首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sym 5 mutants of pea, Pisum sativum L. cv Sparkle, do not differ in growth habit from their normal parent and nodulate poorly at a root temperature of 20°C. If inhibitors of ethylene formation or action (Co2+, aminoethoxyvinylglycine, or Ag+) are added to the substrate, nodulation of the sym 5 mutants is increased. Similar treatments of four other mutant sym lines do not restore nodulation. When Ag+ is added to the substrate from 4 days before to 4 days after inoculation with rhizobia, nodulation of sym 5 mutants is increased. The roots of the mutant need only be exposed to Ag+ for 4 hours to significantly increase nodule numbers. The content of free 1-aminocyclopropane-1-carboxylic acid and the production of ethylene in the lateral roots of sym 5 mutants do not differ from Sparkle.  相似文献   

2.
In the budding yeast Saccharomyces cerevisiae, Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4Q131L mutant in an rdi1Δ strain caused a severe growth defect and generated large, round, unbudded cells, suggesting that an excess of Rho4 activity could block bud emergence. We also generated four temperature-sensitive rho4-Ts alleles in a rho3Δ rho4Δ strain. These mutants showed growth and morphological defects at 37°C. Interestingly, two rho4-Ts alleles contain mutations that cause amino acid substitutions in the N-terminal region of Rho4. Rho4 possesses a long N-terminal extension that is unique among the six Rho GTPases in the budding yeast but is common in Rho4 homologs in other yeasts and filamentous fungi. We show that the N-terminal extension plays an important role in Rho4 function since rho3Δ rho4Δ61 cells expressing truncated Rho4 lacking amino acids (aa) 1 to 61 exhibited morphological defects at 24°C and a growth defect at 37°C. Furthermore, we show that Rho4 interacts with Bem2, a Rho GTPase-activating protein (RhoGAP) for Cdc42 and Rho1, by yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and glutathione S-transferase (GST) pulldown assays. Bem2 specifically interacts with the GTP-bound form of Rho4, and the interaction is mediated by its RhoGAP domain. Overexpression of BEM2 aggravates the defects of rho3Δ rho4 mutants. These results suggest that Bem2 might be a novel GAP for Rho4.  相似文献   

3.
4.
Replication protein A (RPA) is a heterotrimeric (70, 32 and 14 kDa subunits), single-stranded DNA-binding protein required for cellular DNA metabolism. All subunits of RPA are essential for life, but the specific functions of the 32 and 14 kDa subunits remains unknown. The 32 kDa subunit (RPA2) has multiple domains, but only the central DNA-binding domain (called DBD D) is essential for life in Saccharomyces cerevisiae. To define the essential function(s) of RPA2 in S. cerevisiae, a series of site-directed mutant forms of DBD D were generated. These mutant constructs were then characterized in vitro and in vivo. The mutations had minimal effects on the overall structure and activity of the RPA complex. However, several mutants were shown to disrupt crosslinking of RPA2 to DNA and to dramatically lower the DNA-binding affinity of a RPA2-containing subcomplex. When introduced into S. cerevisiae, all DBD D mutants were viable and supported normal growth rates and DNA replication. These findings indicate that RPA2–DNA interactions are not essential for viability and growth in S. cerevisiae. We conclude that DNA-binding activity of RPA2 is dispensable in yeast and that the essential function of DBD D is intra- and/or inter-protein interactions.  相似文献   

