首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Recent studies have demonstrated that 3-deoxy-3-fluoro-D-glucose (3-FG) is metabolized to 3-deoxy-3-fluoro-D-sorbitol (3-FS), via aldose reductase, and 3-deoxy-3-fluoro-D-fructose (3-FF), via the sorbitol dehydrogenase reaction with 3-FS, in rat cerebral tissue (Kwee, I. L., Nakada, T., and Card, P. J. (1987) J. Neurochem. 49, 428-433). However, the biochemistry of 3-FG in other mammalian organs has not been investigated making the application of 3-FG as a metabolic tracer uncertain. To address this issue we investigated 3-FG metabolism and distribution in isolated cell lines and in rabbit tissues in vivo with 19F NMR and gas chromatography-mass spectrometry. In general, the production of 3-FS is well correlated with the known distribution of aldose reductase in all the systems studied. Further metabolism of 3-FS to 3-FF was verified to occur in cerebral tissue. Surprisingly, two new fluorinated compounds were found in the liver and kidney cortex. These compounds are identified as 3-deoxy-3-fluoro-D-gluconic acid, which is produced via glucose dehydrogenase activity on 3-FG, and 3-deoxy-3-fluoro-D-gluconate-6-phosphate. Based on enzyme studies, it is argued that the 3-deoxy-3-fluoro-D-gluconate-6-phosphate is derived directly from 3-deoxy-3-fluoro-D-gluconic acid and not as a product of pentose phosphate activity. Direct oxidation and reduction are the major metabolic routes of 3-FG, not metabolism through glycolysis or the pentose phosphate shunt. Thus, 3-FG metabolism coupled with 19F NMR appears to be very useful for monitoring aldose reductase and glucose dehydrogenase activity in vivo.  相似文献   

2.
An HPLC method has been developed for the assay of cytidine monophosphate-sialic acid synthetase (EC 2.7.7.43) using ion-pair chromatography and gradient elution. This procedure permits the assay of alternative substrates and inhibitors of the enzyme and is not subject to the limitation of the colorimetric method. The newly synthesized N-acetyl-9-deoxy-9-fluoro-D-neuraminic acid was found to be a good substrate of the enzyme with a Km of 6.35 mM as compared to 1.84 mM for N-acetylneuraminic acid.  相似文献   

3.
In the present study we have determined the kinetics of 3-deoxy-3-fluoro-D-glucose (3-FG) as a substrate for the aldose reductase reaction in vitro. In addition, we compared the 3-deoxy-3-fluoro-sorbitol (3-FS) production rates from 3-FG in the intact lens using 19F NMR with conventional aldose reductase determinations in extracts from the same lenses. The affinity of in vitro aldose reductase for 3-FG was approximately 20 times greater (9.3 mM) than that for glucose (188 mM). An excellent correlation between the rate of 3-FS production in the intact canine lens, determined with 19F NMR, and extracted aldose reductase activity was observed. The relatively high affinity of aldose reductase for 3-FG and the correlation of 3-FS production with enzyme activity in the intact lens suggests that 3-FS production from 3-FG detected by 19F NMR could provide an accurate noninvasive determination of aldose reductase activity in the eye lens.  相似文献   

4.
The uptake of 4-deoxy-4-fluoro-D-glucose (4FG), without subsequent catabolism, by resting cells of Escherichia coli (ATCC 11775) is 0.06 mg/mg dry weight. In frozen-thawed cells of this organism, 4FG is a substrate for the phosphoenolpyruvate phosphotransferase system with a rate of phosphorylation twice that found for the isomeric 3-deoxy-3-fluoro-D-glucose. 4FG is not a carbon source for growth of this organism and it inhibits the extent of growth of cells in the presence of glucose. The inhibition of growth of E. coli K12 on lactose by 4FG is also observed and this is considered to be consistent with the fact that 4FG is an uncompetitive inhibitor of beta-galactosidase (EC 3.2.1.23) activity and that 4FG or 4-deoxy-4-fluoro-D-glucose-6 phosphate repress beta-galactosidase synthesis. These results support the view that catabolite repression may be produced by compounds which are not necessarily metabolised further than hexose-6-phosphates.  相似文献   

