首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mannose 6-phosphate (Man-6-P) lysosomal targeting signal on acid hydrolases is synthesized by the sequential action of uridine 5′-diphosphate-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) and GlcNAc-1-phosphodiester α-N-acetylglucosaminidase (“uncovering enzyme” or UCE). Mutations in the two genes that encode GlcNAc-1-phosphotransferase give rise to lysosomal storage diseases (mucolipidosis type II and III), whereas no pathological conditions have been associated with the loss of UCE activity. To analyze the consequences of UCE deficiency, the UCE gene was inactivated via insertional mutagenesis in mice. The UCE −/− mice were viable, grew normally and lacked detectable histologic abnormalities. However, the plasma levels of six acid hydrolases were elevated 1.6- to 5.4-fold over wild-type levels. These values underestimate the degree of hydrolase hypersecretion as these enzymes were rapidly cleared from the plasma by the mannose receptor. The secreted hydrolases contained GlcNAc-P-Man diesters, exhibited a decreased affinity for the cation-independent mannose 6-phosphate receptor and failed to bind to the cation-dependent mannose 6-phosphate receptor. These data demonstrate that UCE accounts for all the uncovering activity in the Golgi. We propose that in the absence of UCE, the weak binding of the acid hydrolases to the cation-independent mannose 6-phosphate receptor allows sufficient sorting to lysosomes to prevent the tissue abnormalities seen with GlcNAc-1-phosphotranferase deficiency.  相似文献   

3.
Fructose transport in lactococci is mediated by two phosphotransferase systems (PTS). The constitutive mannose PTS has a broad specificity and may be used for uptake of fructose with a fructose saturation constant (KFru) of 0.89 mM, giving intracellular fructose 6-phosphate. The inducible fructose PTS has a very small saturation constant (KFru, <17 μM), and the fructose 1-phosphate produced enters the Embden-Meyerhof-Parnas (EMP) pathway as fructose 1,6-diphosphate. Growth in batch cultures of Lactococcus lactis subsp. cremoris FD1 in a yeast extract medium with fructose as the only sugar is poor both with respect to specific growth rate and biomass yield, whereas the specific lactic acid production rate is higher than those in similar fermentations on other sugars metabolized via the EMP pathway, e.g., glucose. In fructose-limited chemostat cultures, the biomass concentration exhibits a strong correlation with the dilution rate, and starting a continuous culture at the end of a batch fermentation leads to large and persistent oscillations in the biomass concentration and specific lactic acid production rate. Two proposed mechanisms underlying this strange growth pattern follow. (i) Fructose transported via the fructose PTS cannot be converted into essential biomass precursors (glucose 6-phosphate or fructose 6-phosphate), because L. lactis subsp. cremoris FD1 is devoid of fructose 1,6-diphosphatase activity. (ii) The fructose PTS apparently produces a metabolite (presumably fructose 1-phosphate) which exerts catabolite repression of both mannose PTS and lactose PTS. Since the repressed mannose PTS and lactose PTS are shown to have identical maximum molar transport rates, the results indicate that it is the general PTS proteins which are repressed.  相似文献   

4.
The glucose and fructose degradation pathways were analyzed in the halophilic archaeon Halococcus saccharolyticus by 13C-NMR labeling studies in growing cultures, comparative enzyme measurements and cell suspension experiments. H. saccharolyticus grown on complex media containing glucose or fructose specifically 13C-labeled at C1 and C3, formed acetate and small amounts of lactate. The 13C-labeling patterns, analyzed by 1H- and 13C-NMR, indicated that glucose was degraded via an Entner-Doudoroff (ED) type pathway (100%), whereas fructose was degraded almost completely via an Embden-Meyerhof (EM) type pathway (96%) and only to a small extent (4%) via an ED pathway. Glucose-grown and fructose-grown cells contained all the enzyme activities of the modified versions of the ED and EM pathways recently proposed for halophilic archaea. Glucose-grown cells showed increased activities of the ED enzymes gluconate dehydratase and 2-keto-3-deoxy-gluconate kinase, whereas fructose-grown cells contained higher activities of the key enzymes of a modified EM pathway, ketohexokinase and fructose-1-phosphate kinase. During growth of H. saccharolyticus on media containing both glucose and fructose, diauxic growth kinetics were observed. After complete consumption of glucose, fructose was degraded after a lag phase, in which fructose-1-phosphate kinase activity increased. Suspensions of glucose-grown cells consumed initially only glucose rather than fructose, those of fructose-grown cells degraded fructose rather than glucose. Upon longer incubation times, glucose- and fructose-grown cells also metabolized the alternate hexoses. The data indicate that, in the archaeon H. saccharolyticus, the isomeric hexoses glucose and fructose are degraded via inducible, functionally separated glycolytic pathways: glucose via a modified ED pathway, and fructose via a modified EM pathway.Abbreviations. KDG 2-Keto-3-deoxygluconate - KDPG 2-Keto-3-deoxy-6-phosphogluconate - FBP Fructose-1,6-bisphosphate - TIM Triosephosphate isomerase - GAP Glyceraldehyde-3-phosphate - PEP Phosphoenolpyruvate - PTS Phosphotransferase - 1-PFK Fructose 1-phosphate kinase An erratum to this article can be found at  相似文献   