5.
We identified two predicted proteins in Schizosaccharomyces pombe, Rrp1 (SPAC17A2.12) and Rrp2 (SPBC23E6.02) that share 34% and 36% similarity to Saccharomyces cerevisiae Ris1p, respectively. Ris1p is a DNA-dependent ATP-ase involved in gene silencing and DNA repair. Rrp1 and Rrp2 also share similarity with S. cerevisiae Rad5 and S. pombe Rad8, containing SNF2-N, RING finger and Helicase-C domains. To investigate the function of the Rrp proteins, we studied the DNA damage sensitivities and genetic interactions of null mutants with known DNA repair mutants. Single Δrrp1 and Δrrp2 mutants were not sensitive to CPT, 4NQO, CDPP, MMS, HU, UV or IR. The double mutants Δrrp1 Δrhp51 and Δrrp2 Δrhp51 plus the triple Δrrp1 Δrrp2 Δrhp51 mutant did not display significant additional sensitivity. However, the double mutants Δrrp1 Δrhp57 and Δrrp2 Δrhp57 were significantly more sensitive to MMS, CPT, HU and IR than the Δrhp57 single mutant. The checkpoint response in these strains was functional. In S. pombe, Rhp55/57 acts in parallel with a second mediator complex, Swi5/Sfr1, to facilitate Rhp51-dependent DNA repair. Δrrp1 Δsfr1 and Δrrp2 Δsfr1 double mutants did not show significant additional sensitivity, suggesting a function for Rrp proteins in the Swi5/Sfr1 pathway of DSB repair. Consistent with this, Δrrp1 Δrhp57 and Δrrp2 Δrhp57 mutants, but not Δrrp1 Δsfr1 or Δrrp2 Δsfr1 double mutants, exhibited slow growth and aberrations in cell and nuclear morphology that are typical of Δrhp51.  相似文献   

6.
Yeast cell wall mutants were obtained by mutagenesis of Saccharomyces cerevisiae X2180-1A, a haplid strain, with N-methyl-N′-nitro-N-nitrosoguanidine. The two S. cerevisiae mutants showed considerable morphological changes and digestibilities by lytic enzymes. Sequential extractions of proteins and polysaccharides from the mutant and wild type cells indicate that the mutants have high protein extractability and lack some wall proteins as well as some polysaccharide fractions.  相似文献   

7.
Tor2 is an activator of the Rom2/Rho1 pathway that regulates α-factor internalization. Since the recruitment of endocytic proteins such as actin-binding proteins and the amphiphysins precedes the internalization of α-factor, we hypothesized that loss of Tor function leads to an alteration in the dynamics of the endocytic proteins. We report here that endocytic proteins, Abp1 and Rvs167, are less recruited to endocytic sites not only in tor2 but also tor1 mutants. Furthermore, we found that the endocytic proteins Rvs167 and Sjl2 are completely mistargeted to the cytoplasm in tor1Δtor2 ts double mutant cells. We also demonstrate here that the efficiency of endocytic internalization or scission in all tor mutants was drastically decreased. In agreement with the Sjl2 mislocalization, we found that in tor1Δtor2 ts double mutant cells, as well as other tor mutant cells, the overall PIP2 level was dramatically increased. Finally, the cell wall chitin content in tor2 ts and tor1Δtor2ts mutant cells was also significantly increased. Taken together, both functional Tor proteins, Tor1 and Tor2, are essentially required for proper endocytic protein dynamics at the early stage of endocytosis.  相似文献   

8.
Karen C. Cole 《FEBS letters》2009,583(20):3339-3262
Targeting of Saccharomyces cerevisiae Cdc24p to polarized growth sites is essential for its function. Localization of GFP-tagged Cdc24 proteins or fragments was assayed in deletion mutants of Cdc24p-interacting proteins. The boi2Δ, ent2Δ, and hua1Δ mutants showed localization defects. The tos2Δ skg6Δ double mutant displayed aberrant pre-anaphase localization to the mother-bud neck region. The same aberrant pattern was seen when potential phosphorylation sites Ser697, Thr704, and Tyr200 were mutated. The S697A mutation also resulted in phosphorylation defects in vivo. These data support roles for Boi2p, Ent2p, Hua1p, Tos2p, and for Cdc24p phosphorylation in targeting Cdc24p to growth sites.  相似文献   