5.
Summary Zymomonas mobilis ATCC 29191 is able to degrade gluconate but cannot use it as a single carbon and energy source. Gluconate is phosphorylated by a gluconate kinase (EC 2.7.1.12) and the resulting 6-phosphogluconate is further catabolized to yield about 0.8 mol ethanol per mol of gluconate, considerable amounts of acetate and acetoin. This product spectrum agrees with the theoretical yield of only one reduction equivalent if gluconate is phosphorylated by a kinase and subsequently metabolized via the Entner-Doudoroff pathway.Furthermore, Z. mobilis contains a membrane-bound enzyme system which is able to oxidize glucose to gluconate. Cell-free extracts were active in an assay system with Wurster's blue as electron acceptor, and various aldoses as well as maltose, mannitol and sorbitol could be oxidized. The affinity for sorbitol was very low (K m =330 mM) but reasonable for glucose (K m =2.8 mM). The pH optimum for the glucose-oxidizing reaction was 6.5, while that for sorbitol oxidation was 5.5.Dedicated to Prof. Dr. H. Dörfel on the occasion of his 60th birthday  相似文献   

6.
Gluconate kinase from Zymomonas mobilis: isolation and characteristics   总被引:2,自引:0,他引:2  
The enzyme gluconate kinase EC 2.7.1.12 has been found at high levels in glucose-grown Zymomonas mobilis cells. A simple procedure, based on differential dye-ligand chromatography, has been used to isolate the enzyme, purifying it some 600-fold. The purified enzyme is a monomer of molecular weight 18,000 Da, which is much smaller than other gluconate kinases reported. It has a relatively low affinity for ATP. (Km = 1.5 mM), but high for gluconate (Km = 0.33 mM), and has little activity with any other potential substrates.  相似文献   

7.
The chemoenzymatic route to 2-deoxy-2-propionamido-D-mannose (1b), 2-butyramido-2-deoxy-D-mannose (2b) and 2-deoxy-2-phenylacetamido-D-mannose (3b) involved N-acylation of 2-amino-2-deoxy-D-glucose followed by alkaline C-2 epimerization and selective microbial removal of the epimers with gluco-configuration. The latter step employed whole cells of Rhodococcus equi A4 able to degrade 2-deoxy-2-propionamido-D-glucose (1a), 2-butyramido-2-deoxy-D-glucose (2a) and 2-deoxy-2-phenylacetamido-D-glucose (3a) but inactive towards the corresponding manno-isomers. The metabolism of the gluco-isomers probably involved phosphorylation and subsequent deacylation. 2-Acetamido-2-deoxy-6-O-phospho-D-glucose amidohydrolase [EC 3.5.1.25] but not 2-acetamido-2-deoxy-D-glucose amidohydrolase was detected in the cell extract, the former enzyme being partially purified (15.8-fold with an overall yield of 18.1% and a specific activity of 0.95 units mg-1 protein). According to SDS-PAGE electrophoresis, gel filtration and mass spectrometry, the enzyme was a monomer with an apparent molecular mass of approximately 42 kDa. The optimum temperature and pH of the enzyme were 60 degrees C and 8.0-9.0, respectively. 2-Acetamido-2-deoxy-6-O-phospho-D-glucose and 2-acetamido-2-deoxy-6-O-sulfo-D-glucose but not 2-acetamido-2-deoxy-1-O-phospho-D-glucose or 2-acetamido-2-deoxy-D-glucose were substrates of the enzyme. Its activity was slightly inhibited by the addition of 1 mM Al3+, Ca2+, Co2+, Cu2+, Mn2+ or Zn2+ and activated by 1 mM Mg2+. The concentrated enzyme is highly stable at 4 degrees C in the presence of 0.1 M ammonium sulfate.  相似文献   

8.
1. A mutant of Escherichia coli, devoid of phosphopyruvate synthetase, glucosephosphate isomerase and 6-phosphogluconate dehydrogenase activities, grew readily on gluconate and inducibly formed an uptake system for gluconate, gluconate kinase and 6-phosphogluconate dehydratase while doing so. 2. This mutant also grew on glucose 6-phosphate and inducibly formed 6-phosphogluconate dehydratase; however, the formation of the gluconate uptake system and gluconate kinase was not induced under these conditions. 3. The use of the Entner–Doudoroff pathway for the dissimilation of 6-phosphogluconate, derived from either gluconate or glucose 6-phosphate, by this mutant was also demonstrated by the accumulation of 2-keto-3-deoxy-6-phosphogluconate (3-deoxy-6-phospho-l-glycero-2-hexulosonate) from both these substrates in a similar mutant that also lacked phospho-2-keto-3-deoxygluconate aldolase activity. 4. Glucose 6-phosphate inhibits the continued utilization of fructose by cultures of the mutants growing on fructose, as it does in wild-type E. coli. 5. The mutants do not use glucose for growth. This is shown to be due to insufficiency of phosphopyruvate, which is required for glucose uptake.  相似文献   

