首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An isolated perfused kidney (IPK) preparation was used to study the functional consequences of antibody-initiated glomerular complement activation in an environment devoid of circulating inflammatory cells. Control IPK, with antibody bound to the glomerular basement membrane (GBM) (mean +/- SEM, 165.0 +/- 5.7 micrograms globulin/g renal cortex), were perfused with a 5% albumin solution. Control urinary protein excretion was 0.306 +/- 0.112 mg/min, renal vascular resistance (RVR) was 4.72 +/- 0.69 mgHg/ml/min, and the glomerular filtration rate (GFR) was 0.41 +/- 0.01 ml/min/g. To produce glomerular complement activation, IPK with equal quantities of bound antibody (167.0 +/- 6.1 micrograms/g) were perfused with fresh plasma. Glomerular complement activation was associated with linear deposition of C3 on the GBM, a significant increase in protein excretion (3.317 +/- 1.077 mg/min; p less than 0.001) and RVR (10.15 +/- 1.85 mmHg/ml/min; p less than 0.001), and a decline in GFR (0.38 +/- 0.01 ml/min/g; p less than 0.05). Equivalent IPK perfused with decomplemented plasma demonstrated neither glomerular complement deposition nor augmented renal injury. By using both complement repletion and depletion techniques, this study demonstrates that antibody-initiated glomerular complement activation produces direct, neutrophil-independent renal injury. Thus, activated complement components may directly contribute to antibody-induced immune renal injury, in addition to their well established role in the recruitment of circulating inflammatory cells.  相似文献   

