首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reflectance Fourier transform infrared (FT-IR) microspectroscopy was applied to study the prevention of β-sheet formation of amyloid β (Aβ)(1–40) peptide by co-incubation with a hexapeptide containing a KLVFF sequence (Aβ(15–20) fragment). Second-derivative spectral analysis was used to locate the position of the overlapping components of the amide I band of Aβ peptide and assigned them to different secondary components. The result indicates that each intact sample of Aβ(15–20) fragment or Aβ(1–40) peptide previously incubated in distilled water at 37 °C transformed their secondary structure from 1649 (1651) or 1653 cm−1 to 1624 cm−1, suggesting the transformation from -helix and/or random coil structures to β-sheet structure. By co-incubating both samples with different molar ratio in distilled water at 37 °C, the structural transformation was not found for Aβ(1–40) peptide after 24 h-incubation. But the β-sheet formation of Aβ(1–40) peptide after 48 h-incubation was evidenced from the appearance of the IR peak at 1626 cm−1 by adding a little amount of Aβ(15–20) fragment. There was no β-sheet formation of Aβ(1–40) peptide after addition with much amount of Aβ(15–20) fragment, however, suggesting the higher amount of Aβ(15–20) fragment used might inhibit the β-sheet formation of Aβ(1–40) peptide. The more Aβ(15–20) fragment used made the more stable structure of Aβ(1–40) peptide and the less β-sheet formation of Aβ(1–40) peptide. The study indicates that the reflectance FT-IR microspectroscopy can easily evidence the prevention of β-sheet formation of Aβ(1–40) peptide by a short amyloid fragment.  相似文献   

2.
In this work, a series of novel benzimidazole derivatives were designed and synthesized as Pin1 inhibitors. Protease-coupled assay was used to investigate the Pin1 inhibitory potency of all synthesized compounds. Thirteen of them showed preferable Pin1 inhibitory effects with IC50 values lower than 5 μM, and 12a, 15b, 15d and 16c exhibited the most promising Pin1 inhibitory activity at low micromolar level (0.33–1.00 μM) than the positive control compound Juglone. Flow cytometry results showed that treating PC-3 cells with 16c caused slight cycle arrest in a concentration-dependent manner. The structure-activity relationships of R1, R2, R3 and linker of the benzimidazole derivatives were analyzed in detail, which would help further exploration of new Pin1 inhibitors.  相似文献   

3.
Neuraminidase (NA) is an important antiviral drug target. Zanamivir is one of the most potent NA inhibitors. In this paper, a series of zanamivir derivatives as potential NA inhibitors were studied by combination of molecular modeling techniques including 3D-QSAR, molecular docking, and molecular dynamics (MD) simulation. The results show that the best CoMFA (comparative molecular field analysis) model has q2?=?0.728 and r2?=?0.988, and the best CoMSIA (comparative molecular similarity indices analysis) model has q2?=?0.750 and r2?=?0.981, respectively. The built 3D-QSAR models show significant statistical quality and excellent predictive ability. Seven new NA inhibitors were designed and predicted. 20?ns of MD simulations were carried out and their binding free energies were calculated. Two designed compounds were selected to be synthesized and biologically evaluated by NA inhibition and virus inhibition assays. One compound (IC50?=?0.670?µM, SI?>?149) exhibits excellent antiviral activity against A/WSN/33 H1N1, which is superior to the reference drug zanamivir (IC50?=?0.873?µM, SI?>?115). The theoretical and experimental results may provide reference for development of new anti-influenza drugs.  相似文献   

4.
The design, synthesis and SAR study of a new series of HIV-1 protease inhibitors with pentacyclic triterpenoids as P2 ligands and phenylsulfonamide as P2′ ligands were discussed. These compounds exhibited micromolar inhibitory potency, among which compound T1c displayed HIV-1 protease inhibition with IC50 values of 0.12?μM, which was 67 times the inhibitory activity of its raw material Ursolic acid (8.0?μM).  相似文献   

5.
To find novel compounds against H5N1, three series of known or novel small molecular polyphenols were synthesized and tested in vitro for anti-H5N1 activity. In addition, the preliminary structure–antiviral activity relationships were elaborated. The results showed that some small molecular polyphenols had better anti-H5N1 activity, and could serve as novel virus entry inhibitors against H5N1, likely targeting to HA2 protein. Noticeably, compound 4a showed the strongest activity against H5N1 among these compounds, and the molecular modeling analysis also suggested that this compound might target to HA2 protein. Therefore, compound 4a is well qualified to serve as a lead compound or scaffold for the further development of H5N1 entry inhibitor.  相似文献   

