首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study addressed the selection of the rhizospheric microbial community from the bulk soil reservoir under agricultural management of soybean in Amazon forest soils. We used a shotgun metagenomics approach to investigate the taxonomic and functional diversities of microbial communities in the bulk soil and in the rhizosphere of soybean plants and tested the validity of neutral and niche theories to explain the rhizosphere community assembly processes. Our results showed a clear selection at both taxonomic and functional levels operating in the assembly of the soybean rhizosphere community. The taxonomic analysis revealed that the rhizosphere community is a subset of the bulk soil community. Species abundance in rhizosphere fits the log-normal distribution model, which is an indicator of the occurrence of niche-based processes. In addition, the data indicate that the rhizosphere community is selected based on functional cores related to the metabolisms of nitrogen, iron, phosphorus and potassium, which are related to benefits to the plant, such as growth promotion and nutrition. The network analysis including bacterial groups and functions was less complex in rhizosphere, suggesting the specialization of some specific metabolic pathways. We conclude that the assembly of the microbial community in the rhizosphere is based on niche-based processes as a result of the selection power of the plant and other environmental factors.  相似文献   

2.
3.
In grasslands, fire management and fertilization are established drivers of plant community change, but associated soil fungal responses are less well defined. We predicted that soil fungal communities would change seasonally, that decades of fire cessation and nitrogen (N) fertilization would alter fungal distributions, and that plant and fungal community change would be correlated. Surface soils were sampled monthly for 1 y from a 30-y fire by fertilization experiment to evaluate fungal community dynamics and assess correlation with plant community heterogeneity. ITS gene community composition was seasonally stable, excepting increased arbuscular mycorrhizal fungal summer abundance in the burned, fertilized treatment. Long-term treatments affected soil fungal and plant communities, with correlated heterogeneity patterns. Despite woody encroachment in the fire cessation treatment, soil fungal communities did not resemble those of forests. This study provides evidence supporting the strength of feedbacks between fungal and plant community change in response to long-term grassland fire and N management changes.  相似文献   

4.
Resource availability and heterogeneity are recognized as two essential environmental aspects to determine species diversity and community abundance. However, how soil resource availability and heterogeneity determine species diversity and community abundance in highly heterogeneous and most fragile karst landscapes is largely unknown. We examined the effects of soil resource availability and heterogeneity on plant community composition and quantified their relative contribution by variation partitioning. Then, a structural equation model (SEM) was used to further disentangle the multiple direct and indirect effects of soil resource availability on plant community composition. Species diversity was significantly influenced by the soil resource availability in shrubland and woodland but not by the heterogeneity in woodland. Abundance was significantly affected by both soil resource availability and heterogeneity, whereas variation partitioning results showed that soil resource availability explained the majority of the variance in abundance, and the contribution of soil resource heterogeneity was marginal. These results indicated that soil resource availability plays a more important role in determining karst plant community composition than soil resource heterogeneity. Our SEMs further found that the multiple direct and indirect processes of soil resource availability in determining karst species diversity and abundance were different in different vegetation types. Soil resource availability and heterogeneity both played a certain role in determining karst plant community composition, while the importance of soil resource availability far exceeded soil resource heterogeneity. We propose that steering community restoration and reconstruction should be highly dependent on soil resource availability, and multiple direct and indirect pathways of soil resource availability for structuring karst plant communities need to be taken into account.  相似文献   

5.
To examine the relationship between plant species composition and microbial community diversity and structure, we carried out a molecular analysis of microbial community structure and diversity in two field experiments. In the first experiment, we examined bacterial community structure in bulk and rhizosphere soils in fields exposed to different plant diversity treatments, via a 16S rRNA gene clone library approach. Clear differences were observed between bacterial communities of the bulk soil and the rhizosphere, with the latter containing lower bacterial diversity. The second experiment focused on the influence of 12 different native grassland plant species on bacterial community size and structure in the rhizosphere, as well as the structure of Acidobacteria and Verrucomicrobia community structures. In general, bacterial and phylum-specific quantitative PCR and PCR-denaturing gradient gel electrophoresis revealed only weak influences of plant species on rhizosphere communities. Thus, although plants did exert an influence on microbial species composition and diversity, these interactions were not specific and selective enough to lead to major impacts of vegetation composition and plant species on below-ground microbial communities.  相似文献   

