首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of adenyl-5'-yl imidodiphosphate (AMP-PNP), ADP, and PPi to dissociate the actin.myosin subfragment 1 (S-1) complex was studied using an analytical ultracentrifuge with UV optics, which enabled the direct determination of the dissociated S-1. At mu = 0.22 M, pH 7.0, 22 degrees C, with saturating nucleotide present, ADP weakens the binding of S-1 to actin about 40-fold (K congruent to 10(5) M-1), while both AMP-PNP and PPi weakens the binding about 400-fold (K congruent to 10(4) M-1). This 10-fold stronger dissociating effect of AMP-PNP and PPi compared to ADP correlates with our data showing that the binding of AMP-PNP and PPi to S-1 is about 10-fold stronger than the binding of ADP. In contrast, the binding constants of ADP, AMP-PNP, and PPi to acto.S-1 are nearly identical (K congruent to 5 x 10(3) M-1). At 4 degrees C, AMP-PNP has only a 3-fold stronger dissociating effect than ADP and, similarly, our data suggest that the binding of AMP-PNP and ADP to S-1 is quite similar at 4 degrees C. AMP-PNP and PPi are, therefore, somewhat better dissociating agents than ADP, but the difference among these three ligands is quite small. These data also show that actin and nucleotide bind to separate but interacting sites on S-1 and that the S-1 molecules bind independently along the F-actin filament with a binding constant of about 1 x 10(7) M-1 at 22 degrees C and physiological ionic strength.  相似文献   

2.
J Everse  N Kujundzic 《Biochemistry》1979,18(12):2668-2673
A detailed investigation of the reduction of cytochrome c by glutathione has shown that the reaction proceeds through several steps. A rapid combination of the reducing agent with the cytochrome leads to the formation of a glutathione-cytochrome intermediate in which the glutathione most likely interacts with the edge of the heme moiety. The electron transfer takes place in a subsequent slower step. Since cytochrome c(III) exists in two conformational forms at neutral pH [Kujundzic, N., & Everse, J. (1978) Biochem. Biophys. Res. Commun. 82, 1211], the reduction of cytochrome c by glutathione may be represented by cyt c(III) + GS- reversible K1 cyt c(III) ... GS- reversible k1 products cyt c*(III) + GS- reversible K2 cyt c*(III) ... GS- reversible k2 products At 25 degrees C, pH 7.5, and an ionic strength of 1.0 (NaCl), k1 = 1.2 X 10(-3) S-1, k2 = 2.0 X 10(-3) S-1, k1 = 2.9 X 10(3) M-1, and K2 = 5.3 X 10(3) M-1. The reaction is catalyzed by trisulfides, and second-order rate constants of 4.55 X 10(3) and 7.14 X 10(3) M-1 S-1 were obtained for methyl trisulfide and cysteine trisulfide, respectively.  相似文献   

3.
The pK values and reactivities of the thiol groups which participate in the formation of interchain disulfide bonds in Bence Jones proteins and the Fab(t) fragment of a myeloma protein (Jo) (IgGl, kappa) were determined by means of the reactions with chloroacetamide and DTNB, and of spectrophotometric titration. The two thiol groups of partially reduced type kappa Bence Jones protein dimers had the same pK values (pK = 9.76 at 0.2 ionic strength and 25 degrees C) and the same true second-order rate constants (k) toward chloroacetamide (k = 18.8 x 10(-2) M-1 . S-1). The two thiol groups of partially reduced type lambda Bence Jones protein dimers had different pK values but the variation of the pK values among the specimens was small (pK1 = 8.5-8.6 and pK2 = 9.5-9.7 at 0.2 ionic strength and 25 degrees C). The spectrophotometric titration of partially reduced Nag protein (type lambda) also showed that the two thiol groups have different pK values. The pK values of two thiol groups of the partially reduced Fab(t) fragment were determined as 8.51 and 9.76 at 0.2 ionic strength and 25 degrees C. The effect of ionic strength on the pK values of the thiol groups of partially reduced Nag protein and the pK values of the thiol groups in partially reduced Ta protein (type kappa) and in a hybrid molecule formed between partially reduced Ta protein and partially reduced and alkylated H chains indicated that the difference in pK values did not arise from electrostatic interaction between the two thiol groups, but that the pK values are intrinsically different. The true rate constants, k1 and k2, of the two thiol groups of type lambda Bence Jones proteins varied with the specimen (k1 = 1.9-5.7 x 10(-2) M-1 . S-1 and k2 = 18.5-25.0 x 10(-2) M-1 . S-1). The k1 and k2 values for Jo-Fab(t) were 7.21 x 10(-2) and 23.1 x 10(-2) M-1 . S-1, respectively. On the basis of these pK values and reactivities, we discuss the reformation of the interchain disulfide bonds from partially reduced Bence Jones proteins and immunoglobulins in the presence of oxidized glutathione.  相似文献   