5.
The purple nonsulfur bacterium Rhodospirillum rubrum has been employed to study physiological adaptation to limiting oxygen tensions (microaerophilic conditions). R. rubrum produces maximal levels of photosynthetic membranes when grown with both succinate and fructose as carbon sources under microaerophilic conditions in comparison to the level (only about 20% of the maximum) seen in the absence of fructose. Employing a unique partial O2 pressure (pO2) control strategy to reliably adjust the oxygen tension to values below 0.5%, we have used bioreactor cultures to investigate the metabolic rationale for this effect. A metabolic profile of the central carbon metabolism of these cultures was obtained by determination of key enzyme activities under microaerophilic as well as aerobic and anaerobic phototrophic conditions. Under aerobic conditions succinate and fructose were consumed simultaneously, whereas oxygen-limiting conditions provoked the preferential breakdown of fructose. Fructose was utilized via the Embden-Meyerhof-Parnas pathway. High levels of pyrophosphate-dependent phosphofructokinase activity were found to be specific for oxygen-limited cultures. No glucose-6-phosphate dehydrogenase activity was detected under any conditions. We demonstrate that NADPH is supplied mainly by the pyridine-nucleotide transhydrogenase under oxygen-limiting conditions. The tricarboxylic acid cycle enzymes are present at significant levels during microaerophilic growth, albeit at lower levels than those seen under fully aerobic growth conditions. Levels of the reductive tricarboxylic acid cycle marker enzyme fumarate reductase were also high under microaerophilic conditions. We propose a model by which the primary “switching” of oxidative and reductive metabolism is performed at the level of the tricarboxylic acid cycle and suggest how this might affect redox signaling and gene expression in R. rubrum.  相似文献   

6.
Strains of Bacillus subtilis mutated for fructose phosphotransferase system (fruA), fructose-1-phosphate kinase (fruB), fructokinase (frucC) have been tested for their catabolism of sorbitol and fructose. It is shown that the previously known pathways of sorbitol and fructose degradation in B. subtilis, e.g.: (see article) may metabolize intracellular fructose produced either by sorbitol oxidation or by fructose-1-phosphate dephosphorylation. The intracellular fructore degradation via fructose-1-phosphate kinase has been found to require the fructose phosphotransferase system which ensures a vectorial transport of fructose.  相似文献   

7.
8.
A fast and reliable method for the identification of milk from different mammalians was developed by using 31P NMR metabolite profile of milk serum coupled to multivariate analysis (PCA and classification models UNEQ, SIMCA and K-NN). Ten milk samples from six different mammalians, relevant to human nutrition (human, cow, donkey, mare, goat, sheep), were analyzed and eight monophosphorylated components were identified and quantified: phosphocreatine (PCr), glycerophosphorylcholine (GPC), glycerophosphorylethanolamine (GPE), N-acetylglucosamine-1-phosphate (NAcGlu-1P), lactose-1-phosphate (Lac-1P), galactose-1-phosphate (Gal-1P), phosphorylcholine (PC), glucose-6-phosphate (Glu-6P). PCA showed interesting clustering based on the animal genus. K-NN can be successfully used to discriminate between donkey and cow samples while UNEQ class-modeling resulted more suitable for compliance verification. Results confirm the natural variability of milk samples among different species. These data highlight the great potentials of NMR/multivariate analysis combined method in the rapid analysis of phosphorylated milk serum metabolites for milk origin assessment and milk adulteration detection.  相似文献   