6.
Due to the increasing demand for phytoremediation, many transgenic poplars have been developed to enhance the bioremediation of heavy metals. However, structural changes to indigenous fungal communities by genetically modified organisms (GMO) presents a major ecological issue, due to the important role of fungi for plant growth in natural environments. To evaluate the effect of GM plant use on environmental fungal soil communities, extensive sequencing-based community analysis was conducted, while controlling the influence of plant clonality, plant age, soil condition, and harvesting season. The rhizosphere soils of GM and wild type (WT) poplars at a range of growth stages were sampled together with unplanted, contaminated soil, and the fungal community structures were investigated by pyrosequencing the D1/D2 region of the 28S rRNA gene. The results show that the overall structure of the rhizosphere fungal community was not significantly influenced by GM poplars. However, the presence of GM specific taxa, and faster rate of community change during poplar growth, appeared to be characteristic of the GM plant-induced effects on soil-born fungal communities. The results of this study provide additional information about the potential effects of GM poplar trees aged 1.5–3 years, on the soil fungal community.  相似文献   

7.
内蒙草原不同植物功能群及物种对土壤微生物组成的影响   总被引:1,自引:0,他引:1  
为了分析不同植物群落组成对内蒙古典型草原土壤微生物群落组成的影响,本研究利用植物功能群剔除处理实验平台,采用荧光定量PCR(real-timePCR)和自动核糖体间隔区基因分析(automated ribosomal intergenic spacer analysis,ARISA)技术,对不同植物功能群组成的非根际土壤和常见物种的根际土壤中细菌和真菌的数量及群落结构进行了分析。结果表明,在非根际土壤中,不同植物功能群组成对细菌数量有显著影响,而对真菌数量及细菌和真菌的群落结构影响不明显;在根际土壤中,不同植物物种对细菌、真菌的数量都有显著影响。此外,聚类分析表明,不同物种的根际土中细菌和真菌的群落结构也有所不同,尤其以细菌的群落结构变化较为明显。研究结果表明不同植物物种可以通过根系影响土壤微生物群落组成。  相似文献   

8.
The bacterial community composition in soil and rhizosphere taken from arable field sites, differing in soil parent material and soil texture, was analyzed using terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes. Nine sandy to silty soils from North-East Germany could clearly be distinguished from each other, with a relatively low heterogeneity in the community structure within the field replicates. There was a relationship between the soil parent material, i.e. different glacial and aeolian sediments, and the clustering of the profiles from different sites. A site-specific grouping of T-RFLP profiles was also found for the rhizosphere samples of the same field sites that were planted with potatoes. The branching of the rhizosphere profiles corresponded partly with the soil parent material, whereas the effect of the plant genotype was negligible. Selected terminal restriction fragments differing in their relative abundance within the nine soils were analyzed based on the cloning of the 16S rRNA genes of one soil sample. A high phylogenetic diversity observed to include Acidobacteria, Betaproteobacteria, Bacteroidetes, Verrucomicrobia, and Gemmatimonadetes. The assignment of three out of the seven selected terminal restriction fragments to members of Acidobacteria suggested that this group seems to participate frequently in the shifting of community structures that result from soil property changes.  相似文献   

9.
Over the past 25 years, the plant‐soil feedback (PSF) framework has catalyzed our understanding of how belowground microbiota impact plant fitness and species coexistence. Here, we apply a novel extension of this framework to microbiota associated with aboveground tissues, termed ‘plant‐phyllosphere feedback (PPFs)’. In parallel greenhouse experiments, rhizosphere and phyllosphere microbiota of con‐ and heterospecific hosts from four species were independently manipulated. In a third experiment, we tested the combined effects of soil and phyllosphere feedback under field conditions. We found that three of four species experienced weak negative PSF whereas, in contrast, all four species experienced strong negative PPFs. Field‐based feedback estimates were highly negative for all four species, though variable in magnitude. Our results suggest that phyllosphere microbiota, like rhizosphere microbiota, can potentially mediate plant species coexistence via negative feedbacks. Extension of the PSF framework to the phyllosphere is needed to more fully elucidate plant‐microbiota interactions.  相似文献   

