR) and the contrast-to-noise ratio (CNR). The results show the accuracy of the cortical segmentation was 96.07%. The PSNR and CNR values increased significantly in the projections of the selected cortical regions. The OCTA incorporating the deep learning-based cortical segmentation can efficiently improve the image quality and enhance the vasculature clarity. 相似文献
12.
Fengyu Zhu Zhenyang Ding Kuiyuan Tao Qingrui Li Hao Kuang Feng Tian Shanshan Zhou Peidong Hua Jingqi Hu Mingjian Shang Yin Yu Tiegen Liu 《Journal of biophotonics》2021,14(10):e202100124
We present an automatic lumen segmentation method using uniqueness of connected region for intravascular optical coherence tomography (IVOCT), which can effectively remove the effect on lumen segmentation caused by blood artifacts. Utilizing the uniqueness of vascular wall on A-lines, we detect the A-lines shared by multiple connected regions, identify connected regions generated by blood artifacts using traversal comparison of connected regions' location, shared ratio and area ratio and then remove all artifacts. We compare these three methods by 216 challenging images with severe blood artifacts selected from clinical 1076 IVOCT images. The metrics of the proposed method are evaluated including Dice index, Jaccard index and accuracy of 94.57%, 90.12%, 98.02%. Compared with automatic lumen segmentation based on the previous morphological feature method and widely used dynamic programming method, the metrics of the proposed method are significantly enhanced, especially in challenging images with severe blood artifacts. 相似文献
13.
In this work, we developed a motion estimation and correction method which real-time obtained the direction and displacement of repetitive micro bulk motion (such as cardiac and respiratory motion) on an SS-OCT system without additional tracking hardware, and reduced the motion noise in optical coherence tomography angiography (OCTA). In the approach, the direction of repetitive micro bulk motion was considered fixed, and proportional relationships between the motion components in three directions were determined; Then we performed one-dimension cross-correlation to obtain depth displacement which was further used to obtain other two motion components, and greatly reduced the computation; The processing speed on a graphic processing unit was 478 pairs of B-Scans per second, and the measurement range was larger than the range of the angiogram-based methods. Lastly, corrupt angiograms were recovered by adaptive scan protocol, and reduced acquisition time in comparison with the previous work. 相似文献
14.
Sau W. Cheung Ronald C. Strickler Victoria C. Yang Michelle de Vera Edward L. Spitznagal 《Molecular reproduction and development》1985,11(4):411-419
Swiss white mice were superovulated, mated, and sacrificed to recover two-cell embryos that were cultured in Ham's F-10 supplemented with 15% fetal serum. In 16 experiments, media enriched with fetal bovine serum (FBS) supported blastocyst development from 80% ± 19% (mean ± S.D.) of two-cell embryos. Culture media + FBS was the positive control when 74 batches of heat-inactivated human fetal cord serum (hFCS) were tested. Statistical analyses indicated two distinct populations: 49 hFCS promoted blastocyst formation and 25 hFCS grew fewer blastocysts. In five studies, 35/47 two-cell embryos recovered from mice oviducts in media + FBS and immediately incubated formed blastocysts (75% ± 10%). In six comparison studies where the recovered embryos stood at room temperature for 30 minutes before incubation, only 18/57 (29% ± 21%) became blastocysts. When the colony was housed for 1 week in rooms with Shell No Pest Strips as treatment for mites, only 11/125 two-cell embryos became blastocysts (9%). In contrast, animals housed in quarters decontaminated with chlorine bleach had reduced breeding efficiency and produced fewer two-cell embryos. We conclude that (1) Ham's F-10 + FBS is an excellent positive control to test new batches of hFCS; (2) hFCS that supports blastocyst formation from ≥75% of two-cell embryos is adequate for human use; (3) pesticide treatment of breeding colonies and cooling of murine embryos during harvest both impaired in vitro blastocyst development; and (4) chlorine bleach cleansing of animal quarters reduced the number of successful matings. 相似文献
15.