2.
Glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) are decreased and mean arterial pressure (MAP) and renal vascular resistance (RVR) are increased after unilateral release of bilateral ureteral obstruction (BUO) of 24 hr duration. An imbalance between vasoconstrictor and vasodilator substances may explain these hemodynamic changes. We examined the role of the cytochrome P-450 pathway in this setting. After unilateral release of BUO, GFR and ERPF (ml/min/kg body wt) were significantly lower in these rats than in sham-operated rats (SOR) 1.14 +/- 0.09 vs 6.7 +/- 0.5 and 3.09 +/- 0.2 vs 23.5 +/- 3.4, respectively). BUO rats had significantly higher MAP (mm Hg) and RVR (mm Hg/ml/min/kg body wt) than SOR (155 +/- 5 vs 120 +/- 1 and 29.1 +/- 1.7 vs 3.2 +/- 0.4, respectively). SOR given 3-methylcholanthrene and beta-naphthoflavone to induce the cytochrome P-450 system had no significant changes in renal function, RVR, or MAP. SOR given ketoconazole to inhibit the cytochrome P-450 system had significantly lower GFR (4.8 +/- 0.5) than temporal control rats without significant changes in ERPF (21.2 +/- 4.6), MAP (127 +/- 6), or RVR (4.2 +/- 0.9). Rats with BUO given ketoconazole had lower but not significantly different GFR (0.84 +/- .1) and ERPF (2.61 +/- .4) than BUO controls. Values for MAP did not differ in BUO rats given ketoconazole versus BUO temporal controls. BUO rats given 3-methylcholanthrene and beta-naphthoflavone had significantly higher GFR and ERPF (2.01 +/- 0.24 and 6.66 +/- 1.36, respectively) and significantly lower RVR (14.7 +/- 3.9) than control rats with BUO; MAP was unchanged. Microsomal preparations from indomethacin-treated isolated kidneys obtained from BUO rats when compared with preparations obtained from SOR had significantly less activity of the P-450 cytochrome-dependent omega/omega-1 hydroxylase (103 +/- 6 vs 130 +/- 7 pmol hydroxyeicosatetraenoic acids produced per mg of protein/min, P < 0.02) and the P-450 cytochrome-dependent epoxygenase (11 +/- 0.3 vs 30 +/- 4 pmol lipoxyeicosatrienoic acids produced per mg of protein/min, P < 0.04). Indomethacin-treated microsomes prepared from kidneys of BUO rats converted significantly less 14C-arachidonic acid through the P-450-dependent hydroxylases (13.5 +/- 0.8 vs 17.0 +/- 0.1% of 14C-arachidonic acid converted to 19- and 20-hydroxyeicosatetraenoic acids, P < 0.02), and significantly less through the epoxygenases (1.4 +/- 0.4 vs. 3.8 +/- 0.5% of 14C-arachidonic acid converted to epoxyeicosatrienoic acids).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Cyclosporine A (CyA) nephrotoxicity is associated with impaired renal hemodynamic function and increased production of the vasoconstrictor eicosanoid thromboxane A2 (TxA2). In CyA toxic rats, renal dysfunction can be partially reversed by inhibitors of thromboxane synthase. However, interpretation of these results is complicated since inhibition of thromboxane synthase may cause accumulation of prostaglandin endoperoxides that can act as partial agonists at the TxA2 receptor and may blunt the efficacy of treatment. Furthermore, these endoperoxides may be used as substrate for production of vasodilator prostaglandins causing beneficial effects on hemodynamics which are independent of thromboxane inhibition. To more specifically examine the role of TxA2 in CyA toxicity, we investigated the effects of the thromboxane receptor antagonist GR32191 on renal hemodynamics in a rat model of CyA nephrotoxicity. In this model, administration of CyA resulted in a significant decrease in glomerular filtration rate (GFR) (2.85 +/- 0.26 [CyA] vs 6.82 +/- 0.96 ml/min/kg [vehicle]; p less than 0.0005) and renal blood flow (RBF) (21.65 +/- 2.31 [CyA] vs 31.87 +/- 3.60 ml/min/kg [vehicle]; p less than 0.025). Renal vascular resistance (RVR) was significantly higher in rats given CyA compared to animals treated with CyA vehicle (5.32 +/- 0.55 [CyA] vs. 3.54 +/- 0.24 mm Hg/min/ml/kg [vehicle]; p less than 0.05). These renal hemodynamic alterations were associated with a significant increase in urinary excretion of unmetabolized, "native" thromboxane B2 (TxB2) (103 +/- 18 [CyA] vs 60 +/- 16 pg/hour [vehicle]; p less than 0.05). Only minimal histomorphologic changes were apparent by light microscopic examination of kidneys from both CyA and vehicle treated animals. However, with immunoperoxidase staining, a significantly greater number of cells expressing the rat common leukocyte antigen was found in the renal interstitium of rats given CyA. There was no detectable increase in monocytes/macrophages in the kidneys of CyA toxic animals. In rats treated with CyA, intraarterial infusion of GR32191 at maximally tolerated doses significantly increased GFR and RBF, and decreased RVR. Although both RBF and RVR were restored to levels not different from controls, GFR remained significantly reduced following administration of GR32191. These data suggest that the potent vasoconstrictor TxA2 plays an important role in mediating renal dysfunction in CyA nephrotoxicity. However, other factors may be important in producing nephrotoxicity associated with CyA.  相似文献   

4.
Glomerular filtration rate (GFR) in response to adenosine precursor, NAD, and glomeruli contractility in response to adenosine were evaluated in streptozotocin-induced diabetic rats with severe (blood glucose 27.8 +/- 1.2 mmol/L) and moderate hyperglycaemia (18.2 +/- 0.9 mmol/L) compared with nondiabetic (ND)-rats. In anaesthetised rats, basal GFR was greater in moderately diabetic rats compared with severely diabetic rats (p < 0.05) and ND-rats (p < 0.02). Intravenous infusion of 5 nmol x min(-1) x kg(-1) NAD reduced GFR and renal plasma flow (RPF) in diabetic rats but had no effect on these parameters in ND-rats. Moreover, NAD-induced reduction of GFR and RPF was greater in rats with severe diabetes (41% and 30%, respectively) than in with moderate diabetes (25% and 26%, respectively). Theophylline (0.2 micromol x min(-1) x kg(-1) ) abolished renal response to NAD. Isolated glomeruli contraction in response to adenosine, assessed by glomerular 3H-inulin space reduction, was lowered in moderately diabetic-group and enhanced in severely diabetic-group. compared with ND-group (p < 0.05). Adenosine A1-receptor antagonist DPCPX inhibited adenosine-induced glomeruli contraction. This differential response of diabetic renal glomeruli to adenosine suggests that impaired glomerular contractility in response to adenosine could be responsible for hyperfiltration in moderate diabets, whereas, the increased adenosine-dependent contractility of glomeruli in severe diabetes may increase the risk of acute renal failure in this condition.  相似文献   