4.
Apoconalbumin binds Mn(II) at two sites with association constants of K1 = 7 (+/- 1) X 10(4) and K2 = 0.4 (+/- 0.25) X 10(4) M-1. The binding is tighter in the presence of excess bicarbonate resulting in K1 = 1.8 (+/- 0.2) X 10(5) and K2 = 3 (+/- 2) X 10(4) M-1. The electron paramagnetic resonance spectrum (at both 9 and 35 GHz) of Mn(II) bound at the tight site reveals a rhombic distortion (lambda = E/D approximately equal to 0.25-0.31) in the protein ligand environment of the mental ion. An evaluation of the 1/pT1p, paramagnetic contribution to the longitudinal relaxation rate of solvent protons with Mn(II)-, Mn(III)-, and Fe(III)-derivatives of conalbumin revealed that the mental ion in each site of conalbumin is accessible to one water molecule. For Mn(II)-conalbumin and Mn(III)-conalbumin species, inner coordination sphere protons are rapidly exchanging with the bulk solvent, while slow exchange conditions prevail for Fe(III)-conalbumin.  相似文献   

5.
The RNA binding protein of 56 residues encoded by the extreme 3' region of the gag gene of Rauscher murine leukemia virus (MuLV) has been chemically synthesized by a solid-phase synthesis approach. Since the peptide contains a Cys26-X2-Cys29-X4-His34-X2-Cys39 sequence that is shared by all retroviral gag polyproteins which has been proposed to be a metal binding region, it was of considerable interest to examine the metal binding properties of the complete p10 protein. As postulated, p10 binds the metal ions Cd(II), Co(II), and Zn(II). The Co(II) protein shows a set of d-d absorption bands typical of a tetrahedral Co(II) complex at 695 (epsilon = 565 M-1 cm-1), 642 (epsilon = 655 M-1 cm-1), and 615 nm (epsilon = 510 M-1 cm-1) and two intense bands at 349 (epsilon = 2460 M-1 cm-1) and 314 nm (epsilon = 4240 M-1 cm-1) typical of Co(II)----(-)S- charge transfer. The ultraviolet absorption spectrum also indicates Cd(II) binding by the appearance of a Cd(II)----(-)S- charge-transfer band at 255 nm. The 113Cd NMR spectrum of 113Cd(II)-p10 reveals one signal at delta = 648 ppm. This chemical shift correlates well with that predicted for ligation of 113Cd(II) to three -S- from the three Cys residues of p10. The chemical shift of 113Cd(II)-p10 changes by only 4 ppm upon binding of d(pA)6, indicating that the chelate complex is little changed by oligonucleotide binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A stopped-flow investigation of the electron-transfer reaction between oxidized azurin and reduced Pseudomonas aeruginosa cytochrome c-551 oxidase and between reduced azurin and oxidized Ps. aeruginosa cytochrome c-551 oxidase was performed. Electrons leave and enter the oxidase molecule via its haem c component, with the oxidation and reduction of the haem d1 occurring by internal electron transfer. The reaction mechanism in both directions is complex. In the direction of oxidase oxidation, two phases assigned on the basis of difference spectra to haem c proceed with rate constants of 3.2 X 10(5)M-1-S-1 and 2.0 X 10(4)M-1-S-1, whereas the haem d1 oxidation occurs at 0.35 +/- 0.1S-1. Addition of CO to the reduced enzyme profoundly modifies the rate of haem c oxidation, with the faster process tending towards a rate limit of 200S-1. Reduction of the oxidase was similarly complex, with a fast haem c phase tending to a rate limit of 120S-1, and a slower phase with a second-order rate of 1.5 X 10(4)M-1-S-1; the internal transfer rate in this direction was o.25 +/- 0.1S-1. These results have been applied to a kinetic model originally developed from temperature-jump studies.  相似文献   

