首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gene mutated in X-linked adrenoleukodystrophy (X-ALD) codes for the HsABCD1 protein, also named ALDP, which is a member of the superfamily of ATP-binding cassette (ABC) transporters and required for fatty acid transport across the peroxisomal membrane. Although a defective HsABCD1 results in the accumulation of very long-chain fatty acids in plasma of X-ALD patients, there is still no direct biochemical evidence that HsABCD1 actually transports very long-chain fatty acids. We used the yeast Saccharomyces cerevisiae to study the transport of fatty acids across the peroxisomal membrane. Our earlier work showed that in yeast the uptake of fatty acids into peroxisomes may occur via two routes, either as (1.) free fatty acid or as (2.) acyl-CoA ester. The latter route involves the two peroxisomal half-ABC transporters, Pxa1p and Pxa2p, which form a heterodimeric complex in the peroxisomal membrane. We here report that the phenotype of the pxa1/pxa2Δ yeast mutant, i.e. impaired growth on oleate containing medium and deficient oxidation of oleic acid, cannot only be partially rescued by human ABCD1, but also by human ABCD2 (ALDRP), which indicates that HsABCD1 and HsABCD2 can both function as homodimers. Fatty acid oxidation studies in the pxa1/pxa2Δ mutant transformed with either HsABCD1 or HsABCD2 revealed clear differences suggesting that HsABCD1 and HsABCD2 have distinct substrate specificities. Indeed, full rescue of beta-oxidation activity in cells expressing human ABCD2 was observed with C22:0 and different unsaturated very long-chain fatty acids including C24:6 and especially C22:6 whereas in cells expressing HsABCD1 rescue of beta-oxidation activity was best with C24:0 and C26:0 as substrates.  相似文献   

2.
Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. Free fatty acids (FFAs) can enter peroxisomes through passive diffusion or by means of ATP binding cassette (ABC) transporters, including HsABCD1 (ALDP, adrenoleukodystrophy protein), HsABCD2 (ALDRP) and HsABCD3 (PMP70). The physiological functions of the different peroxisomal half-ABCD transporters have not been fully determined yet, but there are clear indications that both HsABCD1 and HsABCD2 are required for the breakdown of fatty acids in peroxisomes. Here we report that the phenotype of the pxa1/pxa2Δ yeast mutant, i.e. impaired oxidation of oleic acid, cannot only be partially rescued by HsABCD1, HsABCD2, but also by HsABCD3, which indicates that each peroxisomal half-transporter can function as homodimer. Fatty acid oxidation measurements using various fatty acids revealed that although the substrate specificities of HsABCD1, HsABCD2 and HsABCD3 are overlapping, they have distinctive preferences. Indeed, most hydrophobic C24:0 and C26:0 fatty acids are preferentially transported by HsABCD1, C22:0 and C22:6 by HsABCD2 and most hydrophilic substrates like long-chain unsaturated-, long branched-chain- and long-chain dicarboxylic fatty acids by HsABCD3. All these fatty acids are most likely transported as CoA esters. We postulate a role for human ABCD3 in the oxidation of dicarboxylic acids and a role in buffering fatty acids that are overflowing from the mitochondrial β-oxidation system.  相似文献   

3.
X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity.  相似文献   

4.
X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder, is associated with mutation in the ABCD1 gene which encodes a peroxisomal ATP-binding cassette transporter for very long-chain fatty acids (VLCFA). The biochemical hallmark of the disease is the accumulation of VLCFA. Peroxisomal defect in microglia being now considered a priming event in the pathology, we have therefore generated murine microglial cells mutated in the Abcd1 gene and its closest homolog, the Abcd2 gene. Using CRISPR/Cas9 gene editing strategy, we obtained 3 cell clones with a single or double deficiency. As expected, only the combined absence of ABCD1 and ABCD2 proteins resulted in the accumulation of VLCFA. Ultrastructural analysis by electron microscopy revealed in the double mutant cells the presence of lipid inclusions similar to those observed in brain macrophages of patients. These observations are likely related to the increased level of cholesterol and the accumulation of neutral lipids that we noticed in mutant cells. A preliminary characterization of the impact of peroxisomal defects on the expression of key microglial genes such as Trem2 suggests profound changes in microglial functions related to inflammation and phagocytosis. The expression levels of presumed modifier genes have also been found modified in mutant cells, making these novel cell lines relevant for use as in vitro models to better understand the physiopathogenesis of X-ALD and to discover new therapeutic targets.  相似文献   

