首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The air disturbance patterns created by and around the ovules of Taxus cuspidata are quantified for various orientations to the direction of ambient airflow, and are shown to largely dictate the motion (vectoral trajectories) and mode of deposition of windborne pollen on ovule surfaces. Perpendicular orientation to the direction of airflow results in two regions characterized by high densities of adhering pollen — one on the windward surface of the ovule, resulting from direct inertial collision, and another on the leeward surface resulting from non-inertial sedimentation. Parallel and inclined orientations of the ovule to the direction of airflow produce quantitative and qualitative variations in the pattern of adhering pollen resulting from inertial and non-inertial deposition. Direct collision of windborne pollen grains with the micropylar ends of ovules occurs for all orientations to wind direction. The aerodynamics of the ovulate shoot complex of Taxus cuspidata is related to that previously described for conifer ovulate cones, cycad megastrobili, and simulated wind tunnel analyses of archaic Paleozoic ovules based on scale models. Water transport of pollen (adhering to integument and bract surfaces) to micropyles quantitatively alters the distribution of adhering pollen grains on ovule surfaces. Although there is no evidence that pollen grains of this species are osmotically ruptured, observations do not preclude the possibility that water transport of pollen may reduce the number of viable pollen grains reaching the micropyle.  相似文献   

2.
Data on the shapes of 218 genera of free-floating or free-swimming bacteria reveal groupings around spherical shapes and around rod-like shapes of axial ratio about 3. Motile genera are less likely to be spherical and have larger axial ratios than nonmotile genera. The effects of shape on seven possible components of biological fitness were determined, and actual fitness landscapes in phenotype space are presented. Ellipsoidal shapes were used as models, since their hydrodynamic drag coefficients can be rigorously calculated in the world of low Reynolds number, where bacteria live. Comparing various shapes of the same volume, and assuming that departures from spherical have a cost that varies with the minimum radius of curvature, led to the following conclusions. Spherical shapes have the largest random dispersal by Brownian motion. Increased surface area occurs in oblate ellipsoids (disk-like), which rarely occur. Elongation into prolate ellipsoids (rod-like) reduces sinking speed, and this may explain why some nonmotile genera are rod-like. Elongation also favors swimming efficiency (to a limited extent) and the ability to detect stimulus gradients by any of three mechanisms. By far the largest effect (several hundred-fold) is on temporal detection of stimulus gradients, and this explains why rod-like shapes and this mechanism of chemotaxis are common.  相似文献   

3.
In the UK there has been dramatic growth in the number of proposed wind farms, and the impact on wildlife of this expansion is largely unknown. Avian collisions with wind turbines have received wide attention but reliable predictions remain elusive. Existing predictive models consider behavioural factors such as group movement only implicitly and require accurate site-specific data to produce predictions, making them difficult to translate between locations. Here we introduce an individual-based modelling approach to describe group interactions with obstacles that incorporates aspects of collective motion to simulate and quantify likely avoidance behaviour. We quantify the effect of group size on the probability of an individual colliding with a fixed obstacle, and investigate the roles of both navigational efficiency and group cohesion. We show that, over a wide range of model assumptions and parameterisations, social interactions have a significant and potentially large effect on collision risk; in contrast to previous models, collision risk is typically a non-linear function of group size. These results show that emergent behaviour induced by social interactions can have important effects on the metrics used to inform management and policy decisions.  相似文献   

