首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most contemporary studies of adaptive radiation focus on relatively recent and geographically restricted clades. It is less clear whether diversification of ancient clades spanning entire continents is consistent with adaptive radiation. We used novel fossil calibrations to generate a chronogram of Neotropical cichlid fishes and to test whether patterns of lineage and morphological diversification are congruent with hypothesized adaptive radiations in South and Central America. We found that diversification in the Neotropical cichlid clade and the highly diverse tribe Geophagini was consistent with diversity‐dependent, early bursts of divergence followed by decreased rates of lineage accumulation. South American Geophagini underwent early rapid differentiation in body shape, expanding into novel morphological space characterized by elongate‐bodied predators. Divergence in head shape attributes associated with trophic specialization evolved under strong adaptive constraints in all Neotropical cichlid clades. The South American Cichlasomatini followed patterns consistent with constant rates of morphological divergence. Although morphological diversification in South American Heroini was limited, Eocene invasion of Central American habitats was followed by convergent diversification mirroring variation observed in Geophagini. Diversification in Neotropical cichlids was influenced by the early adaptive radiation of Geophagini, which potentially limited differentiation in other cichlid clades.  相似文献   

2.
The contrasting distribution of species diversity across the major lineages of cichlids makes them an ideal group for investigating macroevolutionary processes. In this study, we investigate whether different rates of diversification may explain the disparity in species richness across cichlid lineages globally. We present the most taxonomically robust time-calibrated hypothesis of cichlid evolutionary relationships to date. We then utilize this temporal framework to investigate whether both species-rich and depauperate lineages are associated with rapid shifts in diversification rates and if exceptional species richness can be explained by clade age alone. A single significant rapid rate shift increase is detected within the evolutionary history of the African subfamily Pseudocrenilabrinae, which includes the haplochromins of the East African Great Lakes. Several lineages from the subfamilies Pseudocrenilabrinae (Australotilapiini, Oreochromini) and Cichlinae (Heroini) exhibit exceptional species richness given their clade age, a net rate of diversification, and relative rates of extinction, indicating that clade age alone is not a sufficient explanation for their increased diversity. Our results indicate that the Neotropical Cichlinae includes lineages that have not experienced a significant rapid burst in diversification when compared to certain African lineages (rift lake). Neotropical cichlids have remained comparatively understudied with regard to macroevolutionary patterns relative to African lineages, and our results indicate that of Neotropical lineages, the tribe Heroini may have an elevated rate of diversification in contrast to other Neotropical cichlids. These findings provide insight into our understanding of the diversification patterns across taxonomically disparate lineages in this diverse clade of freshwater fishes and one of the most species-rich families of vertebrates.  相似文献   

3.
Family level molecular phylogenetic analyses of cichlid fishes have generally suffered from a limited number of characters and/or poor taxonomic sampling across one or more major geographic assemblage, and therefore have not provided a robust test of early intrafamilial diversification. Herein we use both nuclear and mitochondrial nucleotide characters and direct optimization to reconstruct a phylogeny for cichlid fishes. Representatives of major cichlid lineages across all geographic assemblages are included, as well as nearly twice the number of characters as any prior family‐level study. In a strict consensus of 81 equally most‐parsimonious hypotheses, based on the simultaneous analysis of 2222 aligned nucleotide characters from two mitochondrial and two nuclear genes, four major subfamilial lineages are recovered with strong support. Etroplinae, endemic to Madagascar (Paretroplus) and southern Asia (Etroplus), is recovered as the sister taxon to the remainder of Cichlidae. Although the South Asian cichlids are monophyletic, the Malagasy plus South Asian lineages are not. The remaining Malagasy lineage, Ptychochrominae, is monophyletic and is recovered as the sister group to a clade comprising the African and Neotropical cichlids. The African (Pseudocrenilabrinae) and Neotropical (Cichlinae) lineages are each monophyletic in this reconstruction. The use of multiple molecular markers, from both mitochondrial and nuclear genes, results in a phylogeny that in general exhibits strong support, notably for early diversification events within Cichlidae. Results further indicate that Labroidei is not monophyletic, and that the sister group to Cichlidae may comprise a large and diverse assemblage of percomorph lineages. This hypothesis may at least partly explain why morphological studies that have attempted to place Cichlidae within Percomorpha, or that have tested cichlid monophyly using only “labroid” lineages, have met with only limited success. © The Willi Hennig Society 2004.  相似文献   