9.
Transmembrane sugar transport into immature internodal parenchyma tissue of sugarcane (Saccharum officinarum L.) is a metabolically regulated process as evidenced by its sensitivity to pH, temperature, anaerobiosis, and metabolic inhibitors. All sugars studied—glucose, fructose, galactose, sorbose, glucose 6-phosphate, 3-O-methylglucose, and 2-deoxy-d-glucose—were apparently transported via the same carrier sites since they competed with each other for uptake. External concentrations of these sugars at one-half Vmax were in the range of 3.9 to 8.4 nm. Preliminary data indicated that phosphorylation may be closely associated with glucose transport. The dominant intracellular sugar after 4-hours incubation was sucrose when glucose, glucose-6-P, or fructose was the exogenously supplied sugar; but when galactose was supplied, only 28% of intracellular radioactivity was in sucrose. Sorbose, 3-O-methylglucose, and 2-deoxy-d-glucose were not metabolized. Thus, by using these analogs, transport could be studied independently of subsequent metabolism, effectively eliminating a complicating factor in previous studies.  相似文献   

10.
Carbon assimilation in carrot cells in liquid culture   总被引:1,自引:1,他引:0  
Assimilation of carbohydrates by carrot (Daucus carota L. cv Danvers) cells in liquid culture was studied to delineate the major metabolic pathways used in transformation of external carbohydrates to UDP-glucose. The cells grown on either sucrose or glucose for several years proved equally capable of utilizing each of these sugars. Sucrose was rapidly hydrolyzed extracellularly to glucose and fructose, and glucose was preferentially taken up. Uptake of fructose was slower and delayed until glucose was nearly depleted from the medium. Concentrations of cellular sugars, mainly glucose and sucrose, increased during late logarithmic phase of growth and decreased during the plateau phase. Continuous labeling of the cells with d-[14C]glucose resulted in rapid accumulation of radioactivity in glucose-6-phosphate and UDP-glucose. Because there was virtually no uptake of sucrose, UDP-glucose was likely derived from glucose-1-phosphate in a reaction catalyzed by UDP-glucose pyrophosphorylase and not directly from sucrose. Concentrations of major nucleotides and nucleotide sugars were maximal during the early logarithmic phase of growth and decreased several-fold in the stationary phase. A modified `energy charge' for adenylates calculated with the omission of AMP decreased steadily from 0.9 to 0.8 during the course of culture cycle. An analogous uracil nucleotide ratio was considerably lower (0.85) during early culture, decreased to about 0.7 for the entire logarithmic phase, and returned to initial values as cells entered stationary phase. The uracil nucleotide ratio may provide a useful index to assess the coupling between the energy available in phosphoanhydride bond in adenine nucleotides and the demand for sugar for polysaccharide synthesis through uridine diphosphate-sugar pools.  相似文献   

11.
A novel N-acetylglucosamine-1-phosphate pyrophosphorylase was identified from Campylobacter jejuni NCTC 11168. An unprecedented degree of substrate promiscuity has been revealed by systematic studies on its substrate specificities towards sugar-1-P and NTP. The yields of the synthetic reaction of seven kinds of sugar nucleotides catalyzed by the enzyme were up to 60%. In addition, the yields of the other nine were around 20%. With this enzyme, three novel sugar nucleotide analogs were synthesized on a preparative scale and well characterized.  相似文献   

12.
13.
DUF2233, a domain of unknown function (DUF), is present in many bacterial and several viral proteins and was also identified in the mammalian transmembrane glycoprotein N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase (“uncovering enzyme” (UCE)). We report the crystal structure of BACOVA_00430, a 315-residue protein from the human gut bacterium Bacteroides ovatus that is the first structural representative of the DUF2233 protein family. A notable feature of this structure is the presence of a surface cavity that is populated by residues that are highly conserved across the entire family. The crystal structure was used to model the luminal portion of human UCE (hUCE), which is involved in targeting of lysosomal enzymes. Mutational analysis of several residues in a highly conserved surface cavity of hUCE revealed that they are essential for function. The bacterial enzyme (BACOVA_00430) has ∼1% of the catalytic activity of hUCE toward the substrate GlcNAc-P-mannose, the precursor of the Man-6-P lysosomal targeting signal. GlcNAc-1-P is a poor substrate for both enzymes. We conclude that, for at least a subset of proteins in this family, DUF2233 functions as a phosphodiester glycosidase.  相似文献   