4.
戈壁灌丛堆周边地表土壤颗粒的空间异质特征   总被引:5,自引:0,他引:5       下载免费PDF全文
研究戈壁地区单个灌丛及其下沙堆这一有机整体对周边土壤风蚀的抑制能力, 对加强相关地区的植被类型及其空间配置格局的防沙效应研究十分重要, 可为荒漠化监测的评价和制定科学的防治措施提供参考。该文利用数字图像处理技术, 获取吉兰泰盐湖北部戈壁上单个白刺(Nitraria tangutorum)灌丛沙堆和沙冬青(Ammopiptanthus mongolicus)灌丛沙堆周边地表不同土壤风蚀颗粒的百分含量; 并采用经典描述性统计及地统计学方法, 对各类土壤风蚀颗粒百分含量的水平空间异质性进行分析。结果表明: (1)灌丛基部和下风向是细物质积累区, 以灌丛堆为中心向外, <0.42 mm的细颗粒含量呈减少趋势; 而且细物质积累的最大值出现在白刺灌丛的迎风侧附近, 沙冬青样地则相反, 出现在灌丛的背风侧附近。在沙源物质有限的戈壁中, 白刺的防风固沙作用集中体现在灌丛附近, 其水平空间尺度范围不及沙冬青, 这亦是白刺样地粗粒化程度高于沙冬青样地的原因。(2)白刺和沙冬青灌丛附近地表中粒径>0.84 mm (不可蚀)、0.84-0.42 mm (半可蚀)及<0.42 mm (高度可蚀)颗粒的空间异质性尺度分别为17.80 m、66.63 m、8.41 m和9.82 m、15.33 m、14.91 m, 均超出了灌丛冠幅覆盖范围, 空间自相关部分比例C/(C0 + C)在63.40%-99.96%之间, 由此推断灌丛沙堆附近的风沙流特征是造成相应尺度内土壤颗粒空间异质性的主要因子。(3)高度可蚀颗粒的空间异质性尺度略大于灌丛平均间距(8.77 m包括灌丛半径), 从防止土壤风蚀来看, 这说明研究区内的建群种灌丛间存在一定程度的相互促进关系, 有利于该区植被的稳定与发展。  相似文献   

5.
Nematalycid mites have undergone extreme changes of body shape in adaptating to life in tiny spaces between grains of fine sand. Because of their minute size, the morphology of these organisms can only be reconstructed from ultrathin serial sections. The cuticle forms regular alternating palettes on the surface; such a structure may also function as a plastron. Movement of the body is effected by a continuous secondary muscle layer beneath the epidermis which operates in connection with the cuticular palettes. This movement represents a hitherto unknown mode of reptation, which can be understood as an adaptation to moving among sand particles. The appendages have been reduced to a minute size. The morphology of the digestive tract is described and conclusions are drawn concerning nutrition.  相似文献   

6.
Recently Vale et al. (1989, Cell 59, 915-925.) reported an observation of the one-dimensional Brownian movement of microtubules bound to flagellar dynein through a weak-binding interaction. In this study, we propose a theoretical model of this phenomenon. Our model consists of a rigid microtubule associated with a number of elastic dynein heads through a weak-binding interaction at equilibrium. The model implies that (1) the Brownian motion of the microtubule is not directly driven by the atomic collision of the solvent particles, but is driven by the thermally-generated structural fluctuations of the dynein heads which interact with the microtubule; (2) dynein heads through a weak-binding interaction exert a frictional drag force on the sliding motion of the microtubule and the drag force is proportional to the sliding velocity the same as in hydrodynamic viscous friction. This protein friction, with such viscous-like characteristics, may well play a role as a velocity-limiting factor in the normal ATP-induced sliding movement of motile proteins.  相似文献   

7.
An antlion pit is lined with fine particles during construction. This feature appears to increase the effectiveness of the pit in prey capture. Pit structure is influenced by physical properties of sand and the building behaviour of the antlion. Two physical properties of sand govern pit structure: the angle of repose and Stoke's Law drag force. These two properties complement each other as follows: (a) Since larger particles have a lower angle of repose than smaller particles, fine sand grains tend to stay on the pit walls, whereas larger particles fall to the pit's centre. (b) Large particles have a lower drag to momentum ratio than do small particles. Thus, larger particles are more likely to be thrown out of the pit than are smaller particles. Several behavioural modifications were demonstrated that increase the number of fine particles on the pit walls while reducing construction costs for the antlion. (a) A trajectory angle of 45° is used when the antlion throws particles out of the pit. This angle will maximize the distance to which larger particles are thrown. A trajectory angle of 60° is used at the end of pit construction when the antlion is throwing fine particles on the sides of the pit. This angle reduces the number of these fine particles leaving the pit. (b) Antlions can alter the velocity with which they throw particles. When discarding prey carcasses and debris that have accumulated during prey capture, they use a velocity that is approximately 39% higher than the velocity used during pit construction. (c) By vibrating their forelegs, antlions appear to sift out the finer particles before each throw. This increases the percentage of larger particles discarded from the pit.  相似文献   