4.
The Neotropical Cichlidae is among the most species-rich and ecologically diverse groups of freshwater fishes. This study investigated interspecific morphological and ecological relationships within an assemblage of six cichlids in the Upper Bladen River, Belize. This portion of the river drains a nearly pristine watershed within a nature reserve, and thus should provide a natural ecological context for interpretation of ecological patterns. Species distributions within morphological, habitat and dietary space yielded patterns consistent with a hypothesis of niche partitioning. Statistical analyses of the species assemblage revealed relationships between two principal morphological gradients from multivariate analysis with several diet and habitat variables, and these patterns were consistent with prior functional morphological interpretations. Given that this local cichlid assemblage contains no congeneric species, it is apparent that morphological divergence resulting in niche segregation reflects selective establishment of species from a more species-rich regional species pool rather than in situ adaptive evolution.  相似文献   

5.
Host-parasite coevolution is one of the main topics of the evolutionary biology of host-parasite associations. The majority of monogeneans parasitizing fish exhibit a high degree of host specificity. As a result, their evolutionary history might be intertwined with that of their fish hosts. The Cichlidae represent a diverse group of secondary freshwater fish with disjunctive distribution. Host-specific dactylogyrid monogeneans commonly parasitize cichlid fish. Their high diversity is associated with the main areas of cichlid distribution, i.e., Neotropical America and Africa. Nevertheless, the parasite fauna of cichlids from Neotropical America is still underexplored. A total of 31 cichlid species were examined for the presence of monogeneans, with 20 of them being parasitized. On these cichlids, 30 monogeneans belonging to the genera Gussevia, Trinidactylus, and Scadicleithrum were identified, 17 of them potentially representing new species for science. Phylogenetic analyses revealed three monophyletic groups of Neotropic cichlid monogeneans. Genus Gussevia was monophyletic, while Sciadicleithrum resulted polyphyletic. Sciedicleithrum from South America and Sciadicleithrum from Mexico represented two divergent lineages. The plesiomorphic Neotropical cichlid host group for dactylogyrid monogeneans was Cichlini, from which the representatives of other Neotropical cichlid tribes were colonised. Cophylogenetic analyses revealed a statistically significant cophylogenetic signal in the investigated host-parasite system, with host switch and duplication representing the main coevolutionary events for monogeneans parasitizing Neotropical cichlids. This scenario is in accordance with previous studies focussed on dactylogyridean monogeneans parasitizing freshwater fish in Europe and Africa.  相似文献   

6.
Despite recent progress on the higher‐level relationships of Cichlidae and its Indian, Malagasy, and Greater Antillean components, conflict and uncertainty remain within the species‐rich African, South American, and Middle American assemblages. Herein, we combine morphological and nucleotide characters from the mitochondrial large ribosomal subunit, cytochrome c oxidase subunit I, NADH dehydrogenase four, and cytochrome b genes and from the nuclear histone H3, recombination activating gene two, Tmo‐4C4, Tmo‐M27, and ribosomal S7 loci to analyse relationships within the Neotropical cichlid subfamily Cichlinae. The simultaneous analysis of 6309 characters for 90 terminals, including representatives of all major cichlid lineages and all Neotropical genera, resulted in the first well‐supported and resolved generic‐level phylogeny for Neotropical cichlids. The Neotropical subfamily Cichlinae was recovered as monophyletic and partitioned into seven tribes: Astronotini, Chaetobranchini, Cichlasomatini, Cichlini, Geophagini, Heroini, and Retroculini. Chaetobranchini + Geophagini (including the “crenicichlines”) was resolved as the sister group of Heroini + Cichlasomatini (including Acaronia). The monogeneric Astronotini was recovered as the sister group of these four tribes. Finally, a clade composed of Cichlini + Retroculini was resolved as the sister group to all other cichlines. The analysis included the recently described ?Proterocara argentina, the oldest known cichlid fossil (Eocene), which was placed in an apical position within Geophagini, further supporting a Gondwanan origin for Cichlidae. These phylogenetic results were used as the basis for generating a monophyletic cichline taxonomy. © The Willi Hennig Society 2008.  相似文献   