5.
The immediate (1 day, D1) and late (90 days, D90) effects of unilateral nephrectomy on contralateral renal hemodynamics, and the renal handling of electrolytes and water were investigated in the whole animal. The immediate and late ability of the remnant kidney to autoregulate perfusate flow and glomerular filtration rate (GFR) was studied in the isolated perfused kidney of the rat. In the whole animal, in D1 rats as compared to controls, GFR calculated for a single kidney increased from 0.85 +/- 0.3 to 1.1 +/- 0.2 ml/min (p less than 0.05). In D90 rats GFR increased further and was similar to prenephrectomy GFR (1.4 +/- 0.5 vs. 1.7 +/- 0.5 ml/min, p NS). Urinary prostanoid excretion in 24 h, calculated for one kidney, increased by 50-500% in D1 rats, but returned to prenephrectomy values in D90 rats. In the isolated perfused kidney, decreasing perfusion pressure (PP) from 100 to 70 mmHg did not change the renal vascular resistance (RVR) in control and D90 kidneys, but in D1 kidneys RVR decreased from 8.6 +/- 1.3 to 7 +/- 1.3 mm Hg/ml/min (p less than 0.05). In D90 kidneys RVR was significantly lower as compared to control and D1 kidneys at all perfusion pressures. Decreasing PP from 100 to 70 mm Hg resulted in a significant decrease in perfusion flow in control, D1 and D90 kidneys, while with the increase in PP from 100 to 130 mm Hg the perfusion flow increased significantly in all three kidney groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A model utilizing 25 degree head-down tilt (HDT) and incorporated with chronic catheterization and renal micropuncture techniques in rats was employed to study alterations in renal function induced by HDT. Renal function and extracellular volume measurements were performed after 24 h, 4 days, and 7 days of HDT in conscious rats and compared with their own control measurements and to nontilted but similarly restrained rats. After 24 h HDT, glomerular filtration rate (GFR) increased 19 +/- 8% and renal plasma flow (RPF) increased 18 +/- 8% with increases in urine flow rate, Na+, and K+ excretion in conscious rats. These increases after 24 h were associated with an increase in extracellular volume of 16 +/- 3% (P less than 0.01). In the nontilted controls, there was a decrease in extracellular volume after 24 h of suspension. After 7 days of HDT, GFR was decreased by 7 +/- 1% (P less than 0.01), but RPF and extracellular fluid volume were not different from control values. However, RPF and GFR increased in the nontilted rats after 7 days. After 7 days of HDT renal micropuncture studies demonstrated that single-nephron filtration rate was also decreased from 43 +/- 2 to 31 +/- 3 nl/min (P less than 0.05) due solely to reductions in the glomerular ultrafiltration coefficient (0.11 +/- 0.01 to 0.07 +/- 0.01 nl.s-1 X mmHg-1, P less than 0.05). There was a dissociation between GFR and water and Na+ excretion at days 4 and 7 of HDT not observed in the nontilt restraint controls.  相似文献   

7.
A close relationship between changes in renal interstitial fluid (RIF) ATP concentrations and renal autoregulatory or tubuloglomerular feedback (TGF)-dependent changes in renal vascular resistance (RVR) has been demonstrated, but it has not been determined whether the changes in RIF ATP are a consequence or the cause of the changes in RVR. The present study was performed in anesthetized dogs to assess the changes in RIF ATP following changes in renal arterial pressure (RAP) or stimulation of the TGF mechanism under conditions where changes in RVR were prevented by nifedipine, a calcium channel blocker. RIF ATP levels were measured by using microdialysis probes. Intra-arterial infusion of nifedipine (0.36 microg x kg(-1) x min(-1)) increased renal blood flow (RBF: from 4.49 +/- 0.27 to 5.34 +/- 0.39 ml x min(-1) x g(-1)) and glomerular filtration rate (GFR: from 0.84 +/- 0.07 to 1.09 +/- 0.11 ml x min(-1) x g(-1)). Under conditions of nifedipine infusion, autoregulatory adjustments in RBF, GFR, and RVR were not observed during stepwise reductions in RAP within the autoregulatory range (from 135 +/- 7 to 76 +/- 1 mmHg, n = 7). Furthermore, stimulation of the TGF mechanism with intra-arterial infusion of acetazolamide (100 microg x kg(-1) x min(-1)) did not alter RBF, GFR, and RVR (n = 7). During treatment with nifedipine, RIF ATP levels were significantly decreased in response to reductions in RAP (10.7 +/- 0.7, 5.8 +/- 0.7 and 2.8 +/- 0.3 nmol/l at 135 +/- 7, 101 +/- 4, and 76 +/- 1 mmHg, n = 7) and increased by acetazolamide infusion (from 8.8 +/- 0.8 to 17.0 +/- 1.8 nmol/l, n = 7). These results are similar to those that occurred in dogs not treated with nifedipine and thus demonstrate that the changes in RIF ATP can occur in the absence of autoregulatory or TGF-mediated changes in RVR. The data provide further support to the hypothesis that RIF ATP contributes to adjustments in RVR associated with renal autoregulation and changes in activity of the TGF mechanism.  相似文献   