8.
9.
Convection properties of jackrabbit ears were examined in a wind tunnel and in the field in an attempt to study the possible thermal role of the large ears. This work was part of a study on energy exchange of appendages. Cylindrical copper models of various shapes, aluminum castings of domestic and jackrabbit ears, and an amputated jackrabbit ear were studied in a wind tunnel (a) to define the range for convective heat loss for appendages of various shapes, and (b) to study the effect on convection of model shape and orientation to the wind. Shape, i.e. length and closure, proved important. Orientation to the wind produced no consistent or significant variation in the convection coefficient. The convection coefficients from the ear castings fell within the range generated from the cylindrical models. The convection coefficients for the amputated rabbit ear fell partially within the range. Net thermal radiation loss at midday from the jackrabbit ears was found to be small. Convection from the ears, however, could account for the loss of over 100% of the animal's metabolic heat at an air temperature of 30°C. If air temperature exceeds body temperature, the animal must either store heat or resort to the evaporation of water.  相似文献   

10.
The growing need for ecological forecasts of, for example, species migration, has increased interest in developing mechanistic models for wind dispersal of seeds, pollen and spores. Analytical models are only able to predict mean dispersal distances, whereas sophisticated trajectory simulation models are able to incorporate rare wind conditions causing long-distance dispersal and are therefore preferable. Despite the rapid development of mechanistic dispersal models, only a few studies have focused on comparing the performance of the models. To assess the level of model complexity needed, attention should be paid to model comparisons and the sensitivity of the predictions to model complexity. In addition to studying the movement of airborne particles, future modelling work should also focus on the processes of particle release and deposition.  相似文献   

11.
The mouth of the Seine River estuary (France) has undergone marked morphological evolution over several decades mainly due to engineering works aimed at improving access to Rouen and Le Havre harbours. The intertidal areas are decreasing in size and the lower estuary is accumulating sediment and prograding. In order to understand and better describe the major morphological behaviours of the estuary, a morphodynamic numerical model was developed within the Seine-Aval program. At the end of the 1st part of the research program, a validated fine sediment transport model (3D) was available (Le Hir et al., 2001b). As the present morphological study addresses medium-term issues (a few decades), and because of the need to investigate impacts of local structures or events, we chose to use the so-called “process-based approach” starting from the existing model. First, the existing model was upgraded to account for (suspended) sand transport, and to achieve coupling between morphological changes and sediment transport. Erodability of the sediment accounts for the respective proportions of mud and sand. Simulations starting from an arbitrary surficial sediment cover show that the model is able to reproduce realistic sediment patterns. For example, it is able to change the sediment nature on the intertidal flat near Le Havre from sand to mud. Observed structures of suspended sediment are also reproduced: fine particles mainly follow the turbidity maximum whereas significant concentrations of sand grains in suspension are found where the hydrodynamic stresses are intense. Concerning morphodynamics, simulations with real forcing over one year are discussed. The effect of waves on the bathymetric evolution of the mouth is shown and the sensitivity of morphodynamics to the coupling procedure is tested.  相似文献   

12.
The phenology of pollen release and pollen capture by Pistacia vera was studied in the field and laboratory respectively. Inflorescences of Pistacia vera were examined in a wind tunnel to determine whether the behavior of airborne conspecific pollen around receptive flowers differed as a result of changes in the shape and size of the inflorescence. In addition, the behavior of unclumped (single) and clumped pollen grains was studied to determine differences in the probability of their capture. Wind speeds within a commercial orchard during pollen shedding averaged 0.9–2.2 m/sec and atmospheric pollen concentrations were highest between 0900–1100 hr MST. Each of three stages in inflorescence development (defined on the basis of the number of exserted stigmas) was examined under identical ambient airflow conditions with equal concentrations of airborne pollen (1,000 grains/m3). The general pattern of pollen grain motion involves direct inertial collision by windward surfaces and by sedimentation of pollen onto leeward surfaces; clumped pollen rarely sedimented onto leeward surfaces. Small changes in ambient wind speed (0.5 m/sec to 1.0 m/sec) produced significant changes in the pattern of pollen motion around inflorescences and altered the number of pollen grains captured by leeward surfaces. Thus, wind pollination in P. vera is affected both by windspeed and by the shape or size of flower clusters. Differences in the behavior of clumped and unclumped pollen result from their inertial properties and responsiveness to local changes in the direction and speed of airflow. Unclumped pollen has a higher probability of being captured by leeward surfaces. The apparent insensitivity of pollen motion to differences in inflorescence size may ensure equitable pollination during the acropetal development of flowers.  相似文献   