9.
Rom2p is a GDP/GTP exchange factor for Rho1p and Rho2p GTPases; Rho proteins have been implicated in control of actin cytoskeletal rearrangements. ROM2 and RHO2 were identified in a screen for high-copy number suppressors of cik1Δ, a mutant defective in microtubule-based processes in Saccharomyces cerevisiae. A Rom2p::3XHA fusion protein localizes to sites of polarized cell growth, including incipient bud sites, tips of small buds, and tips of mating projections. Disruption of ROM2 results in temperature-sensitive growth defects at 11°C and 37°C. rom2Δ cells exhibit morphological defects. At permissive temperatures, rom2Δ cells often form elongated buds and fail to form normal mating projections after exposure to pheromone; at the restrictive temperature, small budded cells accumulate. High-copy number plasmids containing either ROM2 or RHO2 suppress the temperature-sensitive growth defects of cik1Δ and kar3Δ strains. KAR3 encodes a kinesin-related protein that interacts with Cik1p. Furthermore, rom2Δ strains exhibit increased sensitivity to the microtubule depolymerizing drug benomyl. These results suggest a role for Rom2p in both polarized morphogenesis and functions of the microtubule cytoskeleton.  相似文献   

10.
Homo-oligomeric proteins fulfill numerous functions in all cells. The ability to co-express subunits of these proteins that preferentially self-assemble without cross-oligomerizing provides for controlled experiments to analyze the function of mutant homo-oligomers in vivo. Hsp90 is a dimeric chaperone involved in the maturation of many kinases and steroid hormone receptors. We observed that co-expression of different Hsp90 subunits in Saccharomyces cerevisiae caused unpredictable synthetic growth defects due to cross-dimerization. We engineered superstabilized Hsp90 dimers that resisted cross-dimerization with endogenous Hsp90 and alleviated the synthetic growth defect. Superstabilized Hsp90 dimers supported robust growth of S. cerevisiae, indicating that dissociation of Hsp90 dimers could be hindered without compromising essential function. We utilized superstabilized dimers to analyze the activity of ATPase mutant homodimers in a temperature-sensitive yeast background where elevated temperature inactivated all other Hsp90 species. We found that ATP binding and hydrolysis by Hsp90 are both required for the efficient maturation of glucocorticoid receptor and v-Src, confirming the critical role of ATP hydrolysis in the maturation of steroid hormone receptors and kinases in vivo.  相似文献   

11.
A genetic selection in Saccharomyces cerevisiae for mutants that stimulate the mating pathway uncovered a mutant that had a hyperactive pheromone response pathway and also had hyperpolarized growth. Cloning and segregation analysis demonstrated that BUD14 was the affected gene. Disruption of BUD14 in wild-type cells caused mild stimulation of pheromone response pathway reporters, an increase in sensitivity to mating factor, and a hyperelongated shmoo morphology. The bud14 mutant also had hyperfilamentous growth. Consistent with a role in the control of cell polarity, a Bud14p-green fluorescent protein fusion was localized to sites of polarized growth in the cell. Bud14p shared morphogenetic functions with the Ste20p and Bni1p proteins as well as with the type 1 phosphatase Glc7p. The genetic interactions between BUD14 and GLC7 suggested a role for Glc7p in filamentous growth, and Glc7p was found to have a positive function in filamentous growth in yeast.  相似文献   

12.
The budding yeast Saccharomyces cerevisiae has two HSP90-related genes per haploid genome, HSP82 and HSC82. Random mutations were induced in vitro in the HSP82 gene by treatment of the plasmid with hydroxylamine. Four temperature-sensitive (ts) mutants and one simultaneously is and cold-sensitivie (cs) mutant were then selected in a yeast strain in which HSC82 had previously been disrupted. The mutants were found to have single base changes in the coding region, which caused single amino acid substitutions in the HSP82 protein. All of these mutations occurred in amino acid residues that are well conserved among HSP90-related proteins of various species from Escherichia coli to human. Various properties including cell morphology, macromolecular syntheses and thermosensitivity were examined in each mutant at both the permissive and nonpermissive temperatures. The mutations in HSP82 caused pleiotropic effects on these properties although the phenotypes exhibited at the nonpermissive temperature varied among the mutants.  相似文献   