7.
The kinetics of reduction of oxidized Clostridium pasteurianum rubredoxin (Rdox) by free flavin semiquinones generated by the laser flash photolysis technique and by spinach ferredoxin:NADP+ reductase (FNR) semiquinone (also produced by flavin semiquinone reduction) have been investigated under anaerobic conditions. 5-Deazariboflavin semiquinone (5-dRf) rapidly reduces oxidized rubredoxin (Rdox) (k = 3.0 X 10(8) M-1 S-1) and oxidized ferredoxin:NADP+ reductase (FNRox) to the semiquinone level (k = 5.5 X 10(8) M-1 S-1). Lumiflavin semiquinone reduces Rdox more slowly (k = 1.3 X 10(7) M-1 S-1) and is not measurably reactive with FNRox. Absorption difference spectroscopy and difference CD indicate that Rdox and FNRox form a 1:1 complex at low ionic strength (10 mM), which is completely dissociated at higher ionic strength (310 mM). Apparent second order rate constants for reduction of Rdox in its free and complexed state by lumiflavin semiquinone are the same. Reduction of Rdox (both free and complexed) by free FNR semiquinone and intracomplex electron transfer were investigated using 5-dRf as the reductant. At I = 10 mM, a first order rate constant of 2.0 X 10(3) S-1 was obtained, which corresponds to the processes involved in intracomplex electron transfer from FNR semiquinone to Rdox. A second order reaction between free FNR semiquinone and complexed Rdox was also observed to occur (k = 5 X 10(7) M-1 S-1). At I = 310 mM, these reactions are not observed and the reaction of FNR semiquinone with free Rdox is second order (k = 4 X 10(6) M-1 S-1).  相似文献   

8.
Previous reports on the interaction between calmodulin (CaM) and Mg2+ range from no binding to a binding constant of 10(4) M-1 [for a summary, see Cox, J. A., Comte, M., Malnoe, A., Berger, D., & Stein, E. A. (1984) Met. Ions Biol. Syst. 17, 215-273]. In order to resolve the controversy, we used 25Mg NMR to study the binding of Mg2+ to apo-CaM, CaM.Ca2(2)+ (in which sites III and IV are occupied by Ca2+), CaM.La2(3)+ (in which sites I and II are occupied by La3+), and the two tryptic fragments of calmodulin, TR1C (containing sites I and II of CaM) and TR2C (containing sites III and IV of CaM). In each system, a "titration set" and a "temperature set" were obtained, and the spectral data were analyzed by total band-shape analysis to calculate the association constant (Ka) and off-rate (koff). As in the case of Ca2+ binding, sites I and II and sites III and IV were treated as two sets of equivalent sites, and a Ca2+/Mg2+ competition experiment suggested that Mg2+ competes with Ca2+ for the same sites. For both CaM.Ca2(2)+ and TR1C, moderately large Ka (2000 and 3500 M-1, respectively) and moderate off-rates (koff = 2300 and 3000 s-1, respectively, at 25 degrees C) were observed. For both CaM.La2(3)+ and TR2C, binding of Mg2+ was weaker by a factor of ca. 10 (Ka = 300 and 200 M-1, respectively) while the off-rates were also moderate (koff = 3500 and 2200 s-1, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
S M Yeh  C F Meares 《Biochemistry》1980,19(22):5057-5062
The distance from the protein surface to ferric or manganic ions in the two specific metal-binding sites of human serum transferrin has been estimated by measuring energy transfer from freely diffusing terbium chelaters in aqueous solution to transferrin-bound metal ions. In addition, both monoferric forms of the protein were studied, as well as the diferric complex formed by using oxalate instead of (bi)carbonate as the auxiliary anion in binding of iron(III) to transferrin. Second-order rate constants for energy transfer between electrically neutral terbium(III)--N-(2-hydroxy-ethyl)ethylenediaminetriacetate and the FeA, FeB, and Fe2 forms of transferrin were 0.9 X 10(5) M-1 S-1, 1.4 X 10(5) M-1 S-1, and 2.6 X 10(5) M-1 S-1, respectively (based on iron concentraton). For the Fe2 species, substitution of oxalate for (bi)carbonate has the effect of decreasing the accessibility of both electrically neutral and negatively charged terbium chelates to the protein-bound iron chromophores. Theoretical considerations of the effect of acceptor location in the protein on energy transfer suggest that the iron chromophores are not on the surface of the protein but are less than 1.7 nm below the surface. The use of diterbium transferrin as energy donor to a small cobalt chelate in solution or to diferric transferrin corroborates these results.  相似文献   