9.
Dipeptidase (dipeptide hydrolase [EC 3.4.13.11]) has been purified to homogeneity and crystallized from the cell extract of Bacillus stearothermophilus IFO 12983. The enzyme has a molecular weight of about 86,000, and is composed of two subunits identical in molecular weight (43,000). The enzyme contains 2 g atoms of zinc per mol of protein. A variety of dipeptides consisting of glycine or only L-amino acids serve as substrates of the enzyme; Km and Vmax values for L-valyl-L-alanine are 0.5 mM and 68.0 units/mg protein, respectively. The enzyme is significantly stable not only at high temperatures but also on treatment with protein denaturants such as urea and guanidine hydrochloride. The enzyme also catalyzes hydrolysis of several N-acylamino acids with Vmax values 3-30% of those for the hydrolysis of dipeptides. The thermostable dipeptidase shares various properties with bacterial aminoacylase [EC 3.5.1.14]: their subunit molecular weight, metal content and requirement, amino acid composition, and amino acid sequence in the N-terminal region are very similar.  相似文献   

10.
The specific activity of inducible biodegradative threonine dehydratase (EC 4.2.1.16) in Escherichia coli K-12 increased significantly when the standard tryptone-yeast extract medium or a synthetic mixture of 18 L-amino acids was supplemented with 10 mM KNO3 or 50 mM fumarate and with 4 mM cyclic AMP. In absolute terms, almost four times as much enzyme was produced in the amino acid medium as in the tryptone-yeast extract medium. Enzyme induction in the amino acid medium was sensitive to catabolite repression by glucose, gluconate, glycerol, and pyruvate. An analysis of amino acid requirements for enzyme induction showed that a combination of only four amino acids, threonine, serine, valine, and isoleucine, produced high levels of threonine dehydratase provided that both fumarate and cyclic AMP were present. Immunochemical data revealed that the enzyme synthesized in the presence of these four amino acids was indistinguishable from that produced in the tryptone-yeast extract or the medium with 18 amino acids. We interpret these results to mean that not the amino acids themselves but some metabolites derived anaerobically in reactions involving an electron acceptor may function as putative regulatory molecule(s) in the anaerobic induction of this enzyme.  相似文献   

11.
The metabolism of gluconate by Klebsiella pneumoniae NCTC 418 was studied in continuous culture. Under all gluconate-excess conditions at low culture pH values (pH 4.5–5.5) the majority (70–90%) of the gluconate metabolized was converted to 2-oxogluconate via gluconate dehydrogenase (GADH), although specific 2-oxogluconate production rates under potassium-limited conditions were significantly lower than under other gluconate-excess conditions. At high culture pH values, metabolism shifted towards production of acetate. Levels of GADH were highest at low culture pH values and synthesis was stimulated by the presence of (high concentrations of) gluconate. An increase in activity of the tricarboxylic acid cycle was accompanied by a decrease in GADH activity in vivo and in vitro, suggesting that the GADH serves a role as an alternative energy-generating system. Anaerobic 2-oxogluconate production was found to be possible in the presence of nitrate as electron acceptor. Levels of gluconate kinase were highest when K. pneumoniae was grown under gluconate-limited conditions. Under carbon-excess conditions, levels of this enzyme correlated with the intracellular catabolic flux.Abbreviations GADH gluconate dehydrogenase (EC 1.1.99.3) - GAK gluconate kinase (EC 2.7.1.12) - GDH glucose dehydrogenase (EC 1.1.99.17) - PQQ pyrroloquinoline quinone [2,7,9-tricarboxy-1-H-pyrrolo (2,3-f) quinoline-4,5-dione] - TCA trichloroacetic acid  相似文献   

12.
Two types of phosphorylase [EC 2.4.1.1] from the etiolated soybean (Glycine max) cotyledons were separated by column chromatography on DEAE-Sephacel and further purified to apparent homogeneities. Molecular weights of the subunits were 100,000 and 113,000 for phosphorylases I and II, respectively. The native enzymes I and II were a dimer (200,000) and tetramer (450,000), respectively. Electrophoretic analysis by the Hedrick and Smith method indicated that the two phosphorylases were distinct proteins with no correlation. The apparent Km values for glucose 1-phosphate, glycogen, and maltoheptaose of enzyme I were 4.00 mM, 0.18 mg/ml, and 10.3 mM, respectively, while those values of enzyme II were 5.43 mM, 23.8 mg/ml, and 0.30 mM, respectively. The relative activity of enzyme I increased with increasing chain length of the substrate glucans, and waxy maize amylopectin was the best substrate among the 11 saccharides examined. For enzyme II, maltooligosaccharides with degree of polymerization (DP) 5-7 were the better substrates than amylose (DP 38) and glycogen. These results indicated that the soybean phosphorylases I and II have similar properties to a cytoplasmic and chloroplastic type of plant leaf enzyme, respectively.  相似文献   