6.
In a previous article (Zbilut et al., Biophys J 2003;85:3544-3557), we demonstrated how an aggregation versus folding choice could be approached considering hydrophobicity distribution and charge. In this work, our aim is highlighting the mutual interaction of charge and hydrophobicity distribution in the aggregation process. Use was made of two different peptides, both derived from a transmembrane protein (amyloid precursor protein; APP), namely, Abeta(1-28) and Abeta(1-40). Abeta(1-28) has a much lower aggregation propensity than Abeta(1-40). The results obtained by means of molecular dynamics simulations show that, when submitted to the most "aggregation-prone" environment, corresponding to the isoelectric point and consequently to zero net charge, both peptides acquire their maximum flexibility, but Abeta(1-40) has a definitely higher conformational mobility than Abeta(1-28). The absence of a hydrophobic "tail," which is the most mobile part of the molecule in Abeta(1-40), is the element lacking in Abeta(1-28) for obtaining a "fully aggregating" phenotype. Our results suggest that conformational flexibility, determined by both hydrophobicity and charge effect, is the main mechanistic determinant of aggregation propensity.  相似文献   

7.
Histone lysine-specific demethylase 1 (LSD1) was the first discovered histone demethylase. Inactivating LSD1 or downregulating its expression inhibits cancer-cell development, and thus, it is an attractive molecular target for the development of novel cancer therapeutics. In this study, we worked on the structural optimization of natural products and identified 30 novel LSD1 inhibitors. Utilizing a structure-based drug design strategy, we designed and synthesized a series of curcumin analogues that were shown to be potent LSD1 inhibitors in the enzyme assay. Compound WB07 displayed the most potent LSD1 inhibitory activity, with an IC50 value of 0.8 μM. Moreover, WA20 showed an anticlonogenic effect on A549 cells with an IC50 value of 4.4 μM. Molecular docking simulations were also carried out, and the results indicated that the inhibitors bound to the protein active site located around the key residues of Asp555 and Asp556. These findings suggested that compounds WA20 and WB07 are the first curcumin analogue-based LSD1 inhibitors with remarkable A549 suppressive activity, providing a novel scaffold for the development of LSD1 inhibitors.  相似文献   

8.
Heterocyclic rings such as thiazole and benzimidazole are considered as privileged structures, since they constitute several FDA-approved drugs for cancer treatment. In this work, a new set of 2-(2-(substituted) hydrazinyl)-4-(1-methyl-1H-benzo[d]imidazol-2-yl) thiazoles 4a-q were designed as epidermal growth factor receptor (EGFR) inhibitors and synthesized using concise synthetic methods. The new target compounds have been evaluated in vitro for their suppression activity against EGFR TK. Compounds 4n, 4h, 4i, 4a and 4d exhibited significant potency in comparison with erlotinib which served as a reference drug (IC50, 71.67–152.59 nM; IC50 erlotinib, 152.59 nM). Furthermore, MTT assay revealed that compounds 4j, 4a, 4f, 4h, 4n produced the most promising cytotoxic potency against the human breast cancer cell line (MCF-7) (IC50; 5.96–11.91 µM; IC50 erlotinib; 4.15 µM). Compound 4a showed promising activity as EGFR TK inhibitor as well as anti-breast cancer agent. In addition, 4a induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells. Moreover, 4a upregulated the oncogenic parameters; caspase-3, p53, Bax/Bcl-2 as well as it inhibited the level of PARP-1 enzyme. QSAR study was carried out for the new derivatives and it revealed the goodness of the models. Furthermore, molecular docking studies represented the binding modes of the promising compounds in the active pocket of EGFR.  相似文献   

9.
Polo-like kinase 1 (Plk1) is an anti-cancer target due to its critical role in mitotic progression. A growing body of evidence has documented that Peptide-Plk1 inhibitors showed high Plk1 binding affinity. However, phosphopeptides-Plk1 inhibitors showed poor cell membranes permeability, which limits their clinical applications. In current study, nine candidate phosphopeptides consisting of non-natural amino acids were rationally designed and then successfully synthesized using an Fmoc-solid phase peptide synthesis (SPPS) strategy. Moreover, the binding affinities and selectivity were evaluated via fluorescence polarization (FP) assay. The results confirmed that the most promising phosphopeptide 6 bound to Plk1 PBD with the IC50 of 38.99?nM, which was approximately 600-fold selectivity over Plk3 PBD (IC50?=?25.44?μM) and nearly no binding to Plk2 PBD. Furthermore the intracellular activities and the cell membrane permeability of phosphopeptide 6 were evalutated. Phosphopeptide 6 demonstrated appropriate cell membrane permeability and arrested HeLa cells cycle in G2/M phase by regulating CyclinB1-CDK1. Further, phosphopeptide 6 showed typical apoptotic morphology and induced caspase-dependent apoptosis. In conclusion, we expect our discovery can provide new insights into the further optimization of Plk1 PBD inhibitors.  相似文献   