5.
Mammalian peroxisomal proteins adrenoleukodystrophy protein (ALDP), adrenoleukodystrophy-related protein (ALDRP), and 70-kDa peroxisomal protein (PMP70) belong to the superfamily of ATP-binding cassette (ABC) transporters. Unlike many ABC transporters that are single functional proteins with two related halves, ALDP, ALDRP, and PMP70 have the structure of ABC half-transporters. The dysfunction of ALDP is responsible for X-linked adrenoleukodystrophy (X-ALD), a neurodegenerative disorder in which saturated very long-chain fatty acids accumulate because of their impaired peroxisomal beta-oxidation. No disease has so far been associated with mutations of adrenoleukodystrophy-related or PMP70 genes. It has been proposed that peroxisomal ABC transporters need to dimerize to exert import functions. Using the yeast two-hybrid system, we show that homo- as well as heterodimerization occur between the carboxyl-terminal halves of ALDP, ALDRP, and PMP70. Two X-ALD disease mutations located in the carboxyl-terminal half of ALDP affect both homo- and heterodimerization of ALDP. Co-immunoprecipitation demonstrated the homodimerization of ALDP, the heterodimerization of ALDP with PMP70 or ALDRP, and the heterodimerization of ALDRP with PMP70. These results provide the first evidence of both homo- and heterodimerization of mammalian ABC half-transporters and suggest that the loss of ALDP dimerization plays a role in X-ALD pathogenesis.  相似文献   

6.
X-linked adrenoleukodystrophy (X-ALD) is an inherited metabolic disease associated with mutations in the ABCD1 gene that encodes an ATP-binding cassette transporter protein, ALDP. The disease is characterized by increased concentrations of very long-chain fatty acids (VLCFAs) in plasma and in adrenal, testicular and nervous tissues, due to a defect in peroxisomal VLCFA β-oxidation. In the present study, we analyzed 10 male patients and 17 female carriers from 10 unrelated pedigrees with X-ALD from Argentina. By sequencing the ABCD1 we detected 9 different mutations, 8 of which were novel. These new mutations were verified by a combination of methods that included both functional (western blot and peroxisomal VLCFA β-oxidation) and bioinformatics analysis. The spectrum of novel mutations consists of 3 frameshift (p.Ser284fs*16, p.Glu380Argfs*21 and p.Thr254Argfs*82); a deletion (p.Ser572_Asp575del); a splicing mutation (c.1081+5G>C) and 3 missense mutations (p.Ala341Asp, p.His420Pro and p.Tyr547Cys). In one patient 2 changes were found: a known missense (p.His669Arg) and an unpublished amino acid substitution (p.Ala19Ser). In vitro studies suggest that p.Ala19Ser is a polymorphism. Moreover, we identified two novel intronic polymorphisms and two amino acid polymorphisms. In conclusion, this study extends the spectrum of mutation in X-ALD and facilitates the identification of heterozygous females.  相似文献   

7.
X-Linked Adrenoleukodystrophy: Genes,Mutations, and Phenotypes   总被引:12,自引:0,他引:12  
X-linked adrenoleukodystrophy (X-ALD) is a complex and perplexing neurodegenerative disorder. The metabolic abnormality, elevated levels of very long-chain fatty acids in tissues and plasma, and the biochemical defect, reduced peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity, are ubiquitous features of the disease. However, clinical manifestations are highly variable with regard to time of onset, site of initial pathology and rate of progression. In addition, the abnormal gene in X-ALD is not the gene for VLCS. Rather, it encodes a peroxisomal membrane protein with homology to the ATP-binding cassette (ABC) transmembrane transporter superfamily of proteins. The X-ALD protein (ALDP) is closely related to three other peroxisomal membrane ABC proteins. In this report we summarize all known X-ALD mutations and establish the lack of an X-ALD genotype/phenotype correlation. We compare the evolutionary relationships among peroxisomal ABC proteins, demonstrate that ALDP forms homodimers with itself and heterodimers with other peroxisomal ABC proteins and present cDNA complementation studies suggesting that the peroxisomal ABC proteins have overlapping functions. We also establish that there are at least two peroxisomal VLCS activities, one that is ALDP dependent and one that is ALDP independent. Finally, we discuss variable expression of the peroxisomal ABC proteins and ALDP independent VLCS in relation to the variable clinical presentations of X-ALD.  相似文献   