13.
6,7-Dideoxy-D-gluco-heptonic-7-phosphonic acid, the isosteric phosphonate analogue of gluconate 6-phosphate, was prepared by incubation of the corresponding analogue of glucose 6-phosphate with glucose 6-phosphate dehydrogenase and NADP+ in the presence of an enzyme NADPH-NADP+ recycling system. The analogue of gluconate 6-phosphate is a substrate for yeast gluconate 6-phosphate dehydrogenase, showing Michaelis-Menten kinetics at pH 7.5 and 8.0. At both pH values the Km values are approx. 3-fold higher and the Vmax. values approx. 7-fold lower than those of the natural substrate.  相似文献   

14.
Glucuronolactone reductase [EC 1.1.1.20] from rat kidney was purified over 300-fold by ammonium sulfate fractionation, chromatography on DEAE-cellulose and hydroxylapatite columns, and preparative isoelectric focusing. The substrate specificity of the enzyme in the reduction reaction was broad, and hexuronic acid was one of the best substrates among monosaccharides. Km values for D-glucuronic acid, D-glucuronolactone, D-galacturonic acid, and L-iduronic acid were 6, 9, 4, and 6 mM, respectively. An investigation of the activity for aldose led to the finding that triose and tetrose served as good substrates for this enzyme. However, the activity for aldopentose or aldohexose was less than 1% of that for D-glucuronic acid at the same concentration. The enzyme was inactive towards most hexosamines (galactosamine, mannosamine, N-acetylglucosamine, N-acetylgalactosamine, and N-acetylmannosamine, but not glucosamine), meso-inositol, D-fructose, and tetrasaccharides from hyaluronic acid and chondroitin 4-sulfate. Trisaccharides from hyaluronic acid and chondroitin 6-sulfate which possess glucuronic acid at the reducing end were poor substrates for the enzyme and the activity towards these 4-substituted glucuronic acids was less than 3% of that towards non-substituted glucuronic acid.  相似文献   

15.
Pyruvate kinase (EC 2.7.1.40) from Streptococcus mutans strain JC2 was purified, giving a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the native enzyme was 180,000 to 190,000, and the enzyme was considered to consist of four identical subunits. This enzyme was completely dependent on glucose 6-phosphate for activity, and the saturation curve for activation by glucose 6-phosphate was sigmoidal. In the presence of 0.5 mM glucose 6-phosphate, the saturation curves for the substrates phosphoenolpyruvate and ADP were hyperbolic, and the Km values were 0.22 and 0.39 mM, respectively. GDP, IDP, and UDP could replace ADP, and the Km for GDP (0.026 mM) was 0.067 of that for ADP. The enzyme required not only divalent cations, Mg2+ or Mn2+, but also monovalent cations, K+ or NH4+, for activity, and it was strongly inhibited by Pi. When the concentration of Pi was increased, the half-saturating concentration and Hill coefficient for glucose 6-phosphate increased. However, the enzyme was immediately inactivated in a solution without Pi. The intracellular concentration of glucose 6-phosphate, in cooperation with that of Pi, may regulate pyruvate kinase activity in S. mutans.  相似文献   

16.
Glucose kinase catalyzes the ATP-dependent phosphorylation of glucose. Streptomyces peucetius var. caesius glucose kinase was purified 292-fold to homogeneity. The enzyme has cytosolic localization and is composed of four identical subunits, each of 31 kDa. The purified enzyme easily dissociates into dimers. However, in the presence of 100 mM glucose the enzyme maintains its tetrameric form. Maximum activity was found at 42 degrees C and pH 7.5. Isoelectric focusing of the enzyme showed a pl of 8.4. The N- and C-terminal amino acid sequences were MGLTIGVD and VYFAREPDPIM, respectively. The kinetic mechanism of S. peucetius var. caesius glucose kinase appears to be a rapid equilibrium ordered type, i.e., ordered addition of substrates to the enzyme, where the first substrate is d-glucose. The K(m) values for d-glucose and MgATP(2-) were 1.6 +/- 0.2 and 0.8 +/- 0.1 mM, respectively. Mg(2+) in excess of 10 mM inhibits enzyme activity.  相似文献   