10.
We hypothesised that plant species composition and richness would affect soil chemical and microbial community properties, and that these in turn would affect soil microbial resistance and resilience to an experimentally imposed drying disturbance. We performed a container experiment that manipulated the composition and species richness of common pasture plant species (Trifolium repens, Lolium perenne, and Plantago lanceolata) by growing them in monoculture, and in all the possible two and three-way combinations, along with an unplanted control soil. Experimental units were harvested at four different times over a 16-month period to determine the effect of plant community development and seasonal changes in temperature and moisture on belowground properties. Results showed that plant species composition influenced soil chemistry, soil microbial community properties and soil microbial resistance and resilience. Soil from planted treatments generally showed reduced soil microbial resistance to drying compared to unplanted control soils. Soils from under T. repens showed a higher resistance and resilience than the soils from under P. lanceolata, and a higher resistance than soils from under L. perenne. We suggest that differences across soils in either resource limitation or soil microbial community structure may be responsible for these results. Plant species richness rarely affected soil microbial community properties or soil microbial resistance and resilience, despite having some significant effects on plant community biomass and soil nitrogen contents in some harvests. The effect that treatments had for most variables differed between harvests, suggesting that results can be altered by the stage of plant community development or by extrinsic environmental factors that varied with harvest timing. These results in combination show that soil microbial resistance and resilience was affected by plant community composition, and the time of measurement, but was largely unrelated to plant species richness.  相似文献   

11.
Plant–soil feedback (PSF) can influence plant community structure via changes in the soil microbiome. However, how these feedbacks depend on the soil environment remains poorly understood. We hypothesized that disintegrating a naturally aggregated soil may influence the outcome of PSF by affecting microbial communities. Furthermore, we expected plants to differentially interact with soil structure and the microbial communities due to varying root morphology. We carried out a feedback experiment with nine plant species (five forbs and four grasses) where the “training phase” consisted of aggregated versus disintegrated soil. In the feedback phase, a uniform soil was inoculated in a fully factorial design with soil washings from conspecific‐ versus heterospecific‐trained soil that had been either disintegrated or aggregated. This way, the effects of prior soil structure on plant performance in terms of biomass production and allocation were examined. In the training phase, soil structure did not affect plant biomass. But on disintegrated soil, plants with lower specific root length (SRL) allocated more biomass aboveground. PSF in the feedback phase was negative overall. With training on disintegrated soil, conspecific feedback was positively correlated with SRL and significantly differed between grasses and forbs. Plants with higher SRL were likely able to easily explore the disintegrated soil with smaller pores, while plants with lower SRL invested in belowground biomass for soil exploration and seemed to be more susceptible to fungal pathogens. This suggests that plants with low SRL could be more limited by PSF on disintegrated soils of early successional stages. This study is the first to examine the influence of soil structure on PSF. Our results suggest that soil structure determines the outcome of PSF mediated by SRL. We recommend to further explore the effects of soil structure and propose to include root performance when working with PSF.  相似文献   

12.
Soil pathogens are believed to be major contributors to negative plant–soil feedbacks that regulate plant community dynamics and plant invasions. While the theoretical basis for pathogen regulation of plant communities is well established within the plant–soil feedback framework, direct experimental evidence for pathogen community responses to plants has been limited, often relying largely on indirect evidence based on above‐ground plant responses. As a result, specific soil pathogen responses accompanying above‐ground plant community dynamics are largely unknown. Here, we examine the oomycete pathogens in soils conditioned by established populations of native noninvasive and non‐native invasive haplotypes of Phragmites australis (European common reed). Our aim was to assess whether populations of invasive plants harbor unique communities of pathogens that differ from those associated with noninvasive populations and whether the distribution of taxa within these communities may help to explain invasive success. We compared the composition and abundance of pathogenic and saprobic oomycete species over a 2‐year period. Despite a diversity of oomycete taxa detected in soils from both native and non‐native populations, pathogen communities from both invaded and noninvaded soils were dominated by species of Pythium. Pathogen species that contributed the most to the differences observed between invaded and noninvaded soils were distributed between invaded and noninvaded soils. However, the specific taxa in invaded soils responsible for community differences were distinct from those in noninvaded soils that contributed to community differences. Our results indicate that, despite the phylogenetic relatedness of native and non‐native P. australis haplotypes, pathogen communities associated with the dominant non‐native haplotype are distinct from those of the rare native haplotype. Pathogen taxa that dominate either noninvaded or invaded soils suggest different potential mechanisms of invasion facilitation. These findings are consistent with the hypothesis that non‐native plant species that dominate landscapes may “cultivate” a different soil pathogen community to their rhizosphere than those of rarer native species.  相似文献   