10.
Electron transfer from cytochrome b5 to iron and copper complexes   总被引:1,自引:0,他引:1  
The rates of electron transfer from the tryptic fragment of bovine liver cytochrome b5 to FeIIINTA, FeIIIATP, CuIINTA, CuIIATP, and CuIIHis have been measured by anaerobic stopped-flow techniques. The rates of reduction of the Fe(III) complexes are independent of ionic strength, enhanced at low pH, and slightly inhibited by ZnIINTA. Saturation kinetics are observed with CuIINTA (kappa et = 0.05 s-1, K = 8.6 M-1), CuIIHis (kappa et = 0.2 s-1, K = 2.6 X 10(3) M-1), and CuIIATP (kappa et = 0.6 s-1, K = 4.5 X 10(3) M-1), thereby indicating that binding of Cu(II) to the protein occurs prior to electron transfer. 1H NMR resonances of the three surface histidines and some neighboring residues have been assigned by two-dimensional NMR techniques. NMR titration experiments show unequivocally that CuIINTA binds preferentially at a site near His-26 and Tyr-27.  相似文献   

11.
A kinetic study of the oxidation of the copper(I) form of the blue copper protein stellacyanin (St(I) by Co(EDTA)-- has been performed. Observed rate constants approach a saturation limit with increasing [Co(EDTA)--] at pH 7, consistent with a mechanism involving rapid pre-equilibrium oxidant-protein complex formation followed by rate-limiting intramolecular Cu(I) to Co(III) electron transfer: Co(EDTA)-- + St(i Qp in equilibrium Co(EDTA)-- ---St(I) Co(EDTA)-- ---St(I) k2 leads to Co(EDTA)2-- ---St(II) (Qp = 149 M--1, k2 = 0.169 sec--1; 25.1 degrees, pH 7.0 mu 0.5 M (phosphate)). Activation parameters based on k2 (deltaH not equal to = 1.8 kcal/mol, deltaS not equal to = --56 cal/mol-deg) indicate that the electron transfer process is substantially nondiabatic, in marked contrast with results obtained for Co(phen) 3 3+ as the oxidant. Linear kobsd VS. [Co(EDTA)--] plots are reported for the Co(EDTA)-- oxidation of cuprous stellacyanin at pH 10 (k = 8.9 M--1 sec--1; 25.0, pH 10, mu 0.5 M (carbonate); DELTaH not equal to 11.3 kcal/mol, deltaS not equal to = -16 cal/mol-deg) and at pH 7 in the presence of excess EDTA (k = 21.2 M--1 sec--1; 25.1 degree, pH 7.0, mu 0.5 M (phosphate), [EDTA] tot = 5 X 10(--4) M; deltaH not equal to = 5.9 kcal/mol, delta S not equal to = --33 cal/mol-deg). It is concluded that Co(EDTA)-- adopts an electron transfer mechanism similar to that preferred by Co(phen)33+ under conditions where the oxidant is prevented from binding strongly to reduced stellacyanin.  相似文献   