Jiang Zhu Jianting Liu Lianqing Zhu Chongyang Wang Fan Fan Qiang Yang Fan Zhang 《Journal of biophotonics》2020,13(10)
Optical coherence tomography angiography (OCTA) is a label‐free, noninvasive biomedical imaging modality for mapping microvascular networks and quantifying blood flow velocities in vivo. Simple computation and fast processing are critical for the OCTA in some applications. Herein, we report on a normalized differentiation method for mapping cerebral microvasculature with the advantages of simple analysis and high image quality, benefitting from computation of differentiation and characteristics of normalization. Normalized differentiation values are validated to have a nearly linear relationship with flow velocities in a range using a flow phantom. The measurements in a rat cerebral cortex show that the OCTA based on the normalized differentiation analysis can generate microvascular images with high quality and monitor spatiotemporal dynamics of blood flow with simple computation and fast processing before and after localized ischemia induced by arterial occlusion. 相似文献
16.
Bernhard Baumann Danielle J. Harper Pablo Eugui Johanna Gesperger Antonia Lichtenegger Conrad W. Merkle Marco Augustin Adelheid Woehrer 《Journal of biophotonics》2021,14(4):e202000323
Polarization-sensitive optical coherence tomography (PS-OCT) enables three-dimensional imaging of biological tissues based on the inherent contrast provided by scattering and polarization properties. In fibrous tissue such as the white matter of the brain, PS-OCT allows quantitative mapping of tissue birefringence. For the popular PS-OCT layout using a single circular input state, birefringence measurements are based on a straight-forward evaluation of phase retardation data. However, the accuracy of these measurements strongly depends on the signal-to-noise ratio (SNR) and is prone to mapping artifacts when the SNR is low. Here we present a simple yet effective approach for improving the accuracy of PS-OCT phase retardation and birefringence measurements. By performing a noise bias correction of the detected OCT signal amplitudes, the impact of the noise floor on retardation measurements can be markedly reduced. We present simulation data to illustrate the influence of the noise bias correction on phase retardation measurements and support our analysis with real-world PS-OCT image data. 相似文献
17.
Recent studies have demonstrated that extended imaging depth can be achieved using dual‐axis optical coherence tomography (DA‐OCT). By illuminating and collecting at an oblique angle, multiple forward scattered photons from large probing depths are preferentially detected. However, the mechanism behind the enhancement of imaging depth needs further illumination. Here, the signal of a DA‐OCT system is studied using a Monte Carlo simulation. We modeled light transport in tissue and recorded the spatial and angular distribution of photons exiting the tissue surface. Results indicate that the spatial separation and offset angle created by the non‐telecentric scanning configuration promote the collection of more deeply propagating photons than conventional on‐axis OCT. 相似文献
18.
19.
There remains a need for high spatial resolution imaging indices of mitochondrial respiration in the outer retina that probe normal physiology and measure pathogenic and reversible conditions underlying loss of vision. Mitochondria are involved in a critical, but somewhat underappreciated, support system that maintains the health of the outer retina involving stimulus-evoked changes in subretinal space hydration. The subretinal space hydration light–dark response is important because it controls the distribution of vision-critical interphotoreceptor matrix components, including anti-oxidants, pro-survival factors, ions, and metabolites. The underlying signaling pathway controlling subretinal space water management has been worked out over the past 30 years and involves cGMP/mitochondria respiration/pH/RPE water efflux. This signaling pathway has also been shown to be modified by disease-generating conditions, such as hypoxia or oxidative stress. Here, we review recent advances in MRI and commercially available OCT technologies that can measure stimulus-evoked changes in subretinal space water content based on changes in the external limiting membrane-retinal pigment epithelium region. Each step within the above signaling pathway can also be interrogated with FDA-approved pharmaceuticals. A highlight of these studies is the demonstration of first-in-kind in vivo imaging of mitochondria respiration of any cell in the body. Future examinations of subretinal space hydration are expected to be useful for diagnosing threats to sight in aging and disease, and improving the success rate when translating treatments from bench-to-bedside. 相似文献
20.
We propose a cross‐scanning optical coherence tomography (CS‐OCT) system to correct eye motion artifacts in OCT angiography images. This system employs a dual‐illumination configuration with two orthogonally polarized beams, each of which simultaneously perform raster scanning in perpendicular direction with each other over the same area. In the reference arm, a polarization delay unit is used to acquire the two orthogonally polarized interferograms with a single photo detector by introducing different optical delay lines. The two cross‐scanned volume data are affected by the same eye motion but in two orthogonal directions. We developed a motion correction algorithm, which removes artifacts in the slow axis of each angiogram using the other and merges them through a nonrigid registration algorithm. In this manner, we obtained a motion‐corrected angiogram within a single volume scanning time without additional eye‐tracking devices. 相似文献