7.
A mitochondrial DNA (mtDNA) phylogeny of cichlid fish is presented for the most taxonomically inclusive data set compiled to date (64 taxa). 16S rDNA data establish with confidence relationships among major lineages of cichlids, with a general pattern congruent with previous morphological studies and less inclusive molecular phylogenies based on nuclear genes. Cichlids from Madagascar and India are the most basal groups of the family Cichlidae and sister to African–Neotropical cichlids. The cichlid phylogeny suggests drift-vicariance events, consistent with the fragmentation of Gondwana, to explain current biogeographic distributions. Important phylogenetic findings include the placement of the controversial genus Heterochromis basal among African cichlids, the South American genus Retroculus as the most basal taxon of the Neotropical cichlid assemblage, and the close relationship of the Neotropical genera Cichla with Astronotus rather than with the crenicichlines. Based on a large number of South American genera, the Neotropical cichlids are defined as a monophyletic assemblage and shown to harbor significantly higher levels of genetic variation than their African counterparts. Relative rate tests suggest that Neotropical cichlids have experienced accelerated rates of molecular evolution. But these high evolutionary rates were significantly higher among geophagine cichlids. Received: 18 September 1998 / Accepted: 16 December 1998  相似文献   

8.
The nuclear gene X-src is a member of the tyrosine-kinase class of proto-oncogenes whose normal product is localized within the cytoplasm of the cell. The X-src gene has been used in only a few phylogenetic studies, each focusing on systematics of killifishes (Cyprinodontiformes). The present study is an attempt to examine the phylogenetic utility of X-src for uncovering relationships of representative cichlid fishes, especially the cichlids of Middle America. The family Cichlidae is a species-rich group of tropical freshwater fish made up of more than 1000 species which show a Gondwanan pattern of distribution. Cichlid fish have been the focus of numerous studies ranging from behavioral to biogeographical to systematic in nature. Particular emphasis has focused on the cichlids of the African Great Lakes and the explosive adaptive radiation of this group. However, Neotropical cichlids have received considerably less attention than their African counterparts. Our findings regarding the utility of X-src concur with those of previous phylogenetic analyses showing the exons of X-src to be highly conserved and useful mostly for revealing deep relationships among taxa. Like previous X-src studies, we also found the intron sequences of the gene to be variable in length and difficult to align across distantly related taxa but they provided useful information for resolving relationships among more closely related taxa. The X-src phylogeny supports the monophyly of Neotropical cichlids and cichlasomines groups A (=heroines) + B (=cichlasomines). A highly resolved tree is obtained within the heroines but little support is evident for most nodes based on the low number of unambiguous substitutions. The X-src gene is likely to be quite useful for resolving deep phylogenetic relationships such as those among major groups of actinopterygian fishes.  相似文献   

9.
Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise‐AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade.  相似文献   

10.
Cichlid fishes (family Cichlidae) are models for evolutionary and ecological research. Massively parallel sequencing approaches have been successfully applied to study relatively recent diversification in groups of African and Neotropical cichlids, but such technologies have yet to be used for addressing larger‐scale phylogenetic questions of cichlid evolution. Here, we describe a process for identifying putative single‐copy exons from five African cichlid genomes and sequence the targeted exons for a range of divergent (>tens of millions of years) taxa with probes designed from a single reference species (Oreochromis niloticus, Nile tilapia). Targeted sequencing of 923 exons across 10 cichlid species that represent the family's major lineages and geographic distribution resulted in a complete taxon matrix of 564 exons (649 549 bp), representing 559 genes. Maximum likelihood and Bayesian analyses in both species tree and concatenation frameworks yielded the same fully resolved and highly supported topology, which matched the expected backbone phylogeny of the major cichlid lineages. This work adds to the body of evidence that it is possible to use a relatively divergent reference genome for exon target design and successful capture across a broad phylogenetic range of species. Furthermore, our results show that the use of a third‐party laboratory coupled with accessible bioinformatics tools makes such phylogenomics projects feasible for research groups that lack direct access to genomic facilities. We expect that these resources will be used in further cichlid evolution studies and hope the protocols and identified targets will also be useful for phylogenetic studies of a wider range of organisms.  相似文献   