12.
Co(II) interacts with bleomycin in aqueous solution, in the presence of air, to give a short-lived mononuclear superoxo Co(III) complex (I). Then, two molecules of complex I react together, with the loss of oxygen, to yield the dinuclear mu-peroxo Co(III) complex (II); the dimerization follows a second-order rate law with k2 = 200 +/- 50 M-1 s-1 at 25 degrees C. The rate of dimerization is lowered by a factor of 2000 when DNA is present at a molar ratio of [nucleotide]/[Co] higher than 16. These results and studies of circular dichroism and electron paramagnetic resonance spectra of complexes strongly suggest the binding of the superoxo complex to DNA (I') as well as that of the mu-peroxo complex (II'); the binding of 1 molecule of complex II for every 2.9 base pairs in DNA has been determined with an apparent equilibrium constant of 8.4 x 10(4) M-1.  相似文献   

13.
The one-electron oxidation of DNA bases and single-stranded DNA was studied by pulse radiolysis of aqueous solutions from pH 7-7.4 at 20 degrees C. Thallic ions, Tl(II), were found to rapidly oxidize the purine nucleotides, deoxyguanosine 5'-monophosphate, k[Tl(II) + dGMP2-] = 3.4.10(9) M-1.s-1, and deoxyadenosine 5'-monophosphate, k[Tl(II) + dAMP2-] = 1.3.10(8) M-1.s-1. The reactivities of Tl(II) ions with model pyrimidine DNA bases, 1-methylcytosine and 1-methylthymine, were too low to be measured by pulse radiolysis, k less than 10(7) M-1.s-1. The Tl(II)-mediated oxidation of ssDNA, k = 2.8.10(8) M-1.s-1, produces DNA-guanyl radical, DNA-G.(-H), exclusively. The DNA-guanyl radical is found to be a potent oxidant in neutral media, E7 = 1.04 +/- 0.05 V. It rapidly oxidizes the aromatic amino acids in glycyl-tryptophan and tyrosine methyl ester, k = 3.6.10(7) M-1.s-1 and k = 1.7.10(8) M-1.s-1, respectively. These electron transfer processes indicate that a positive 'hole' may be transferred from DNA to a DNA-associated protein. The positive 'hole' in DNA can also be repaired by antioxidants, which are electron donors. The chemical repair of the DNA-guanyl radical by negatively charged antioxidants is slower than that by positively charged and neutral antioxidants.  相似文献   

14.
The apparent equilibrium constant and rate of oxidation was investigated for the reaction of cytochrome c with iron hexacyanide. It was found that if horse heart ferricytochrome c was exposed to ferricyanide (to oxidize traces of reduced protein) the cytochrome subsequently, even after extensive dialysis, had an apparent equilibrium constant different from that of electrodialyzed protein. The effect of ferricyanide ion apparently cannot be removed by ordinary dialysis. The ionic strength dependence of the apparent equilibrium constant and bimolecular oxidation rate constant was measured in the range 1--200 mM using Tris--cacodylate or potassium phosphate buffers at pH 7.0, and electrodialyzed horse heart cytochrome c. The oxidation reaction proceeded very rapidly. Extrapolated to zero ionic strength, kox (approximately 9 X 10(9) M-1 S-1) was about 7% of that calculated for a diffusion-limited reaction. Since the exposed heme edge occupies only the order of 3% of the surface area, electron transfer apparently results at nearly every collision with the active-site region. An effective charge of + 7.8 units was estimated for the oxidation reaction. The rate of oxidation of Pseudomonas aeruginosa c551 was much slower (kox at mu = 0 was the order of 6 X 10(3)), and was not consistent with diffusion-limited kinetics.  相似文献   