13.
Rho and Rab family GTPases play a key role in cytoskeletal organization and vesicular trafficking, but the exact mechanisms by which these GTPases regulate polarized cell growth are incompletely understood. A previous screen for genes that interact with CDC42, which encodes a Rho GTPase, found SWF1/PSL10. Here, we show Swf1p, a member of the DHHC-CRD family of palmitoyltransferases, localizes to actin cables and cortical actin patches in Saccharomyces cerevisiae. Deletion of SWF1 results in misorganization of the actin cytoskeleton and decreased stability of actin filaments in vivo. Cdc42p localization depends upon Swf1p primarily after bud emergence. Importantly, we revealed that the actin regulating activity of Swf1p is independent of its DHHC motif. A swf1 mutant, in which alanine substituted for the cysteine required for the palmitoylation activity of DHHC-CRD proteins, displayed wild-type actin organization and Cdc42p localization. Bgl2p-marked exocytosis was found wild type in this mutant, although invertase secretion was impaired. These data indicate Swf1p has at least two distinct functions, one of which regulates actin organization and Bgl2p-marked secretion. This report is the first to link the function of a DHHC-CRD protein to Cdc42p and the regulation of the actin cytoskeleton.  相似文献   

14.
Wendland J  Philippsen P 《Genetics》2001,157(2):601-610
Polarized cell growth requires a polarized organization of the actin cytoskeleton. Small GTP-binding proteins of the Rho-family have been shown to be involved in the regulation of actin polarization as well as other processes. Hyphal growth in filamentous fungi represents an ideal model to investigate mechanisms involved in generating cell polarity and establishing polarized cell growth. Since a potential role of Rho-proteins has not been studied so far in filamentous fungi we isolated and characterized the Ashbya gossypii homologs of the Saccharomyces cerevisiae CDC42, CDC24, RHO1, and RHO3 genes. The AgCDC42 and AgCDC24 genes can both complement conditional mutations in the S. cerevisiae CDC42 and CDC24 genes and both proteins are required for the establishment of actin polarization in A. gossypii germ cells. Agrho1 mutants show a cell lysis phenotype. Null mutant strains of Agrho3 show periodic swelling of hyphal tips that is overcome by repolarization and polar hyphal growth in a manner resembling the germination pattern of spores. Thus different Rho-protein modules are required for distinct steps during polarized hyphal growth of A. gossypii.  相似文献   

15.
Msb1 is not essential for growth in the budding yeast Saccharomyces cerevisiae since msb1Δ cells do not display obvious phenotypes. Genetic studies suggest that Msb1 positively regulates Cdc42 function during bud development, since high-copy MSB1 suppressed the growth defect of temperature-sensitive cdc24 and cdc42 mutants at restrictive temperature, while deletion of MSB1 showed synthetic lethality with cdc24, bem1, and bem2 mutations. However, the mechanism of how Msb1 regulates Cdc42 function remains poorly understood. Here, we show that Msb1 localizes to sites of polarized growth during bud development and interacts with Cdc42 in the cells. In addition, Msb1 interacts with Boi1 and Boi2, two scaffold proteins that also interact with Cdc42 and Bem1. These findings suggest that Msb1 may positively regulate Cdc42 function by interacting with Cdc42, Boi1, and Boi2, which may promote the efficient assembly of Cdc42, Cdc24, and other proteins into a functional complex. We also show that Msb1 interacts with Rho1 in the cells and Msb1 overproduction inhibits the growth of rho1-104 and rho1-3 but not rho1-2 cells. The growth inhibition appears to result from the down-regulation of Rho1 function in glucan synthesis, specifically during early stage of bud development. These results suggest that Msb1 may coordinate Cdc42 and Rho1 functions during early stage of bud development by promoting Cdc42 function and inhibiting Rho1 function. Msb1 overproduction also affects cell morphology, septin organization, and causes increased, aberrant deposition of 1,3-β-glucan and chitin at the mother-bud neck. However, the stimulation of glucan synthesis mainly occurs during late, but not early, stage of bud development.  相似文献   

16.
Plants have evolutionarily conserved NifU (NFU)-domain proteins that are targeted to plastids or mitochondria. “Plastid-type” NFU1, NFU2, and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron–sulfur (Fe–S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe–S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate, and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe–S clusters to lipoyl synthase.