11.
Among vertebrates, cichlid fishes are the paradigmatic example of adaptive radiation and ecological specialization. In turn, molecular genetic studies of cichlids have focused primarily on more recently diverged groups. Here, we present an evolutionary hypothesis of the major lineages of cichlid fishes based on DNA sequence data from two nuclear loci. One marker, Tmo-4C4, is a single-copy locus containing a region of amino acid similarity to the muscle protein TITIN. Flanking sequence from a second, microsatellite, locus Tmo-M27, shows similarity to mammalian RAS guanine nucleotide-releasing factor. We compare and combine data from these loci to evaluate phylogenetic performance. In separate and combined analyses, the sequence data support and clarify previous morphological hypotheses of cichlid major-group relationships. Indian and Malagasy cichlids form a basal, paraphyletic group. Neotropical cichlids are the sister clade to an African assemblage composed of the paraphyletic west and Pan-African lineages and a group of east African rift lake taxa. We use a consensus phylogeny of the Cichlidae to trace evolutionary changes in the microsatellite repeat motif at Tmo-M27. Analysis reveals that the repeat region was nearly lost in the ancestor to cichlids and then amplified extensively in African taxa. Results demonstrate that the two new DNA markers could be widely applied in perciform systematics. Furthermore, the comparative approach can unveil mutational dynamics of simple-sequence repeat loci over long periods of fish evolution. Simple-sequence repeat regions are increasingly being found in introns of important regulatory genes. We address issues involving their function and suggest caution in making assumptions of strict neutrality.  相似文献   

12.

Background

The explosively radiating evolution of cichlid fishes of Lake Malawi has yielded an amazing number of haplochromine species estimated as many as 500 to 800 with a surprising degree of diversity not only in color and stripe pattern but also in the shape of jaw and body among them. As these morphological diversities have been a central subject of adaptive speciation and taxonomic classification, such high diversity could serve as a foundation for automation of species identification of cichlids.

Methodology/Principal Finding

Here we demonstrate a method for automatic classification of the Lake Malawi cichlids based on computer vision and geometric morphometrics. For this end we developed a pipeline that integrates multiple image processing tools to automatically extract informative features of color and stripe patterns from a large set of photographic images of wild cichlids. The extracted information was evaluated by statistical classifiers Support Vector Machine and Random Forests. Both classifiers performed better when body shape information was added to the feature of color and stripe. Besides the coloration and stripe pattern, body shape variables boosted the accuracy of classification by about 10%. The programs were able to classify 594 live cichlid individuals belonging to 12 different classes (species and sexes) with an average accuracy of 78%, contrasting to a mere 42% success rate by human eyes. The variables that contributed most to the accuracy were body height and the hue of the most frequent color.

Conclusions

Computer vision showed a notable performance in extracting information from the color and stripe patterns of Lake Malawi cichlids although the information was not enough for errorless species identification. Our results indicate that there appears an unavoidable difficulty in automatic species identification of cichlid fishes, which may arise from short divergence times and gene flow between closely related species.  相似文献   

13.
Divergence along a benthic to limnetic habitat axis is ubiquitous in aquatic systems. However, this type of habitat divergence has largely been examined in low diversity, high latitude lake systems. In this study, we examined the importance of benthic and limnetic divergence within the incredibly species‐rich radiation of Lake Malawi cichlid fishes. Using novel phylogenetic reconstructions, we provided a series of hypotheses regarding the evolutionary relationships among 24 benthic and limnetic species that suggests divergence along this axis has occurred multiple times within Lake Malawi cichlids. Because pectoral fin morphology is often associated with divergence along this habitat axis in other fish groups, we investigated divergence in pectoral fin muscles in these benthic and limnetic cichlid species. We showed that the eight pectoral fin muscles and fin area generally tended to evolve in a tightly correlated manner in the Lake Malawi cichlids. Additionally, we found that larger pectoral fin muscles are strongly associated with the independent evolution of the benthic feeding habit across this group of fish. Evolutionary specialization along a benthic/limnetic axis has occurred multiple times within this tropical lake radiation and has produced repeated convergent matching between exploitation of water column habitats and locomotory morphology.  相似文献   