8.
The regulation of the ABCD2 gene is recognized as a possible therapeutic target for X-linked adrenoleukodystrophy, a rare neurodegenerative disease caused by mutations in the ABCD1 gene. Up-regulation of ABCD2 expression has indeed been demonstrated to compensate for ABCD1 deficiency, restoring peroxisomal β-oxidation of very-long-chain fatty acids. Besides the known inducers of the ABCD2 gene (phenylbutyrate and histone deacetylase inhibitors, fibrates, dehydroepiandrosterone, thyroid hormone and thyromimetics), this review will focus on LXR antagonists and 22S-hydroxycholesterol, recently described as inducers of ABCD2 expression. Several LXR antagonists have been identified and their possible indication for neurodegenerative disorders will be discussed.  相似文献   

9.
ABC (ATP-binding cassette) subfamily D transporters are found in all eukaryotic kingdoms and are known to play essential roles in mammals and plants; however, their number, organization and physiological contexts differ. Via cross-kingdom expression experiments, we have explored the conservation of targeting, protein stability and function between mammalian and plant ABCD transporters. When expressed in tobacco epidermal cells, the mammalian ABCD proteins ALDP (adrenoleukodystrophy protein), ALDR (adrenoleukodystrophy-related protein) and PMP70 (70?kDa peroxisomal membrane protein) targeted faithfully to peroxisomes and P70R (PMP70-related protein) targeted to the ER (endoplasmic reticulum), as in the native host. The Arabidopsis thaliana peroxin AtPex19_1 interacted with human peroxisomal ABC transporters both in vivo and in vitro, providing an explanation for the fidelity of targeting. The fate of X-linked adrenoleukodystrophy disease-related mutants differed between fibroblasts and plant cells. In fibroblasts, levels of ALDP in some 'protein-absent' mutants were increased by low-temperature culture, in some cases restoring function. In contrast, all mutant ALDP proteins examined were stable and correctly targeted in plant cells, regardless of their fate in fibroblasts. ALDR complemented the seed germination defect of the Arabidopsis cts-1 mutant which lacks the peroxisomal ABCD transporter CTS (Comatose), but neither ALDR nor ALDP was able to rescue the defect in fatty acid β-oxidation in establishing seedlings. Taken together, our results indicate that the mechanism for trafficking of peroxisomal membrane proteins is shared between plants and mammals, but suggest differences in the sensing and turnover of mutant ABC transporter proteins and differences in substrate specificity and/or function.  相似文献   

10.
Peroxisomes are important organelles in plant metabolism, containing all the enzymes required for fatty acid beta-oxidation. More than 20 proteins are required for peroxisomal biogenesis and maintenance. The Arabidopsis pxa1 mutant, originally isolated because it is resistant to the auxin indole-3-butyric acid (IBA), developmentally arrests when germinated without supplemental sucrose, suggesting defects in fatty acid beta-oxidation. Because IBA is converted to the more abundant auxin, indole-3-acetic acid (IAA), in a mechanism that parallels beta-oxidation, the mutant is likely to be IBA resistant because it cannot convert IBA to IAA. Adult pxa1 plants grow slowly compared with wild type, with smaller rosettes, fewer leaves, and shorter inflorescence stems, indicating that PXA1 is important throughout development. We identified the molecular defect in pxa1 using a map-based positional approach. PXA1 encodes a predicted peroxisomal ATP-binding cassette transporter that is 42% identical to the human adrenoleukodystrophy (ALD) protein, which is defective in patients with the demyelinating disorder X-linked ALD. Homology to ALD protein and other human and yeast peroxisomal transporters suggests that PXA1 imports coenzyme A esters of fatty acids and IBA into the peroxisome for beta-oxidation. The pxa1 mutant makes fewer lateral roots than wild type, both in response to IBA and without exogenous hormones, suggesting that the IAA derived from IBA during seedling development promotes lateral root formation.  相似文献   