14.
A method was developed for the large scale preparation of uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) from uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) by means of microbial enzymes. With Bacillus subtilis cell-free extract as a source of UDP-GlcNAc 4-epimerase, about 35% of the UDP-GlcNAc added was converted to UDP-GalNAc. After the residual UDP-GlcNAc was degraded to uridine triphosphate and N-acetylglucosamine-1-phosphate with a protamine-treated extract of bakers' yeast as a source of UDP-GlcNAc pyrophosphorylase, UDP-GalNAc was separated by anion-exchange column chromatography. The nucleotide was recovered by adsorption on charcoal and elution with ammoniacal ethanol. The final yield was about 100 μmol.  相似文献   

15.
Bifidobacterium bifidum, in contrast to other bifidobacterial species, is auxotrophic for N-acetylglucosamine. Growth experiments revealed assimilation of radiolabelled N-acetylglucosamine in bacterial cell walls and in acetate, an end-product of central metabolism via the bifidobacterial d-fructose-6-phosphate shunt. While supplementation with fructose led to reduced N-acetylglucosamine assimilation via the d-fructose-6-phosphate shunt, no significant difference was observed in levels of radiolabelled N-acetylglucosamine incorporated into cell walls. Considering the central role played by glutamine fructose-6-phosphate transaminase (GlmS) in linking the biosynthetic pathway for N-acetylglucosamine to hexose metabolism, the GlmS of Bifidobacterium was characterized. The genes encoding the putative GlmS of B. longum DSM20219 and B. bifidum DSM20082 were cloned and sequenced. Bioinformatic analyses of the predicted proteins revealed 43% amino acid identity with the Escherichia coli GlmS, with conservation of key amino acids in the catalytic domain. The B. longum GlmS was over-produced as a histidine-tagged fusion protein. The purified C-terminal His-tagged GlmS possessed glutamine fructose-6-phosphate amidotransferase activity as demonstrated by synthesis of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. It also possesses an independent glutaminase activity, converting glutamine to glutamate in the absence of fructose-6-phosphate. This is of interest considering the apparently reduced coding potential in bifidobacteria for enzymes associated with glutamine metabolism. S. Foley and E. Stolarczyk contributed equally to this work  相似文献   

16.
The Mv1751 gene product is thought to catalyze the first step in the N-glycosylation pathway in Methanococcus voltae. Here, we show that a conditional lethal mutation in the alg7 gene (N-acetylglucosamine-1-phosphate transferase) in Saccharomyces cerevisiae was successfully complemented with Mv1751, highlighting a rare case of cross-domain complementation.  相似文献   

17.
SYNOPSIS Some carbohydrates inhibited glucose and fructose transport in Trypanosoma gambiense. Glucose transport was inhibited by glycerol, mannose, 2-deoxy-D-glucose, glucosamine and N-acetylglucosamine. Fructose transport was inhibited by glucose, glycerol, mannose, glucosamine and N-acetylglucosamine. Glucosamine transport appeared to be a mediated process and had a Km of 1.20 mM and a Vmax of 28.5 μM glucosamine/g dry wt/2 min. Glucosamine absorption was competitively inhibited by glucose, fructose and N-acetylglycosamine. N-Acetylglucosamine appeared to enter by passive diffusion. Reciprocal inhibition experiments suggested that glucosamine entered entirely via the “fructose site.” Specificity of sugar transport in T. gambiense differs from that of other organisms.  相似文献   