13.
Intracellular organelle motion within clonal pituitary tumor cells (GH3) was observed directly with a contrast enhancement, computer-video microscope system. All particles except nuclei moved in a complex fashion. Two types of particles predominated; one large and round, the other small and elongated. We classified the movements of these particles as saltation, oscillation and slow translocation. Saltation was directional movement with velocity of the order of 1 micron/sec. Oscillation was local motion occurring within 1 micron that showed no specific direction. Its velocity was similar to that of saltation. Large particles, in particular, showed the 3rd type of movement, slow translocation. The velocity appeared to be one order slower than that of saltation. We also examined the cells with fluorescent, dark-field and electron microscopies. We concluded that the large round particles were lysosomes and the small elongated ones mitochondria. The microtubule depolymerizer, vinblastine and the microfilament depolymerizer, cytochalasin D, completely inhibited all the types of organelle movement. The mechanism and significance of these organelle movements are discussed.  相似文献   

14.
Fungal spores and pollens can be dispersed in a number of ways: by animals and insects; by water; by wind or by rain. This paper concentrates on the effects of wind on the dispersal of spores and pollen grains and the effects of rain on spore dispersal. For dispersal to be successful particles must complete three phases: removal, dispersal through the air and deposition. The biology of the organism and its environment can affect all three phases, however, once released the fate of all airborne particles largely depends on the laws of physics which govern the motion of the air. Many types of spore are actively ejected into the air while others are simply blown from the host surface. Particle size and shape affects dispersal and deposition phases. Local environmental factors such as temperature, humidity and light, as well as wind or rain, can play a key role in the removal of spores. Wind speed and turbulence or rainfall, largely determine spore dispersal, but, the size and shape of the particle, the nature of the plant canopy and the way the particles are released into the air may also be important. Particle deposition depends on both environmental and biological factors. This paper briefly considers these processes using examples and how they can be modelled.  相似文献   

15.
The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship between drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuratio  相似文献   

16.
The rate of deposition of 20–30 μm diameter particles, including spores and pollen grains, on plant and other surfaces, is determined, first, by the frequency at which particles strike the surfaces and, secondly, by the proportion retained on the surface rather than rebounding into the airstream. Spores and pollen grains tagged with a radioactive marker were used to show that the impaction efficiency on leaves and stems depends very much on whether or not the surfaces are sticky or moist. If they are, the rate of deposition may approach that predicted aerodynamically. If the plant surfaces are dry, there is saltation of some spores and the effective rate of deposition is greatly reduced.  相似文献   

17.
Though the resistance to uprooting of cylindrical roots and root systems has been extensively investigated, almost no research has been performed on the factors that influence the uprooting resistance of bulbs. However, engineers have modelled bulb-like foundations and have investigated their resistance to upward movements. This study combined engineering theory with practical biology, using model bulbs of different shapes and sizes, embedding them at different depths in different soil media, and pulling them out while recording the uprooting force. Uprooting resistances of the models was compared to those of real onion and garlic bulbs with and without their root systems. Cone shaped models resisted uprooting best at all embedment depths and in both soil types, always followed by bulb shaped and cylindrical models. These results are explicable in terms of engineering theory. Cones resisted uprooting best because their maximum diameter is embedded deepest. A bulb shape is an ideal compromise as it has no sharp edges, and also allows easy downward movement. In sand uprooting resistance increased faster with depth than with bulb diameter, whereas in agricultural soils, the uprooting force was proportional both to the depth and the diameter of the model. The tests on the plants showed that real bulbs anchor plants by similar mechanisms and amounts to the models. The bulbs accounted for between 15% and 50% of the uprooting resistance of the plant, so they can make an important contribution to anchorage, particularly towards the end of the season.  相似文献   