11.
X-linked adrenoleukodystrophy (X-ALD) is a demyelinating disease due to mutations in the ABCD1 (ALD) gene, encoding a peroxisomal ATP-binding cassette transporter (ALDP). Overexpression of adrenoleukodystrophy-related protein, an ALDP homologue encoded by the ABCD2 (adrenoleukodystrophy-related) gene, can compensate for ALDP deficiency. 4-Phenylbutyrate (PBA) has been shown to induce both ABCD2 expression and peroxisome proliferation in human fibroblasts. We show that peroxisome proliferation with unusual shapes and clusters occurred in liver of PBA-treated rodents in a PPARalpha-independent way. PBA activated Abcd2 in cultured glial cells, making PBA a candidate drug for therapy of X-ALD. The Abcd2 induction observed was partially PPARalpha independent in hepatocytes and totally independent in fibroblasts. We demonstrate that a GC box and a CCAAT box of the Abcd2 promoter are the key elements of the PBA-dependent Abcd2 induction, histone deacetylase (HDAC)1 being recruited by the GC box. Thus, PBA is a nonclassical peroxisome proliferator inducing pleiotropic effects, including effects at the peroxisomal level mainly through HDAC inhibition.  相似文献   

12.
ATP-binding cassette (ABC) transporters belong to one of the largest families of membrane proteins, and are present in almost all living organisms from eubacteria to mammals. They exist on plasma membranes and intracellular compartments such as the mitochondria, peroxisomes, endoplasmic reticulum, Golgi apparatus and lysosomes, and mediate the active transport of a wide variety of substrates in a variety of different cellular processes. These include the transport of amino acids, polysaccharides, peptides, lipids and xenobiotics, including drugs and toxins. Three ABC transporters belonging to subfamily D have been identified in mammalian peroxisomes. The ABC transporters are half-size and assemble mostly as a homodimer after posttranslational transport to peroxisomal membranes. ABCD1/ALDP and ABCD2/ALDRP are suggested to be involved in the transport of very long chain acyl-CoA with differences in substrate specificity, and ABCD3/PMP70 is involved in the transport of long and branched chain acyl-CoA. ABCD1 is known to be responsible for X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal β-oxidation of very long chain fatty acids. Here, we summarize recent advances and important points in our advancing understanding of how these ABC transporters target and assemble to peroxisomal membranes and perform their functions in physiological and pathological processes, including the neurodegenerative disease, X-ALD. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.  相似文献   

13.
The inherited peroxisomal disorder X-linked adrenoleukodystrophy (X-ALD), associated with neurodegeneration and inflammatory cerebral demyelination, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (ALDP). ABCD1 transports CoA-esters of very long-chain fatty acids (VLCFA) into peroxisomes for degradation by β-oxidation; thus, ABCD1 deficiency results in VLCFA accumulation. The closest homologue, ABCD2 (ALDRP), when overexpressed, compensates for ABCD1 deficiency in X-ALD fibroblasts and in Abcd1-deficient mice. Microglia/macrophages have emerged as important players in the progression of neuroinflammation. Human monocytes, lacking significant expression of ABCD2, display severely impaired VLCFA metabolism in X-ALD. Here, we used thioglycollate-elicited primary mouse peritoneal macrophages (MPMΦ) from Abcd1 and Abcd2 single- and double-deficient mice to establish how these mutations affect VLCFA metabolism. By quantitative RT-PCR, Abcd2 mRNA was about half as abundant as Abcd1 mRNA in wild-type and similarly abundant in Abcd1-deficient MPMΦ. VLCFA (C26∶0) accumulated about twofold in Abcd1-deficient MPMΦ compared with wild-type controls, as measured by gas chromatography-mass spectrometry. In Abcd2-deficient macrophages VLCFA levels were normal. However, upon Abcd1/Abcd2 double-deficiency, VLCFA accumulation was markedly increased (sixfold) compared with Abcd1-deficient MPMΦ. Elovl1 mRNA, encoding the rate-limiting enzyme for elongation of VLCFA, was equally abundant across all genotypes. Peroxisomal β-oxidation of C26∶0 amounted to 62% of wild-type activity in Abcd1-deficient MPMΦ and was significantly more impaired (29% residual activity) upon Abcd1/Abcd2 double-deficiency. Single Abcd2 deficiency did not significantly compromise β-oxidation of C26∶0. Thus, the striking accumulation of VLCFA in double-deficient MPMΦ compared with single Abcd1 deficiency was due to the loss of ABCD2-mediated, compensatory transport of VLCFA into peroxisomes. We propose that moderate endogenous expression of Abcd2 in Abcd1-deficient murine macrophages prevents the severe metabolic phenotype observed in human X-ALD monocytes, which lack appreciable expression of ABCD2. This supports upregulation of ABCD2 as a therapeutic concept in X-ALD.  相似文献   