8.
Increased intra-abdominal pressure (IAP) during laparoscopy adversely affects kidney function. The mechanism underlying this phenomenon is largely unknown. This study was designed to investigate the involvement of endothelin (ET)-1 and nitric oxide (NO) systems in IAP-induced renal dysfunction. Rats were subjected to IAP of 14 mmHg for 1 h, followed by a deflation for 60 min (recovery). Four additional groups were pretreated with 1) ABT-627, an ET(A) antagonist; 2) A-192621, an ET(B) antagonist; 3) nitroglycerine; and 4) N(G)-nitro-L-arginine methyl ester, a NO synthase inhibitor, before IAP. Urine flow rate (V), absolute Na+ excretion (U(Na)V), glomerular filtration rate (GFR), and renal plasma flow (RPF) were determined. Significant reductions in kidney function and hemodynamics were observed when IAP was applied. V decreased from 8.1 +/- 1.0 to 5.8 +/- 0.5 microl/min, U(Na)V from 1.08 +/- 0.31 to 0.43 +/- 0.10 microeq/min, GFR from 1.84 +/- 0.12 to 1.05 +/- 0.06 ml/min (-46.9 +/- 2.7% from baseline), and RPF from 8.62 +/- 0.87 to 3.82 +/- 0.16 ml/min (-54 +/- 3.5% from baseline). When the animals were pretreated with either ABT-627 or A-192621, given alone or combined, the adverse effects of IAP on GFR, RPF, V, and U(Na)V were significantly augmented. When the animals were pretreated with nitroglycerine, the adverse effects of pneumoperitoneum on GFR and RPF were substantially improved. In contrast, pretreatment with N(G)-nitro-L-arginine methyl ester remarkably aggravated pneumoperitoneum-induced renal dysfunction. In conclusion, decreased renal excretory function and hypofiltration are induced by increased IAP. These effects are related to impairment of renal hemodynamics and could be partially ameliorated by pretreatment with nitroglycerine and aggravated by NO and ET blockade.  相似文献   

9.
Renal plasma flow (RPF) and glomerular filtration rate (GFR) are markedly increased during pregnancy. We recently reported that the renal hemodynamic changes observed during pregnancy in rats are associated with enhanced renal protein expression of neuronal nitric oxide synthase (nNOS). The purpose of this study was to determine the role of nNOS in mediating renal hemodynamic changes observed during pregnancy. To achieve this goal, we examined the effects of the nNOS inhibitor 7-nitroindazole (7-NI) on kidney function in normal conscious, chronically instrumented virgin (n = 6) and pregnant rats (n = 9) at day 16 of gestation. Infusion of 7-NI had no effect on RPF (4.7 +/- 0.7 vs. 4.8 +/- 0.9 ml/min), GFR (2.2 +/- 0.2 vs. 2.5 +/- 0.4 ml/min), or mean arterial pressure (MAP; 127 +/- 7 vs. 129 +/- 10 mmHg) in virgin rats. In contrast, 7-NI infused into pregnant rats decreased RPF (8.9 +/- 1.6 vs. 6.5 +/- 1.4 ml/min) and GFR (4.4 +/- 0.7 vs. 3.3 +/- 0.7 ml/min) while having no effect on MAP (123 +/- 4 vs. 123 +/- 3 mmHg). In summary, inhibition of nNOS in pregnant rats at midgestation results in significant decreases in RPF and GFR. nNOS inhibition in virgin rats had no effect on renal hemodynamics. These data suggest that nNOS may play a role in mediating the renal hemodynamic changes that occur during pregnancy.  相似文献   