13.
基于高通量测序的杨树人工林根际土壤真菌群落结构   总被引:2,自引:0,他引:2  
研究不同根序细根根际土壤微生物群落组成结构对深入了解根系-微生物互作关系具有重要意义.本研究采用Illumina MiSeq测序平台,对杨树人工林非根际土壤和不同根序细根根际土壤的真菌群落结构进行分析.物种注释结果显示: 杨树1~2级根(R1)、3级根(R2)和4~5级(R3)根际及非根际土壤(NR)中分别包含128、124、130和101个真菌属,表明杨树根际存在对真菌群落构建的选择性机制.不同根序根际土壤中相对丰度>1%的真菌属有7个,木霉属在1~2级根根际土壤中丰度较高,毛孢子菌属和曲霉属分别是3级根和4~5级根根际土壤中丰度最高的真菌属.α多样性指数表明: 根际土壤真菌的多样性在不同根序间存在显著差异,低级根显著高于高级根(P<0.05).β多样性指数表明: 真菌群落随着序级的升高差异性不断上升,相似性不断降低.不同根序细根根际真菌群落的趋异化组成和结构与细根功能具有密切关系.  相似文献   

14.
Protists, functionally divided into consumers, phototrophs, and parasites act as integral components and vital regulators of microbiomes in soil–plant continuums. However, the drivers of community structure, assembly mechanisms, co-occurrence patterns, and the associations with human pathogens and different protistan trophic groups remain unknown. Here, we characterized the phyllosphere and soil protistan communities associated with three vegetables under different fertilization treatments (none and organic fertilization) at five growth stages. In this study, consumers were the most diverse soil protist group, had the role of inter-kingdom connector, and were the primary biomarker for rhizosphere soils which were subjected to decreasing deterministic processes during plant growth. In contrast, phototrophs had the greatest niche breadth and formed soil protistan hubs, and were the primary biomarkers for both bulk soils and the phyllosphere. Parasites had minimal input to microbial co-occurrence networks. Organic fertilization increased the relative abundance (RA) of pathogenic protists and the number of pathogen–consumer connections in rhizosphere soils but decreased protistan richness and the number of internal protistan links. This study advances our understanding of the ecological roles and potential links between human pathogens and protistan trophic groups associated with soil–plant continuums, which is fundamental to the regulation of soil–plant microbiomes and maintenance of environmental and human health.  相似文献   

15.
Plant–soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short‐term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non‐native species, or a mixed plant community in different plots in a common‐garden experiment. After 4 years, plants were removed and one native and one non‐native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non‐native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non‐native, Centaurea diffusa, and non‐native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata. Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common‐garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non‐native plant community on non‐native soils. In contrast, when PSF effects were removed, the model predicted that non‐native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank‐order abundance of native and non‐native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors through soil‐mediated effects.  相似文献   

16.
Soil microbes are known to be key drivers of several essential ecosystem processes such as nutrient cycling, plant productivity and the maintenance of plant species diversity. However, how plant species diversity and identity affect soil microbial diversity and community composition in the rhizosphere is largely unknown. We tested whether, over the course of 11 years, distinct soil bacterial communities developed under plant monocultures and mixtures, and if over this time frame plants with a monoculture or mixture history changed in the bacterial communities they associated with. For eight species, we grew offspring of plants that had been grown for 11 years in the same field monocultures or mixtures (plant history in monoculture vs. mixture) in pots inoculated with microbes extracted from the field monoculture and mixture soils attached to the roots of the host plants (soil legacy). After 5 months of growth in the glasshouse, we collected rhizosphere soil from each plant and used 16S rRNA gene sequencing to determine the community composition and diversity of the bacterial communities. Bacterial community structure in the plant rhizosphere was primarily determined by soil legacy and by plant species identity, but not by plant history. In seven of the eight plant species the number of individual operational taxonomic units with increased abundance was larger when inoculated with microbes from mixture soil. We conclude that plant species richness can affect below‐ground community composition and diversity, feeding back to the assemblage of rhizosphere bacterial communities in newly establishing plants via the legacy in soil.  相似文献   