14.
The neurodegenerative disease X-linked adrenoleukodystrophy (X-ALD) is characterized by the abnormal accumulation of very long chain fatty acids. Mutations in the gene encoding the peroxisomal ATP-binding cassette half-transporter, adrenoleukodystrophy protein (ALDP), are the primary cause of X-ALD. To gain a better understanding of ALDP dysfunction, we searched for interaction partners of ALDP and identified binary interactions to proteins with functions in fatty acid synthesis (ACLY, FASN, and ACC) and activation (FATP4), constituting a thus far unknown fatty acid synthesis-transport machinery at the cytoplasmic side of the peroxisomal membrane. This machinery adds to the knowledge of the complex mechanisms of peroxisomal fatty acid metabolism at a molecular level and elucidates potential epigenetic mechanisms as regulatory processes in the pathogenesis and thus the clinical course of X-ALD.  相似文献   

15.
Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2.  相似文献   

16.
The function of PMP70, one of the four ABC half-transporters of mammalian peroxisomes, encoded by ABCD3 gene, is still unclear. The finding that PMP70 over-expression partially corrected very long-chain fatty acid oxidation defects in fibroblasts of X-linked adrenoleukodystrophy patients, has unveiled its potential clinical relevance, prompting us to set up a model system to study PMP70 function. We used the RNA interference technique, a powerful approach to loss-of-function gene expression analysis, to knockdown the ABCD3 gene in the rat glial C6 cell line, since glia could represent the target tissue of X-linked adrenoleukodystrophy disease. Cells were transfected with a vector for RNA interference generating small interfering RNAs that specifically target the ABCD3 mRNA. By using a puromycin-selectable version of the plasmid, we generated a stable cell line (abcd3kd), in which we observed a stable decrease of PMP70 protein expression greater than 70%. We thus examined the effect of ABCD3 knockdown on lignoceric and palmitic acids beta-oxidation and we found that in abcd3kd cells the rate of peroxisomal and mitochondrial beta-oxidation activities were both reduced about one-third compared with control cells. The mitochondrial membrane potential, determined by cytofluorometric analysis, was also affected. Lipid and fatty acid analyses of abcd3kd cells showed an increase of hexacosenoic acid (C26:0) in the cholesteryl-ester fraction. These results add another clue about the overlapping function of PMP70 and ALDP, the peroxisomal protein involved in X-linked adrenoleukodystrophy, since C26:0 is the biochemical marker of the disease and in the brain lesions it is accumulated in the cholesteryl-ester fraction. Considered as a whole, our results indicate that the abcd3kd cell line is a valuable tool to further study the function of PMP70 and eventually its role in X-linked adrenoleukodystrophy.  相似文献   

17.
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease due to a defect in the ABCD1 (ALD) gene. ABCD1, and the two close homologues ABCD2 (ALDR) and ABCD3 (PMP70), are genes encoding ATP-binding cassette half-transporters of the peroxisomal membrane. As overexpression of the ABCD2 or ABCD3 gene can reverse the biochemical phenotype of X-ALD (reduced beta-oxidation of very-long-chain fatty acids), pharmacological induction of these partially redundant genes may represent a therapeutic approach to X-ALD. We previously reported that the ABCD2 and ABCD3 genes could be strongly induced by fibrates, which are hypolipidaemic drugs and peroxisome-proliferators in rodents. We provide evidence that the induction is dependent on peroxisome proliferator-activated receptor (PPARalpha) as both genes were not induced in fenofibrate-treated PPARalpha -/- knock-out mice. To further characterize the PPARalpha pathway, we cloned and analysed the promoter of the ABCD2 gene, the closest homologue of the ABCD1 gene. The proximal region (2 kb) of the rat promoter displayed a high conservation with the human and mouse cognate sequences suggesting an important role of the region in regulation of the ABCD2 gene. Classically, fibrate-induction involves interaction of PPARalpha with a response element (PPRE) characterized by a direct repeat of the AGGTCA-like motif. Putative PPRE motifs of the rat ABCD2 promoter were studied in the isolated form or in their promoter context by gel-shift assay and transfection of COS-7 cells. We failed to characterize a functional PPRE, suggesting a different mechanism for the PPARalpha-dependent regulation of the ABCD2 gene.  相似文献   