15.
Binding of ADP and 5'-adenylyl imidodiphosphate to rabbit muscle myofibrils   总被引:2,自引:0,他引:2  
The binding of [3H]ADP and [3H]adenyl-5'-yl-imidodiphosphate ([3H]AMP-PNP) to rabbit skeletal myofibrils was measured at 25 and 7 degrees C, mu = 0.12 M, using [14C]mannitol as a volume marker. We found that ADP bound to myosin heads in overlap with a binding constant of about 10(4) M-1, similar to the value we previously obtained in vitro with acto.S-1. The binding of AMP-PNP to myosin heads was measured both in and out of overlap. The affinity of AMP-PNP to the heads out of overlap was similar to that obtained in vitro with S-1 alone. The binding of AMP-PNP to the myosin heads in overlap was much weaker. We could fit these data with a binding constant of about 1 x 10(3) M-1, assuming a single population of cross-bridges and 1 mol of AMP-PNP bound per mol of myosin head. This value was reduced by a factor of 2 when we corrected for nonspecific binding. It was also possible to fit the data assuming two equal populations of cross-bridges with one of the populations binding AMP-PNP about 5-fold more strongly than the other population. Therefore, for at least half of the cross-bridges in overlap, the binding of AMP-PNP is almost as weak as the value of 3 x 10(2) M-1 we previously measured for the acto.S-1 complex in vitro (Biosca, J. A., Greene, L. E., and Eisenberg, E. (1986) J. Biol. Chem. 261, 9793-9800).  相似文献   

16.
The addition of excess Cu2+ to adult human haemoglobin leads to the production of alpha 2(2+) beta 2(3+), in both the oxy and deoxy forms of the protein. Stopped-flow studies of the oxidation process yields apparent second-order rate constants of 196M-1 X S-1 and 41M-1 X S-1 for the deoxy and oxy forms respectively. The rate of the deoxy-form oxidation is linearly dependent on [Cu2+], whereas that of the oxy form is rate-limited above 2 mM to 0.11 S-1. Arrhenius activation energies of the two processes are almost identical at 91 kJ X mol-1, as are the activation enthalpies of 89 kJ X mol-1. The activation entropies show small differences, being 31 entropy units and 48 entropy units for the oxy and deoxy forms respectively. ATP and glycerate 2,3-bisphosphate at saturating concentrations do not affect the rate of oxidation of the oxy form, but halve the rate found for the deoxy form. These data are discussed in terms of the previously proposed mechanism of oxidation in which slow Cu2+ binding is followed by rapid electron transfer.  相似文献   

17.
W Y Lin  C D Eads  J J Villafranca 《Biochemistry》1991,30(14):3421-3426
TNS, 2-p-toluidinylnaphthalene-6-sulfonate, has been used as a fluorescent probe to determine the binding constants of metal ions to the two binding sites of Escherichia coli glutamine synthetase (GS). TNS fluorescence is enhanced dramatically when bound to proteins due to its high quantum yield resulting from its interactions with hydrophobic regions in proteins. The fluorescence energy transfer from a hydrophobic tryptophan residue of GS to TNS has been detected as an excitation band centered at 280 nm. Therefore, TNS is believed to be bound to a hydrophobic site on the GS surface other than the active site and is located near a hydrophobic Trp residue of GS. GS binds lanthanide ions [Ln(III)] more tightly than either Mn(II) or Mg(II), and the binding constants of several lanthanide ions were determined to be in the range (2.1-4.6) x 10(10) and (1.4-3.0) x 10(8) M-1 to the two metal binding sites of GS, respectively. The intermetal distances between the two metal binding sites of GS were also determined by measuring the efficiencies of energy transfer from Tb(III) to other Ln(III) ions. The intermetal distances of Tb(III)-Ho(III) and Tb(III)-Nd(III) were 7.9 and 6.8 A, respectively.  相似文献   