A pair of evolutionarily conserved proteins involved in iron–sulfur cofactor assembly have a specific role in lipoate biosynthesis for mitochondrial dehydrogenases.  相似文献   

17.
The ascomycetes Candida albicans, Saccharomyces cerevisiae and Scheffersomyces stipitis metabolize the pentose sugar xylose very differently. S. cerevisiae fails to grow on xylose, while C. albicans can grow, and S. stipitis can both grow and ferment xylose to ethanol. However, all three species contain highly similar genes that encode potential xylose reductases and xylitol dehydrogenases required to convert xylose to xylulose, and xylulose supports the growth of all three fungi. We have created C. albicans strains deleted for the xylose reductase gene GRE3, the xylitol dehydrogenase gene XYL2, as well as the gre3 xyl2 double mutant. As expected, all the mutant strains cannot grow on xylose, while the single gre3 mutant can grow on xylitol. The gre3 and xyl2 mutants are efficiently complemented by the XYL1 and XYL2 from S. stipitis. Intriguingly, the S. cerevisiae GRE3 gene can complement the Cagre3 mutant, while the ScSOR1 gene can complement the Caxyl2 mutant, showing that S. cerevisiae contains the enzymatic capacity for converting xylose to xylulose. In addition, the gre3 xyl2 double mutant of C. albicans is effectively rescued by the xylose isomerase (XI) gene of either Piromyces or Orpinomyces, suggesting that the XI provides an alternative to the missing oxido-reductase functions in the mutant required for the xylose-xylulose conversion. Overall this work suggests that C. albicans strains engineered to lack essential steps for xylose metabolism can provide a platform for the analysis of xylose metabolism enzymes from a variety of species, and confirms that S. cerevisiae has the genetic potential to convert xylose to xylulose, although non-engineered strains cannot proliferate on xylose as the sole carbon source.  相似文献   

18.
Cyclophilin A is the target of the immunosuppressant cyclosporin A (CsA) and is encoded by a single unique gene conserved from yeast to humans. In the pathogenic fungus Cryptococcus neoformans, two homologous linked genes, CPA1 and CPA2, were found to encode two conserved cyclophilin A proteins. In contrast to Saccharomyces cerevisiae, in which cyclophilin A mutations confer CsA resistance but few other phenotypes, cyclophilin A mutations conferred dramatic phenotypes in C. neoformans. The Cpa1 and Cpa2 cyclophilin A proteins play a shared role in cell growth, mating, virulence and CsA toxicity. The Cpa1 and Cpa2 proteins also have divergent functions. cpa1 mutants are inviable at 39°C and attenuated for virulence, whereas cpa2 mutants are viable at 39°C and fully virulent. cpa1 cpa2 double mutants exhibited synthetic defects in growth and virulence. Cyclophilin A active site mutants restored growth of cpa1 cpa2 mutants at ambient but not at higher temperatures, suggesting that the prolyl isomerase activity of cyclophilin A has an in vivo function.  相似文献   

19.
In angiosperms, cyclic electron transport (CET) around photosystem I (PSI) consists of two pathways, depending on PGR5/PGRL1 proteins and the chloroplast NDH complex. In single mutants defective in chloroplast NDH, photosynthetic electron transport is only slightly affected at low light intensity, but in double mutants impaired in both CET pathways photosynthesis and plant growth are severely affected. The question is whether this strong mutant phenotype observed in double mutants can be simply explained by the additive effect of defects in both CET pathways. In this study, we used the weak mutant allele of pgr5-2 for the background of double mutants to avoid possible problems caused by the secondary effects due to the strong mutant phenotype. In two double mutants, crr2-2 pgr5-2 and ndhs-1 pgr5-2, the plant growth was unaffected and linear electron transport was only slightly affected. However, NPQ induction was more severely impaired in the double mutants than in the pgr5-2 single mutant. A similar trend was observed in the size of the proton motive force. Despite the slight reduction in photosystem II parameters, PSI parameters were severely affected in the pgr5-2 single mutant, the phenotype that was further enhanced by adding the NDH defects. Despite the lack of ?pH-dependent regulation at the cytochrome b6f complex (donor-side regulation of PSI), the plastoquinone pool was more reduced in the double mutants than in the pgr5-2 single mutants. This phenotype suggests that both PGR5/PGRL1- and NDH-dependent CET contribute to supply sufficient acceptors from PSI by balancing the ATP/NADPH production ratio.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号