17.
Serine: glyoxylate aminotransferase (EC 2.6.1.45) from rye seedlings catalysed transamination between L-serine and glyoxylate according to the Ping Pong Bi Bi mechanism with double substrate inhibition. As judged from the Km values, L-serine, L-alanine, and L-asparagine served as substrates for the enzyme with glyoxylate, whereas L-alanine and L-asparagine underwent transamination with hydroxypyruvate as acceptor. Pyridoxal phosphate (PLP) seems to be rather loosely bound to the enzyme protein. Aminooxyacetate and D-serine were found to be pure competitive inhibitors of the enzyme, with Ki values of 0.12 microM and 1.6 mM, respectively. Among the PLP inhibitors isonicotinic acid hydrazide and hydroxylamine were far less effective than aminooxyacetate (20% and 70% inhibition at 0.1 mM concentration, respectively). Inhibition by the SH group inhibitors at 1 mM concentration did not exceed 50%. L-Serine distinctly diminished the inhibitory effect of this type inhibitors. Preincubation of the enzyme with glyoxylate distinctly diminished transamination. Glyoxylate limited the inhibitory action of formaldehyde probably by competing for the reactive groups present in the active centre.  相似文献   

18.
Abstract

The crude extracellular extract of Aspergillus niger (syn A. ficuum) NRRL 3135 contains glucoamylase (exo-1,4-α-D-glucanohydrolase, EC 3.2.1.2). The enzyme, a glycoprotein, was purified 7-fold by ion-exchange chromatography, chromatofocusing, and conconavalin A affinity chromatography. The molecular weight of the enzyme was estimated to be 90 kDa by SDS-PAGE and gel permeation chromatography. The pI of the enzyme was 3.4. The temperature optimum of the enzyme was 60°C and the pH optimum was 5.0. The Vmax values for soluble starch, maltose, maltotriose, maltotetraose, maltopentaose, and isomaltose were 55.2, 11.7, 32.3, 47.8, 59.2, 12.5 nKat glucose/sec, respectively and the Km values for the same substrates were 0.09%, 0.67 mM, 0.76 mM, 0.76 mM, 0.68 mM, and 122.01 mM, respectively.  相似文献   

19.
The hexose transport system of undifferentiated L6 rat myoblasts was investigated. 2-Deoxy-D-glucose (2-DOG) and 2-deoxy-2-fluoro-D-glucose (2FG) were used as analogues to investigate the rate-limiting step of hexose uptake into the cell. Virtually all of the 2-DOG or 2FG taken up into the cell was found to be in the phosphorylated form. No significant pool of intracellular free sugar could be detected. This demonstrates that hexose transport, not phosphorylation, is the rate-limiting step. The inhibitory effect of various glucose analogues on 2-DOG and 3-O-methyl-D-glucose (3-OMG) uptake revealed that these two sugars may be taken up into the cell by different carriers. In addition, kinetics analysis of the transport of both sugars also indicates that two hexose transport systems may be present in L6 cells. 2-DOG is transported by high and low affinity transport systems (Km 0.6 mM and 2.9 mM, respectively), whereas 3-OMG is transported by a low affinity system (Km 3.5 mM). Treatment of cells with ionophores or energy uncouplers results in inactivation of the high affinity system, but not the low affinity system.  相似文献   

20.
Batch cultures of Aspergillus niger grown from conidia on a medium with high C/N ratio accumulated gluconate from glucose with a yield of 57%. During almost the whole time of accumulation there was no net synthesis of total protein in the mycelium but the activity per flask and the specific activity of glucose oxidase (EC 1.1.3.4) in mycelial extracts increased whereas both values decreased for glucose dehydrogenase (EC 1.1.99.10) gluconate 6-phosphatase (cf. EC 3.1.3.1, 3.1.3.2), gluconokinase (EC 2.7.1.12), glucose 6-phosphate and phosphogluconate dehydrogenases (EC 1.1.1.49, EC 1.1.1.44), phosphoglucomutase (EC 2.7.5.1), and most enzymes of the Embden-Meyerhof pathway and the tricarboxylic acid cycle. Gluconate dehydratase (EC 4.2.1.39), gluconate dehydrogenase (EC 1.1.99.3) and enzymes of the Entner-Doudoroff pathway could not be detected. By cycloheximide the increase of glucose oxidase activity was inhibited. It is concluded that the high yield of gluconate was due mainly to the net (de novo) synthesis of glucose oxidase which occurred during protein turnover after the exhaustion of the nitrogen source, and which was not accompanied by a net synthesis of the other enzymes investigated. Some gluconate may also have been formed by hydrolytic cleavage of gluconate 6-phosphate.Abbreviations GOD glucose oxidase - GD glucose dehydrogenase - PP pentose phosphate - EM Embden-Meyerhof - TCA tricarboxylic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号