18.
Three hemoglobins have been isolated from the symbiont-harboring gill of the bivalve mollusc Lucina pectinata. Oxyhemoglobin I (Hb I), which may be called sulfide-reactive hemoglobin, reacts with hydrogen sulfide to form ferric hemoglobin sulfide in a reaction that may proceed by nucleophilic displacement of bound superoxide anion by hydrosulfide anion. Hemoglobins II and II, called oxygen-reactive hemoglobins, remain oxygenated in the presence of hydrogen sulfide. Hemoglobin I is monomeric; Hb II and Hb III self-associate in a concentration-dependent manner and form a tetramer when mixed. Oxygen binding is not cooperative. Oxygen affinities are all nearly the same, P50 = 0.1 to 0.2 Torr, and are independent of pH. Combination of Hb I with oxygen is fast; k'on = (estimated) 100-200 x 10(6) M-1 s-1. Combination of Hb II and Hb III with oxygen is slow: k'on = 0.4 and 0.3 x 10(6) M-1 s-1, respectively. Dissociation of oxygen from Hb I is fast relative to myoglobin: koff = 61 s-1. Dissociation from Hb II and Hb III is slow: koff = 0.11 and 0.08 s-1, respectively. These large differences in rates of reaction together with differences in the reactions of carbon monoxide suggest differences in configuration of the distal heme pocket. The fast reactions of Hb I are comparable to those of hemoglobins that lack distal histidine residues. Slow dissociation of oxygen from Hb II and Hb III suggest that a distal residue may interact strongly with the bound ligand. We infer that Hb I may facilitate delivery of hydrogen sulfide to the chemoautotrophic bacterial symbiont and Hb II and Hb III may facilitate delivery of oxygen. The midpoint oxidation-reduction potential of the ferrous/ferric couple of Hb I, 103 +/- 8 mV, was independent of pH. Potentials of Hb II and Hb III were pH-dependent. At neutral pH all three hemoglobins have similar midpoint potentials. The rate constant for combination of ferric Hb I with hydrogen sulfide increases 3000-fold from pH 10.5 to 5.5, with apparent pK 7.0, suggesting that undissociated hydrogen sulfide is the attacking ligand. At the acid limit combination of ferric Hb I with hydrogen sulfide, k'on = 2.3 x 10(5) M-1 s-1, is 40-fold faster than combination with ferric Hb II or myoglobin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Using conductivity detection, pulse radiolysis experiments showed that solvent protonation of the electron adducts of cytosine, 5-methyl cytosine and 2'-deoxycytidine occurs with rate constants k greater than or equal to 2 x 10(4) M-1S-1. The protonated electron adducts transfer an electron to p-nitroactetophenone (PNAP) with rate constants ranging from 3.5 x 10(9) to 5.3 x 10(9) M-1S-1. The transfer is quantitative (G = 2.7), as shown by conductometric and spectroscopic measurements. In the presence of O2 no electron transfer to O2 takes place, implying that O2 adds to the protonated electron adduct radicals. No electron transfer from the H- and OH-adducts of the cytosine derivatives, either to PNAP or to O2, takes place near neutral pH. It is suggested that the differences in the reaction behaviour of the H-adduct radicals and the protonated electron adduct radicals towards PNAP can be accounted for if different radicals are formed by H-addition and protonation of the electron adduct. The H atoms most probably add to the C-5-C-6 double bonds, whereas the electron adducts are protonated at N-3 and/or 0-2.  相似文献   

20.
The acid-basic properties of ellipticine have been re-estimated. The apparent pK of protonation at 3 microM drug concentration is 7.4 +/- 0.1. The ellipticine free base (at pH 9, I = 25 mM) intercalates into calf-thymus DNA with an affinity constant of 3.3 +/- 0.2 X 10(5) M-1, and a number of binding sites per phosphate of 0.23. The ellipticinium cation (pH 5, I = 25 mM) binds also to DNA with a constant of 8.3 +/- 0.2 x 10(5) M-1 and at a number of binding sites (n = 0.19). It is postulated that the binding of the drug to DNA at pH 9 is driven by hydrophobic and/or dipolar effects. Even at pH 5, where ellipticine exists as a cation, it is thought that the hydrophobic interaction is the main contribution to binding. The neutral and cationic forms share common binding within DNA sites but yield to structurally different complexes. The free base has 0.04 additional specific binding sites per phosphate. As determined from temperature-jump experiments, the second-order rate constant of the binding of the free base (pH 9) is 3.4 x 10(7) M-1 s-1 and the residence time of the base within the DNA is 8 ms. The rate constant for the binding of the ellipticinium cation is 9.8 x 10(7) M-1 s-1 when it is assumed that drug attachment occurs via a pathway in which the formation of an intermediate ionic complex is not involved (competitive pathway).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号