10.
We report in this work new substituted aminopyrimidine derivatives acting as inhibitors of the catalytic site of BACE1. These compounds were obtained from a molecular modeling study. The theoretical and experimental study reported here was carried out in several steps: docking analysis, Molecular Dynamics (MD) simulations, Quantum Theory Atom in Molecules (QTAIM) calculations, synthesis and bioassays and has allowed us to propose some compounds of this series as new inhibitors of the catalytic site of BACE1. The QTAIM study has allowed us to obtain an excellent correlation between the electronic densities and the experimental data of IC50. Also, using combined techniques (MD simulations and QTAIM calculations) enabled us to describe in detail the molecular interactions that stabilize the different L-R complexes. In addition, our results allowed us to determine what portion of these compounds should be changed in order to increase their affinity with the BACE1. Another interesting result is that a sort of synergism was observed when the effects of these new catalytic site inhibitors were combined with Ac-Tyr5-Pro6-Tyr7-Asp8-Ile9-Pro10-Leu11-NH2, which we have recently reported as a modulator of BACE1 acting on its exosite.  相似文献   

11.
Phosphoglycerate mutase 1 (PGAM1) is a glycolytic enzyme that dynamically converts 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG), which was upregulated to coordinate glycolysis, pentose phosphate pathway (PPP) and serine biosynthesis to promote cancer cell proliferation and tumor growth in a variety of cancers. However, only a few inhibitors of PGAM1 have been reported with poor molecular or cellular efficacy. In this paper, a series of xanthone derivatives were discovered as novel PGAM1 inhibitors through scaffold hopping and sulfonamide reversal strategy based on the lead compound PGMI-004A. Most xanthone derivatives showed higher potency against PGAM1 than PGMI-004A and exhibited moderate anti-proliferation activity on different cancer cell lines.  相似文献   

12.
The identification of a series of sulfonyl-amino-acetamides as BACE-1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease is reported. The derivatives were designed based on the docking simulation study, synthesized and assessed for BACE-1 inhibition in vitro. The designed ligands revealed desired binding interactions with the catalytic aspartate dyad and occupance of S1 and S2′ active site regions. These in silico results correlated well with in vitro activity. Out of 33 compounds synthesized, 12 compounds showed significant inhibition at 10 μM concentration. The most active compound 2.17S had IC50 of 7.90 μM against BACE-1, which was concomitant with results of in silico docking study.  相似文献   

13.
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a crucial role in tumor angiogenesis, and inhibition of the VEGFR-2 signaling pathway has already become an attractive approach for cancer therapy. In this study, a novel pyrimidine-based derivative 7j was designed as lead compound, and three series of potent VEGFR-2 inhibitors were synthesized and biologically evaluated against A549 and HepG2 cell lines. Compounds 7d, 9s and 13n exhibited superior inhibitory activities against A549 cell with IC50 ranged from 9.19 to 13.17 μM and HepG2 cell with IC50 ranged from 11.94 to 18.21 μM compared to those of Pazopanib (IC50 = 21.18 and 36.66 μM). In addition, molecular docking study was performed to investigate the binding capacity and binding mode between target compounds and VEGFR-2.  相似文献   

14.
A series of thienopyridinone derivatives was designed and synthesized as inhibitors of checkpoint kinase 1 (Chk1). Most of them exhibited moderate to good Chk1 inhibitory activities. Among them, compounds 8q, 8t, and 8w with excellent Chk1 inhibitory activities (IC50 values of 4.05, 6.23, and 2.33 nM, respectively) displayed strong synergistic effects with melphalan, a DNA-damaging agent in the cell-based assay. Further kinase profiling indicated that compound 8t was highly selective against CDK2/cyclinA, Aurora A, and PKC.  相似文献   

15.
Preparation, molecular characteristics, and aggregation activity of low-molecular-weight chitosans derived from β-chitin have been studied in comparison with those of chitosans from -chitin. Chitosan derived from β-chitin was partially degraded with alkali and acid to prepare chitosans with reduced molecular weights. The reaction was also conducted with chitosan from -chitin, but it was less susceptible to the degradation than chitosan from β-chitin. The resulting two series of chitosans had molecular weights ranging from 11 to 436 kDa. GPC analysis showed similar changes in the molecular weight distribution in the progress of main chain cleavage of the two kinds of chitosans. The polydispersity values were 2.01–4.16, indicating relatively narrow molecular weight distributions. These chitosans aggregated bovine serum albumin efficiently, and the aggregation behavior was dependent on the molecular weight and concentration of chitosan in addition to the pH of the media and concentration of sodium chloride. The aggregation activity of chitosans from β-chitin was found to be somewhat higher than that of chitosans from -chitin.  相似文献   