10.
The mechanisms by which atrial natriuretic peptide (ANP) produces a diuresis and natriuresis remain unclear. It has been suggested that the major if not sole mediator of ANP's renal effects is a hemodynamically induced increase in glomerular filtration rate (GFR). Data from clearance studies in anesthetized rabbits demonstrate that ANP administration can produce a significant increase in absolute and percentage sodium excretion (42.0 +/- 5.9----64.6 +/- 10.2 mu eq/min, P less than 0.01, and 1.97 +/- 0.28----3.12 +/- 0.35%, P less than 0.001, respectively) without increasing GFR (16.8 +/- 2.1----16.1 +/- 2.5 cc/min, P greater than 0.30). The natriuresis occurred despite a fall in renal plasma flow (RPF) (56.7 +/- 7.0----44.5 +/- 9.4 cc/min, P less than 0.01), a rise in filtration fraction (0.33 +/- 0.01----0.46 +/- 0.05, P less than 0.01), and an unchanged filtered load of sodium (2.28 +/- 0.27----2.16 +/- 0.32 mu eq/min, P greater than 0.10). Isolated tubular microperfusion studies demonstrated that ANP, present as a 10(-9) M concentration in the solution bathing perfused proximal straight tubules (PST), did not affect fluid flux (Jv) (0.38 +/- 0.07----0.41 +/- 0.07 nl/mm/min, P greater than 0.30) or phosphate reabsorption (Jp) (1.50 +/- 0.5----1.38 +/- 0.36 pmole/mm/min, P greater than 0.50). When ANP was infused into rabbits prior to harvesting the PSTs for isolated tubular microperfusion and the results were compared to tubules taken from control animals, there was again no effect on Jv (0.37 +/- 0.05 vs 0.42 +/- 0.05 nl/mm/min, P greater than 0.50) or Jp (2.41 +/- 0.27 vs 2.42 +/- 0.44 pmole/mm/min, P greater than 0.90). These findings suggest that ANP can inhibit sodium transport without increasing whole-kidney GFR or RPF, but does not directly inhibit transport in the proximal straight tubule.  相似文献   

11.
M J Camargo  S A Atlas  T Maack 《Life sciences》1986,38(26):2397-2404
One of the major renal hemodynamic actions of atrial natriuretic factor (ANF) is to increase glomerular filtration rate (GFR). To assess the role of this effect on ANF-induced natriuresis (UNaV), diuresis (V) and kaliuresis (UKV) we performed late clamp experiments in six rats. After control periods (C), synthetic ANF (auriculin A) was infused i.v. (2 micrograms X min-1/kg body wt) throughout the experiment (150 min). After pre-clamp periods, the perfusion pressure of the left kidney (LK) was reduced to 75-80 mmHg. The right kidney (RK) served as a time control. In LK, before the late clamp, ANF increased (p less than 0.01) GFR from 1.5 +/- 0.1 to 1.8 +/- 0.1 ml/min, V from 17 +/- 5 to 53 +/- 5 microliters/min, and UNaV from 2.1 +/- 0.6 to 10.0 +/- 0.9 microEq/min. Almost identical increases occurred in the RK. The late clamp returned all parameters in LK to C values (p greater than 0.05): GFR to 1.4 +/- 0.1 ml/min, V to 6.3 +/- 1.2 microliter/min, and UNaV to 1.0 +/- 0.3 microEq/min. The late clamp also reversed the ANF-induced increase in UKV. In the RK, GFR (1.8 +/- 0.1 ml/min), V (38 +/- 4 microliter/min) and UNaV (7.8 +/- 0.8 microEq/min) remained elevated (p less than 0.01 vs. C) to the end of the experiment. These data demonstrate that upon return of GFR to control levels, the ANF-induced diuresis, natriuresis and kaliuresis is abolished. The results support our previous view that the increase in GFR together with a decrease in inner-medullary hypertonicity account wholly or in great part for the natriuretic action of ANF.  相似文献   