14.
African cichlid fish: a model system in adaptive radiation research   总被引:9,自引:0,他引:9  
The African cichlid fish radiations are the most diverse extant animal radiations and provide a unique system to test predictions of speciation and adaptive radiation theory. The past few years have seen major advances in the phylogenetics, evolutionary biogeography and ecology of cichlid fish. Most of this work has concentrated on the most diverse radiations. Unfortunately, a large number of small radiations and 'non-radiations' have been overlooked, potentially limiting the contribution of the cichlid system to our understanding of speciation and adaptive radiation. I have reviewed the literature to identify 33 intralacustrine radiations and 76 failed radiations. For as many as possible I collected information on lake size, age and phylogenetic relationships. I use these data to address two questions: (i) whether the rate of speciation and the resulting species richness are related to temporal and spatial variation in ecological opportunity and (ii) whether the likelihood of undergoing adaptive radiation is similar for different African cichlid lineages. The former is a key prediction of the ecological theory of adaptive radiation that has been presumed true but remains untested for cichlid radiations. The second is based on the hypothesis that the propensity of cichlids to radiate is due to a key evolutionary innovation shared by all African cichlids. The evidence suggests that speciation rate declines through time as niches get filled up during adaptive radiation: young radiations and early stages of old radiations are characterized by high rates of speciation, whereas at least 0.5 Myr into a radiation speciation becomes a lot less frequent. The number of species in cichlid radiations increases with lake size, supporting the prediction that species diversity increases with habitat heterogeneity, but also with opportunity for isolation by distance. Finally, the data suggest that the propensity to radiate within lakes is a derived property that evolved during the evolutionary history of some African cichlids, and the appearance of which does not coincide with the appearance of proposed key innovations in morphology and life history.  相似文献   

15.
Lake Tanganyika is not the most species-rich of the Great East African Lakes, but comprises the greatest diversity of cichlid fishes in terms of morphology, ecology, and breeding styles. The lake contains a polyphyletic assemblage of cichlid lineages, which evolved from several ancient species that colonized the emerging lake some 9–12 million years ago. Based on morphological characteristics, the Tanganyikan cichlids have been classified into 12, or, more recently, 16 tribes, which are largely supported by molecular data. The radiations of East African cichlids are believed to be driven by complex interactions between extrinsic factors, such as climatic changes and geological processes, and intrinsic biological characteristics of the involved organisms. Diversification within different lineages occurred simultaneously in response to drastic habitat changes such as the establishment of lacustrine deep-water conditions 5–6 MYA and subsequent major lake-level fluctuations. This seems particularly true for the mouthbrooding lineages whereas the substrate breeders underwent a more gradual process of diversification. This review presents an account of the taxonomy and phylogeny of the Lake Tanganyika cichlid species assemblage, its relationship to the African cichlid fauna, key factors leading to the astonishing diversity and discusses recently proposed alternative age estimates for the Lake Tanganyika cichlid species assemblage.  相似文献   

16.
The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual 'breakthroughs' in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes.  相似文献   

17.
Near TJ  Keck BP 《Molecular ecology》2005,14(11):3485-3496
The species diversity of North American freshwater fishes is unparalleled among temperate regions of the planet. This diversity is concentrated in the Central Highlands of eastern North America and this distribution pattern has inspired different models involving either dispersal or vicariance to explain the high species diversity of North American fishes. The most popular of these models is the Central Highlands vicariance hypothesis (CHVH), which proposes an ancient and diverse widespread fauna that existed across a previously continuous highland landscape that is much different from today. The mechanisms of isolation in the CHVH involve specific instances of vicariance that affected several diverse lineages of Central Highlands fishes. We tested predictions of the CHVH and alternative models using a cytochrome b-inferred phylogeny of the darter clade Nothonotus. A Bayesian mixed-model method was used for phylogenetic analysis. The phylogenetic data set included all 20 recognized Nothonotus species, and most species were represented with multiple sequences. We were able to convert genetic branch lengths to absolute age using external fossil calibrations in the freshwater perciform fish clade Centrarchidae. Using a well-resolved Nothonotus phylogeny and divergence time estimates, we identify equal numbers of instances of both vicariance and dispersal among disjunct regions of the Central Highlands, biogeographic pseudocongruence, rather recent speciation in Nothonotus, and a surprisingly large amount of speciation within highland areas. With regard to Nothonotus, previous Central Highlands biogeographic models offer little in the way of providing possible mechanisms responsible for diversification in the clade. Patterns of speciation in Nothonotus are similar to those discovered in recent efforts that have included speciation as a parameter into classic models of island biogeography.  相似文献   