18.
The baculovirus/insect cell system is widely used for recombinant protein production, but it is suboptimal for recombinant glycoprotein production because it does not provide sialylation, which is an essential feature of many glycoprotein biologics. This problem has been addressed by metabolic engineering, which has extended endogenous insect cell N-glycosylation pathways and enabled glycoprotein sialylation by baculovirus/insect cell systems. However, further improvement is needed because even the most extensively engineered baculovirus/insect cell systems require media supplementation with N-acetylmannosamine, an expensive sialic acid precursor, for efficient recombinant glycoprotein sialylation. Our solution to this problem focused on E. coli N-acetylglucosamine-6-phosphate 2′-epimerase (GNPE), which normally functions in bacterial sialic acid degradation. Considering that insect cells have the product, but not the substrate for this enzyme, we hypothesized that GNPE might drive the reverse reaction in these cells, thereby initiating sialic acid biosynthesis in the absence of media supplementation. We tested this hypothesis by isolating transgenic insect cells expressing E. coli GNPE together with a suite of mammalian genes needed for N-glycoprotein sialylation. Various assays showed that these cells efficiently produced sialic acid, CMP-sialic acid, and sialylated recombinant N-glycoproteins even in growth media without N-acetylmannosamine. Thus, this study demonstrated that a eukaryotic recombinant protein production platform can be glycoengineered with a bacterial gene, that a bacterial enzyme which normally functions in sialic acid degradation can be used to initiate sialic acid biosynthesis, and that insect cells expressing this enzyme can produce sialylated N-glycoproteins without N-acetylmannosamine supplementation, which will reduce production costs in glycoengineered baculovirus/insect cell systems.  相似文献   

19.
Phaeobacter gallaeciensis, a member of the abundant marine Roseobacter clade, is known to be an effective colonizer of biotic and abiotic marine surfaces. Production of the antibiotic tropodithietic acid (TDA) makes P. gallaeciensis a strong antagonist of many bacteria, including fish and mollusc pathogens. In addition to TDA, several other secondary metabolites are produced, allowing the mutualistic bacterium to also act as an opportunistic pathogen. Here we provide the manually annotated genome sequences of the P. gallaeciensis strains DSM 17395 and 2.10, isolated at the Atlantic coast of north western Spain and near Sydney, Australia, respectively. Despite their isolation sites from the two different hemispheres, the genome comparison demonstrated a surprisingly high level of synteny (only 3% nucleotide dissimilarity and 88% and 93% shared genes). Minor differences in the genomes result from horizontal gene transfer and phage infection. Comparison of the P. gallaeciensis genomes with those of other roseobacters revealed unique genomic traits, including the production of iron-scavenging siderophores. Experiments supported the predicted capacity of both strains to grow on various algal osmolytes. Transposon mutagenesis was used to expand the current knowledge on the TDA biosynthesis pathway in strain DSM 17395. This first comparative genomic analysis of finished genomes of two closely related strains belonging to one species of the Roseobacter clade revealed features that provide competitive advantages and facilitate surface attachment and interaction with eukaryotic hosts.  相似文献   

20.
The biosynthesis of alginate has been studied extensively due to the importance of this polymer in medicine and industry. Alginate is synthesized from fructose-6-phosphate and thus competes with the central carbon metabolism for this metabolite. The alginate-producing bacterium Pseudomonas fluorescens relies on the Entner-Doudoroff and pentose phosphate pathways for glucose metabolism, and these pathways are also important for the metabolism of fructose and glycerol. In the present study, the impact of key carbohydrate metabolism enzymes on growth and alginate synthesis was investigated in P. fluorescens. Mutants defective in glucose-6-phosphate dehydrogenase isoenzymes (Zwf-1 and Zwf-2) or glucose dehydrogenase (Gcd) were evaluated using media containing glucose, fructose, or glycerol. Zwf-1 was shown to be the most important glucose-6-phosphate dehydrogenase for catabolism. Both Zwf enzymes preferred NADP as a coenzyme, although NAD was also accepted. Only Zwf-2 was active in the presence of 3 mM ATP, and then only with NADP as a coenzyme, indicating an anabolic role for this isoenzyme. Disruption of zwf-1 resulted in increased alginate production when glycerol was used as the carbon source, possibly due to decreased flux through the Entner-Doudoroff pathway rendering more fructose-6-phosphate available for alginate biosynthesis. In alginate-producing cells grown on glucose, disruption of gcd increased both cell numbers and alginate production levels, while this mutation had no positive effect on growth in a non-alginate-producing strain. A possible explanation is that alginate synthesis might function as a sink for surplus hexose phosphates that could otherwise be detrimental to the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号