12.
Glomerular alterations of experimental diabetes mellitus are observed in animals submitted to a reduction in renal mass, suggesting that some mechanisms responsible for the progression of renal disease are common. The aim of this study was to investigate the effect of nephrectomy on the renal function and morphology of diabetic rats. Male Wistar rats were divided into 4 groups: control (C), n=8; diabetic (DM), n=8; non-diabetic nephrectomized (Nx), n=8; (DMNx), n=9. DM was induced by streptozotocin (65 mg/Kg), and animals were treated with insulin. After 12 weeks, the glomerular filtration rate (GFR), renal plasma flow (RPF) and mean arterial pressure (MAP) were evaluated in unanaesthetized animals. Glomerular volume (GV), glomerular sclerosis index (GSI), mesangial volume density (Vvmes) and glomerular capillary surface density (Svcap) were also evaluated. Results show that kidney weight increased in Nx groups, being higher in DMNx. GFR was higher in Nx groups as was RPF, being higher in DMNx. RVR was lower in Nx groups, especially in DMNx. MAP was not different among the groups. RPF and GFR showed a high correlation for the DMNx group (r=0.95, p=0.02). The DMNx group showed a correlation between RVR and GFR (r=-0.96, p=0.005). The GV increased in Nx groups, and the GSI was higher in DMNx. Vvmes and Svcap increased in DMNx group. In summary, Nx groups developed similar degrees of glomerular hypertrophy, but only DMNx showed an increased value for GSI. The present data suggest that the acceleration of glomerular lesions in DMNx animals was more closely associated to hemodynamic adaptations than to glomerular hypertrophy.  相似文献   

13.
The acute renal effects of hypoxemia and the ability of the co-administration of an angiotensin converting enzyme inhibitor (perindoprilat) and an adenosine receptor antagonist (theophylline) to prevent these effects were assessed in anesthetized and mechanically-ventilated rabbits. Renal blood flow (RBF) and glomerular filtration rate (GFR) were determined by the clearances of para-aminohippuric acid and inulin, respectively. Each animal acted as its own control. In 8 untreated rabbits, hypoxemia induced a significant drop in mean blood pressure (-12 +/- 2%), GFR (-16 +/- 3%) and RBF (-12 +/- 3%) with a concomitant increase in renal vascular resistance (RVR) (+ 18 +/- 5%), without changes in filtration fraction (FF) (-4 +/- 2%). These results suggest the occurrence of both pre- and postglomerular vasoconstriction during the hypoxemic stress. In 7 rabbits pretreated with intravenous perindoprilat (20 microg/kg), the hypoxemia-induced changes in RBF and RVR were prevented. FF decreased significantly (-18 +/- 2%), while the drop in GFR was partially blunted. These results could be explained by the inhibition of the angiotensin-mediated efferent vasoconstriction by perindoprilat. In 7 additional rabbits, co-administration of perindoprilat and theophylline (1 mg/kg) completely prevented the hypoxemia-induced changes in RBF (+ 11 +/- 3%) and GFR (+ 2 +/- 3%), while RVR decreased significantly (-14 +/- 3%). Since adenosine and angiotensin II were both shown to participate, at least in part, in the renal changes induced by hypoxemia, the beneficial effects of perindoprilat and theophylline in this model could be mediated by complementary actions of angiotensin II and adenosine on the renal vasculature.  相似文献   

14.
Plasma levels of atrial natriuretic peptide (ANP) and the effect of exogenous ANP on renal function have been studied in newborn and adult rabbits. In order to investigate an age difference in responsiveness to ANP, we studied the renal effects of alpha-human ANP (1-28) administered at the same dose per kg body weight in adult and neonatal rabbits. Plasma basal ANP levels were similar in 18 newborn (4- to 11-day-old) compared to 7 adult rabbits (150 +/- 16 and 151 +/- 28 pg/ml, resp.). Eleven newborn and 11 adult rabbits were anesthetized and mechanically ventilated. After a control period, each animal received an hANP loading dose (3 micrograms/kg i.v.), followed by an infusion of 0.3 micrograms/kg/min. Blood gases remained stable throughout the experiment in both groups. Mean blood pressure decreased in newborn (28.5 +/- 0.8 to 26.2 +/- 1.0 mmHg) and adult (92 +/- 3 to 84 +/- 3 mmHg) animals. Percent hANP-induced changes in renal functions in newborn and adult rabbits were, respectively: urine flow rate: -21 +/- 4% and +57 +/- 8%; urinary sodium excretion: +4 +/- 7% and +81 +/- 11%; glomerular filtration rate (GFR): -19 +/- 4% and -4 +/- 6%; renal blood flow (RBF): -22 +/- 4% and -11 +/- 5%. As expected, diuresis and natriuresis increased in adult rabbits. Failure of hANP to increase natriuresis and diuresis in newborn rabbits could be related to the marked decrease in GFR, receptor immaturity and/or interactions with other hormonal systems.  相似文献   