18.
Genera within the South American cichlid tribe Geophagini display specialized feeding and reproductive strategies, with some taxa specialized for both substrate-sifting and mouth brooding. Several lineages within the clade also possess an epibranchial lobe (EBL), a unique pharyngeal structure that has been proposed to have a function in feeding and/or mouth brooding. A recently published genus-level phylogeny of Neotropical cichlids was used as the evolutionary framework for investigating the evolution of morphological features presumably correlated with diet and mouth brooding in the tribe Geophagini. We tested for possible associations between the geophagine epibranchial lobe and benthic feeding and mouth brooding. We also addressed whether the EBL may be associated with unique patterns of diversification in certain geophagine clades. Tests of binary character correlations revealed the EBL was significantly associated with mouth brooding. We also tested for a relationship between diet and morphology. We analyzed stomach contents and morphometric variation among 21 species, with data for two additional species obtained from the literature. Principal Components Analysis revealed axes of morphological variation significantly correlated with piscivory and benthivory, and both morphology and diet were significantly associated with phylogeny. These results suggest that the EBL could be an adaptation for either feeding or mouth brooding. The EBL, however, was not associated with species richness or accelerated rates of phyletic diversification.  相似文献   

19.
Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes   总被引:10,自引:0,他引:10  
We present a most comprehensive phylogenetic analysis of the family Cichlidae. New data analyzed include mitochondrial 16S rRNA sequences and two nuclear loci (Tmo-M27 and Tmo-4C4) for a large taxonomic sampling with emphasis on South American species. We also incorporate a published morphological data set for a total evidence analysis. Character congruence among mitochondrial (74 taxa) and nuclear data (50 taxa) was high. However, partition-homogeneity tests suggest significant heterogeneity among molecular and morphological data. In agreement with results obtained from molecular data alone, total evidence analysis (1,460 characters for 34 taxa) supports a robust phylogenetic hypothesis for the family Cichlidae that is congruent with drift-vicariance events associated with the fragmentation of Gondwana. Our analyses confirm the placement of Malagasy/Indian cichlids as the most basal lineages, with a sister-group relationship to the monophyletic African and Neotropical clades. Total evidence suggests that the controversial African genus Heterochromis is at the base of the African radiation. Among more than 50 Neotropical genera analyzed, Retroculus is identified as the basal taxon, with successive branching of Cichla, Astronotus, geophagines (including crenicichlines) + chaetobranchines, and cichlasomines + heroines. Relative rate tests applied to mitochondrial DNA suggest significantly higher rates of genetic variation in Neotropical than in African taxa, and both mitochondrial and nuclear sequences show that rate heterogeneity among Neotropical lineages is confined to the geophagine cichlids.  相似文献   

20.
The cichlids of East Africa are renowned as one of the most spectacular examples of adaptive radiation. They provide a unique opportunity to investigate the relationships between ecology, morphological diversity, and phylogeny in producing such remarkable diversity. Nevertheless, the parameters of the adaptive radiations of these fish have not been satisfactorily quantified yet. Lake Tanganyika possesses all of the major lineages of East African cichlid fish, so by using geometric morphometrics and comparative analyses of ecology and morphology, in an explicitly phylogenetic context, we quantify the role of ecology in driving adaptive speciation. We used geometric morphometric methods to describe the body shape of over 1000 specimens of East African cichlid fish, with a focus on the Lake Tanganyika species assemblage, which is composed of more than 200 endemic species. The main differences in shape concern the length of the whole body and the relative sizes of the head and caudal peduncle. We investigated the influence of phylogeny on similarity of shape using both distance-based and variance partitioning methods, finding that phylogenetic inertia exerts little influence on overall body shape. Therefore, we quantified the relative effect of major ecological traits on shape using phylogenetic generalized least squares and disparity analyses. These analyses conclude that body shape is most strongly predicted by feeding preferences (i.e., trophic niches) and the water depths at which species occur. Furthermore, the morphological disparity within tribes indicates that even though the morphological diversification associated with explosive speciation has happened in only a few tribes of the Tanganyikan assemblage, the potential to evolve diverse morphologies exists in all tribes. Quantitative data support the existence of extensive parallelism in several independent adaptive radiations in Lake Tanganyika. Notably, Tanganyikan mouthbrooders belonging to the C-lineage and the substrate spawning Lamprologini have evolved a multitude of different shapes from elongated and Lamprologus-like hypothetical ancestors. Together, these data demonstrate strong support for the adaptive character of East African cichlid radiations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号