16.
Neuraminidase (NA) is one of the particular potential targets for novel antiviral therapy. In this work, a series of neuraminidase inhibitors with the cyclohexene scaffold were studied based upon the combination of 3D-QSAR, molecular docking, and molecular dynamics techniques. The results indicate that the built 3D-QSAR models yield reliable statistical information: the correlation coefficient (r2) and cross-validation coefficient (q2) of CoMFA (comparative molecular field analysis) are 0.992 and 0.819; the r2 and q2 of CoMSIA (comparative molecular similarity analysis) are 0.992 and 0.863, respectively. Molecular docking and MD simulations were conducted to confirm the detailed binding mode of enzyme-inhibitor system. The new NA inhibitors had been designed, synthesized, and their inhibitory activities against group-1 neuraminidase were determined. One agent displayed excellent neuraminidase inhibition, with IC50 value of 39.6?μM against NA, while IC50 value for oseltamivir is 61.1?μM. This compound may be further investigated for the treatment of infection by the new type influenza virus.  相似文献   

17.
GPR40 (FFAR1 or FFA1) is a G protein-coupled receptor, primarily expressed in pancreatic islet β-cells and intestinal enteroendocrine cells. When activated by fatty acids, GPR40 elicits increased insulin secretion from islet β-cells only in the presence of elevated glucose levels. Towards this end, studies were undertaken towards discovering a novel GPR40 Agonist whose mode of action is via Positive Allosteric Modulation of the GPR40 receptor (AgoPAM). Efforts were made to identify a suitable GPR40 AgoPAM tool molecule to investigate mechanism of action and de-risk liver toxicity of GPR40 AgoPAMs due to reactive acyl-glucuronide (AG) metabolites.  相似文献   

18.
The present paper describes design, synthesis, and biological evaluation of a series of some 3-[3-(amino)propoxy]benzenamines as acetylcholinesterase inhibitors using mice as a model and piracetam as a reference drug. The structures of these compounds were confirmed by spectral analysis and compounds were tested for memory enhancing activity using elevated plus maze test and acetylcholinesterase inhibitory assay. The inhibitory range of synthesized compounds was from 8.99 to 28.31 μM. The synthesized compounds possessed higher or equivalent percent retention as compared to piracetam at 1 mg/kg with no other CNS-related activities (locomotor and muscle relaxant, analgesic and anticonvulsant activities). Compound 3-[3-(imidazolo)propoxy]benzenamine has shown significant dose-dependent (1 and 3 mg/kg) memory enhancing activity, while 3-[3-(pyrrolidino)propoxy]benzenamine also showed activity equivalent to reference drug piracetam at 1 mg/kg. Both compounds 3-[3-(pyrrolidino)propoxy]benzenamine and 3-[3-(imidazolo)propoxy]benzenamine were also found to show AChE inhibition with IC50 value of 8.99 and 17.87 μM. The molecular docking, MM-GBSA and molecular dynamics simulation studies were performed in order to establish a relationship between the biological results. RMSD, root-mean-square fluctuations, and interaction patterns of 10a–AChE and Sck–AChE complexes proved that the binding affinity of 10a toward AChE was highly stable with the proposed binding orientations.  相似文献   

19.
A series of 4-bromo-N-(3,5-dimethoxyphenyl)benzamide derivatives were designed and synthesised as novel fibroblast growth factor receptor-1 (FGFR1) inhibitors. We found that one of the most promising compounds, C9, inhibited five non-small cell lung cancer (NSCLC) cell lines with FGFR1 amplification, including NCI-H520, NCI-H1581, NCI-H226, NCI-H460 and NCI-H1703. Moreover, the IC50 values for the compound C9 were 1.36?±?0.27?µM, 1.25?±?0. 23?µM, 2.31?±?0.41?µM, 2.14?±?0.36?µM and 1.85?±?0.32?µM, respectively. The compound C9 arrested the cell cycle at the G2 phase in NSCLC cell lines. The compound C9 also induced cellular apoptosis and inhibited the phosphorylation of FGFR1, PLCγ1 and ERK in a dose-dependent manner. In addition, molecular docking experiments showed that compound C9 binds to FGFR1 to form six hydrogen bonds. Taken together, our data suggested that the compound C9 represented a promising lead compound-targeting FGFR1.  相似文献   

20.
Abstract

The synthesis and in vitro evaluation of 40 new 2-phenylisothiazolidin-3-one-1,1-dioxide derivatives are described. The optimization based on biological screening data and molecular modeling resulted in a 10-fold increase in inhibitory activity compared with previously reported inhibitors of this class and led to the identification of 3-{[2-chloro-4-(1,1-dioxido-3-oxoisothiazolidin-2-yl)benzoyl]amino}benzoic acid, a potent inhibitor of human protein kinase CK2 (?C50?=?1.5?μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号