15.
C E Hock  J C Passmore 《Life sciences》1985,37(21):1997-2003
We investigated the respective contributions of the renin-angiotensin and alpha-adrenergic systems to nicotine-induced, canine, renal vasoconstriction by using saralasin (4 micrograms/kg/min) and phentolamine (25 micrograms/kg/min) blockade respectively. Nicotine infusion (0.024 mg/kg/min) increased mean arterial blood pressure (MABP) (114 +/- 3.0 to 219 +/- 8.0 mmHg) and decreased total renal blood flow (TRBF) (3.12 +/- 0.34 to 1.60 +/- 0.37 ml/min/g). Nicotine infusion produced a significantly lesser blood flow in outer cortex (OC), inner cortex (IC), and outer medulla (OM) compared to control dogs. The intrarenal-artery infusion of saralasin or phentolamine had no effect on the nicotine-induced MABP changes. Phentolamine infusion prior to nicotine resulted in a significantly greater TRBF (P less than 0.01), OC (p less than 0.001), IC (p less than 0.001) and OM (p less than 0.01) flow than in the group that received nicotine only. Saralasin pretreatment prior to nicotine resulted only in a significantly (p less than 0.01) greater OC flow than nicotine only. Our data suggest that while angiotensin II mediates a portion of the action of nicotine on the OC renal vasculature, the alpha adrenergic system predominates as the mediator of nicotine-induced renal vasoconstriction in the first 7 minutes of nicotine infusion.  相似文献   

16.
We investigated whether Losartan, an angiotensin II (Ang II) AT1 receptor antagonist, decreases renal vascular resistance (RVR) and increases glomerular filtration rate (GFR) in isolated perfused porcine slaughterhouse kidneys (11 control experiments and 11 Losartan experiments with 7.5mg Losartan in the preservation solution and 100(g/minute Losartan infused during perfusion). With perfusion, plasma renin activity (PRA) increased markedly from 3 +/- 1 to 90 +/- 17 ng Ang I/ml/h (control), and from 4 +/- 1 to 70 +/- 8 ng Ang I/ml/h (Losartan), plasma Ang II increased from 86 +/- 63 to 482 +/- 111 pg/ml (control), and from 73 +/- 42 to 410 +/- 91 pg/ml (Losartan). The GFR was decreased in Losartan experiments as compared with control experiments (5 +/- 1 versus 10 +/- 2 ml/min/100g kidney wt; p < 0.05). The RVR was the same in both groups (0.2 +/- 0.01 mm Hg/100g kidney wt/min/ml). Tubular sodium reabsorption was decreased in Losartan experiments as compared with control experiments (0.7 +/- 0.1 versus 1.4 +/- 0.3 mmol/min/100g kidney wt). Overall, Losartan accentuated pathophysiological signs of acute renal failure. Although other drugs have to be investigated, these results suggest that porcine slaughterhouse kidneys could be useful as a tool for research in areas such as transplantation and intensive-care medicine.  相似文献   