18.
Peroxisomes play an essential role in human cellular metabolism. Peroxisomal disorders, a group of genetic diseases caused by peroxisomal dysfunction, can be classified in three groups namely a group of disorders with a general peroxisomal dysfunction (Zellweger syndrome; infantile type of Refsum's disease; neonatal adrenoleukodystrophy, hyperpipecolic acidemia), a group with an impairment of some, but not all peroxisomal functions (rhizomelic chondrodysplasia punctata) and a group with impairment of only a single peroxisomal function (acatalasemia, X-linked adrenoleukodystrophy/adrenomyeloneuropathy; adult type of Refsum's disease; peroxisomal thiolase deficiency; peroxisomal acyl-CoA oxidase deficiency; hyperoxaluria type I). In this paper we report the typical findings in ophthalmological examinations of patients suspected of Zellweger syndrome contributing to the clinical diagnosis of this disorder. In biochemical studies using a rapid gaschromatographic detection method for plasmalogens we confirmed that plasmalogens are severely deficient in all tissues of Zellweger patients studied. Moreover, using a recently developed radiochemical method, de novo plasmalogen biosynthesis was found to be impaired in fibroblasts from patients with Zellweger syndrome, infantile Refsum's disease, neonatal adrenoleukodystrophy or rhizomelic chondrodysplasia punctata, this in contrast to X-linked chondrodysplasia in which a normal plasmalogen biosynthesis was found. From the literature it is known that peroxisomal beta-oxidation with both long-chain (C16:0) and very long-chain (C24:0; C26:0) fatty acids is deficient in Zellweger syndrome, infantile Refsum's disease and neonatal adrenoleukodystrophy. In contrast, in X-linked adrenoleukodystrophy only the peroxisomal beta-oxidation of the very long chain fatty acids is impaired. As a result very long-chain fatty acids accumulate in tissues, plasma, fibroblasts and amniotic fluid cells from patients with Zellweger syndrome, infantile Refsum's disease, neonatal and X-linked adrenoleukodystrophy, but not in rhizomelic chondrodysplasia punctata or X-linked chondrodysplasia. Finally we confirmed that the peroxisomal enzyme alanine glyoxylate aminotransferase is severely deficient in liver from a patient that died because of the neonatal type of hyperoxaluria type I, but not in liver from Zellweger patients.  相似文献   

19.
The peroxisomal membrane forms a permeability barrier for a wide variety of metabolites required for and formed during fatty acid beta-oxidation. To communicate with the cytoplasm and mitochondria, peroxisomes need dedicated proteins to transport such hydrophilic molecules across their membranes. Genetic and biochemical studies in the yeast Saccharomyces cerevisiae have identified enzymes for redox shuttles as well as the first peroxisomal membrane transporter. This peroxisomal ATP-binding cassette transporter (Pat) is highly homologous to the gene mutated in X-linked adrenoleukodystrophy (X-ALD). The yeast Pat is required for import of activated fatty acids into peroxisomes suggesting that this is the primary defect in X-ALD.  相似文献   

20.
Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy   总被引:5,自引:0,他引:5  
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by accumulation of very long-chain fatty acids (VLCFA). This accumulation has been attributed to decreased VLCFA beta-oxidation and peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity. The X-ALD gene, ABCD1, encodes a peroxisomal membrane ATP binding cassette transporter, ALDP, that is hypothesized to affect VLCS activity in peroxisomes by direct interaction with the VLCS enzyme. Recently, a VLCS gene that encodes a protein with significant sequence identity to known rat and human peroxisomal VLCS protein has been identified in mice. We find that the mouse VLCS gene (Vlcs) encodes an enzyme (Vlcs) with VLCS activity that localizes to peroxisomes and is expressed in X-ALD target tissues. We show that the expression of Vlcs in the peroxisomes of X-ALD mouse fibroblasts improves VLCFA beta-oxidation in these cells, implying a role for this enzyme in the biochemical abnormality of X-ALD. X-ALD mice, which accumulate VLCFA in tissues, show no change in the expression of Vlcs, the subcellular localization of Vlcs, or general peroxisomal VLCS activity. These observations imply that ALDP is not necessary for the proper expression or localization of Vlcs protein, and the control of VLCFA levels does not depend on the direct interaction of Vlcs and ALDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号