17.
Soil organisms influence plant species coexistence and invasion potential. Plant-soil feedbacks occur when plants change soil community composition such that interactions with that soil community in turn may positively or negatively affect the performance of conspecifics. Theories predict and studies show that invasions may be promoted by stronger negative soil feedbacks for native compared with exotic species. We present a counter-example of a successful invader with strong negative soil feedbacks apparently caused by host-specific, pathogenic soil fungi. Using a feedback experiment in pots, we investigated whether the relative strength of plant-soil feedbacks experienced by a non-native woody invader, Sapium sebiferum, differed from several native tree species by examining their performance in soils collected near conspecifics ('home soils') or heterospecifics ('away soils') in the introduced range. Sapium seedlings, but no native seedlings, had lower survival and biomass in its home soils compared with soils of other species (negative feedback'). To investigate biotic agents potentially responsible for the observed negative feedbacks, we conducted two additional experiments designed to eliminate different soil taxa ('rescue experiments'). We found that soil sterilization (pot experiment ) or soil fungicide applications (pot and field experiments) restored Sapium performance in home soil thereby eliminating the negative feedbacks we observed in the original experiment. Such negative feedbacks apparently mediated by soil fungi could have important effects on persistence of this invader by limiting Sapium seedling success in Sapium dominated forests (home soils) though their weak effects in heterospecific (away) soils suggest a weak role in limiting initial establishment.  相似文献   

18.
为了分析内蒙古草原不同植物物种对土壤微生物群落的影响, 采用实时荧光定量PCR (real-time PCR)以及末端限制性片段长度多态性分析(terminal restriction fragment length polymorphism, T-RFLP)等分子生物学技术, 测定了退化-恢复样地上几种典型植物的根际土壤和非根际土壤中细菌和真菌的数量及群落结构。结果表明, 不同植物物种对根际和非根际细菌及根际真菌数量均有显著影响。根际土壤中的细菌和真菌数量普遍高于非根际土壤, 尤其以真菌更为明显。对T-RFLP数据进行多响应置换过程(multi-response permutation procedures, MRPP)分析和主成分分析(principal component analysis, PCA), 结果表明, 大多数物种的根际细菌及真菌的群落结构与非根际有明显差异, 并且所有物种的真菌群落可以按根际和非根际明显分为两大类群。此外, 细菌和真菌群落结构在一定程度上存在按物种聚类的现象, 以细菌较为明显。这些结果揭示了不同植物对土壤微生物群落的影响特征, 对理解内蒙古草原地区退化及恢复过程中植被演替引起的土壤性质和功能的变化有一定的帮助。  相似文献   

19.
While the effect of drought on plant communities and their associated ecosystem functions is well studied, little research has considered how responses are modified by soil depth and depth heterogeneity. We conducted a mesocosm study comprising shallow and deep soils, and variable and uniform soil depths, and two levels of plant community composition, and exposed them to a simulated drought to test for interactive effects of these treatments on the resilience of carbon dioxide fluxes, plant functional traits, and soil chemical properties. We tested the hypotheses that: (a) shallow and variable depth soils lead to increased resistance and resilience of ecosystem functions to drought due to more exploitative plant trait strategies; (b) plant communities associated with intensively managed high fertility soils, will have more exploitative root traits than extensively managed, lower fertility plant communities. These traits will be associated with higher resistance and resilience to drought and may interact with soil depth and depth heterogeneity to amplify the effects on ecosystem functions. Our results showed that while there were strong soil depth/heterogeneity effects on plant‐driven carbon fluxes, it did not affect resistance or resilience to drought, and there were no treatment effects on plant‐available carbon or nitrogen. We did observe a significant increase in exploitative root traits in shallow and variable soils relative to deep and uniform, which may have resulted in a compensation effect which led to the similar drought responses. Plant community compositions representative of intensive management were more drought resilient than more diverse “extensive” communities irrespective of soil depth or soil depth heterogeneity. In intensively managed plant communities, root traits were more representative of exploitative strategies. Taken together, our results suggest that reorganization of root traits in response to soil depth could buffer drought effects on ecosystem functions.  相似文献   

20.
The assembly of bacterial communities in the rhizosphere is well-documented and plays a crucial role in supporting plant performance. However, we have limited knowledge of how plant rhizosphere determines the assembly of protistan predators and whether the potential associations between protistan predators and bacterial communities shift due to rhizosphere selection. To address this, we examined bacterial and protistan taxa from 443 agricultural soil samples including bulk and rhizosphere soils. Our results presented distinct patterns of bacteria and protistan predators in rhizosphere microbiome assembly. Community assembly of protistan predators was determined by a stochastic process in the rhizosphere and the diversity of protistan predators was reduced in the rhizosphere compared to bulk soils, these may be attributed to the indirect impacts from the altered bacterial communities that showed deterministic process assembly in the rhizosphere. Interestingly, we observed that the plant rhizosphere facilitates more close interrelationships between protistan predators and bacterial communities, which might promote a healthy rhizosphere microbial community for plant growth. Overall, our findings indicate that the potential predator–prey relationships within the microbiome, mediated by plant rhizosphere, might contribute to plant performance in agricultural ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号