17.
The effect of indomethacin, an inhibitor of prostaglandin (PG) synthesis, was studied on the renal circulation, Na+ and water excretion in anaesthesized dogs during alpha-receptor inhibition. Indomethacin decreased cortical blood flow (CBFcontr, 454 +/- 142; CBFindo, 332 +/- 51 ml per min per 100 g; p less than 0.02) as well as medullary blood flow (OMBFcontr, 339 +/- 95; OMBFindo, 183 +/- 46 ml per min per 100 g; p less than 0.001), salt and water excretion, further it caused a shift in the intrarenal blood flow distribution toward the cortex. Alpha-blockade prevented the indomethacin-induced vasoconstriction in the cortex (CBF alpha inhibition + indo, 455 +/- 76 ml per min per 100 g) but not in the medullar (OMBF alpha inhibition + indo, 259 +/- 102 ml per min per 100 g, p less than 0.05). Alpha-blockade failed to prevent the indomethacin-induced antidiuresis, antinatriuresis and the intrarenal blood flow redistribution. GFR remained unaffected in all three series of studies. Our experimental findings are in line with the presumption that alpha-receptors are involved in the renal circulatory changes caused by indomethacin, probably as a result of an enhanced NE release during the inhibition of PG production. A NE--PG feed back mechanism is suggested in the regulation of renal circulation. The reduction of salt and water output induced by indomethacin appears to be independent of the alterations in renal haemodynamics, and seems rather to be the result of enhanced Na+ reabsorption, predominantly at the distal segment of the nephron, in the absence of PG, and/or a direct action of indomethacin.  相似文献   

18.
This study evaluated the effects of synthetic atrial natriuretic factor (ANF) on renal hemodynamics, urinary excretion of electrolytes, norepinephrine (NE), and dopamine (DA); and renal production of renin in anesthetized dogs. Following a bolus (1 micrograms/kg body weight) and infusion (0.1 microgram/kg/min) for 30 min, there was significant increase in urine flow (220 +/- 41%), glomerular filtration rate (72 +/- 14%), and urinary sodium excretion (170 +/- 34%). There was a decrease in renin secretory rate and the concentration ratio of urine NE to DA following ANF was decreased (p less than 0.05). These data suggest that ANF decreases renal production of NE and renin.  相似文献   

19.
The possible effects of renal vasoconstriction from anesthesia and surgery on water excretion after hypotonic volume expansion (HVE) were studied in 18 well conditioned anesthetized dogs, with and without the infusion of phenoxybenzamine and acetylcholine into the renal artery of the cannulated kidney. In 6 dogs (Group 1 - Control) whose renal artery was infused with isosmotic saline, HVE resulted in a bilateral increase in GFR and UV (p < .05). ERPF, Cosm, CH2O, UNaV, UKV, RBF, RVR and MAP did not change significantly. In 6 other dogs (Group 2), whose cannulated kidney was infused with phenoxybenzamine 50 μg/min before and during HVE, GFR increased on the infused side while CH2O and UV increased bilaterally (p < .05). ERPF, Cosm, UNaV, UKV, RBF, RVR and MAP were not affected significantly. The addition of ADH, 2 mu/min into the phenoxybenzamine infusate, decreased ERPF, RBF and RVR bilaterally and CH2O on the infused side (p < .05). It had no effect upon GFR, Cosm, UNaV, UKV and MAP. In another 6 dogs, (Group 3), whose cannulated renal artery was infused with acetylcholine (20 μg/min) before and during HVE, CH2O, UV and RVR increased bilaterally (p < .05). ERPF and RBF decreased bilaterally (p < .05), whereas GFR, Cosm, UNaV and MAP were unaffected. UKV decreased on the infused side (p < .05). The addition of ADH (2 mu/min)_into the acetylcholine infusate, decreased CH2O bilaterally and increased Cosm and UKV on the control side (p < .05). It had no effect on ERPF, GFR, UV, UNaV, RBF, RVR and MAP. These observations suggest that anesthesia and surgery produce renal vasoconstriction and this together with increased ADH release, interfere with water excretion by the kidney. Previous renal vasodilation prevents these influences of anesthesia and surgery.  相似文献   

20.
1. The renal circulatory instability that some believe is inherent in rabbits was studied. 2. In five, conscious rabbits, glomerular filtration rate (GFR) averaged 4.2 +/- 0.6 ml/min/kg body wt after 1 hr, but changed to an overall average of 3.5 +/- 1.5 ml/min/kg wt after 3 hr. 3. Between-measurement coefficient of variation for GFR was more than 30% for three rabbits and 10% or less for two. 4. Renal blood flow (RBF) was even more variable. 5. The renal circulatory instability may be associated with differences in sympathetic activity by mechanisms not existing in other mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号