18.
A J Hunt  F Gittes    J Howard 《Biophysical journal》1994,67(2):766-781
Kinesin is a motor protein that uses the energy derived from the hydrolysis of ATP to power the transport of organelles along microtubules. To probe the mechanism of this chemical-to-mechanical energy transduction reaction, the movement of microtubules across glass surfaces coated with kinesin was perturbed by raising the viscosity of the buffer solution. When the viscosity of the solution used in the low density motility assay was increased approximately 100-fold through addition of polysaccharides and polypeptides, the longer microtubules, which experienced a larger drag force from the fluid, moved more slowly than the shorter ones. The speed of movement of a microtubule depended linearly on the drag force loading the motor. At the lowest kinesin density, where dilution experiments indicated that the movement was caused by a single kinesin molecule, extrapolation of the linear relationship yielded a maximum time-averaged drag force of 4.2 +/- 0.5 pN per motor (mean +/- experimental SE). The magnitude of the force argues against one type of "ratchet" model in which the motor is hypothesized to rectify the diffusion of the microtubule; at high viscosity, diffusion is too slow to account for the observed speeds. On the other hand, our data are consistent with models in which force is a consequence of strain developed in an elastic element within the motor; these models include a different "ratchet" model (of the type proposed by A. F. Huxley in 1957) as well as "power-stroke" models.  相似文献   

19.
 An insight into the nature of prevailing meteorological conditions and the manner in which they interact with spraying parameters is an important prerequisite in the analysis of the dynamics of agrochemical sprays. Usually, when these sprays are projected from hydraulic nozzles, their initial velocity is greater than that of the ambient wind speed. The flowfield therefore experiences changes in speed and direction which are felt upstream as well as downstream of the spray droplets. The pattern of the droplet flow, i.e. the shape of the streamlines marking typical trajectories, will be determined by a balance of viscous forces related to wind speed, inertial forces resulting from the acceleration of the airstream and pressure forces which can be viewed in terms of the drag forces exerted on the spray droplets themselves. At a certain distance in the ensuing motion, when the initial velocity of the spray droplets has decreased sufficiently for there to be no acceleration, their trajectories will be controlled entirely by the random effects of turbulence. These two transport processes in the atmosphere can be modelled mathematically using computers. This paper presents a model that considers the velocity of spray droplets to consist of a ballistic velocity component superimposed by a random-walk velocity component. The model is used to study the influence of meteorological and spraying parameters on the three-dimensional dynamics of spray droplets projected in specified directions in neutral and unstable weather conditions. The ballistic and random-walk velocity components are scaled by factors of (1–ξ) and ξ respectively, where ξ is the ratio of the sedimentation velocity and the relative velocity between the spray droplets and the surrounding airstream. This ratio increases progressively as the initial velocity of the spray droplet decreases with air resistance and attains a maximum when the sedimentation velocity has been reached. As soon as this occurs, the random-walk process predominates. The computed effects of the release height of spray droplets, atmospheric turbulence intensity, evaporation, drop size spectrum, wind velocity and wind direction on the transport process have been studied and an analysis of spray drift is provided. Received: 5 March 1997 / Accepted: 17 December 1997  相似文献   

20.
The ability to produce submicron particles of monoclonal antibodies of different sizes and shapes would enhance their application to pulmonary delivery. Although non-ionic surfactants are widely used as stabilizers in protein formulations, we hypothesized that non-ionic surfactants will affect the shape and size of submicron IgG particles manufactured through precipitation. Submicron particles of IgG1 were produced by a precipitation process which explores the fact that proteins have minimum solubility but maximum precipitation at the isoelectric point. Non-ionic surfactants were used for size and shape control, and as stabilizing agents. Aerosol performance of the antibody nanoparticles was assessed using Andersen Cascade Impactor. Spinhaler® and Handihaler® were used as model DPI devices. SEM micrographs revealed that the shape of the submicron particles was altered by varying the type of surfactant added to the precipitating medium. Particle size as measured by dynamic light scattering was also varied based on the type and concentration of the surfactant. The surfactants were able to stabilize the IgG during the precipitation process. Polyhedral, sponge-like, and spherical nanoparticles demonstrated improved aerosolization properties compared to irregularly shaped (>20 μm) unprocessed particles. Stable antibody submicron particles of different shapes and sizes were prepared. Careful control of the shape of such particles is critical to ensuring optimized lung delivery by dry powder inhalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号